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Abstract. We demonstrate the existence of elastically unitary scattering amplitudes,
corresponding to a given Born term, when the latter satisfies certain conditions of Holder-
continuity. The results are directly applicable to nonrelativistic potential scattering; and
they will also be useful later in connection with the construction of relativistic, crossing-
symmetric amplitudes. In this preliminary study, no singularities are allowed in the right
half of the complex angular-momentum plane; but it is intended eventually to introduce
such singularities (Regge poles and branch-points).

I. Introduction

During the years 1968-1970, it was proved [1-3] that there exists an
infinity of crossing-symmetric amplitudes that satisfy the Mandelstam
representation for pion-pion scattering. These amplitudes satisfied
elastic unitary exactly between the elastic and inelastic thresholds, while
the inelastic unitary inequality was observed above the latter. Although
the full extent of the infinite family of such amplitudes was not investigat-
ed, it was established that there is a completely arbitrary contribution
to the inelastic double spectral function [1], that there is in general an
undetermined subtraction constant [2], and that the Castillejo-Dalitz-
Dyson (CDD) ambiguity occurs [3].

Despite the plethora of possible solutions, it is hoped that the Mandel-
stam representation may be used to build a phenomenological pion
amplitude. By injecting sufficient experimental information into the
system of equations, it should be possible to restrict the set of solutions
to a narrow class, from which other experimental paramaters may be
predicted. The work of Basdevant, Froggatt, and Petersen, with the
simpler equations of Roy [4], already indicates that such a scheme may
well have predictive value.

A serious shortcoming of the work so far is that it has proved impos-
sible to construct amplitudes with full crossing, elastic unitary up to
the inelastic threshold, and positivity in the inelastic region, if the elastic
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part of the amplitude needs more than one subtraction in its double
dispersion relation. Indeed, it is not known in such a case how one can
keep the partial-wave amplitudes bounded as the energy tends to infinity.
Since it is known that Regge trajectories do rise above one, it is of the
utmost importance to solve the problem of the boundedness of the partial-
wave amplitudes.

The most reasonable way solving the problem is to work directly
with A(s, /), the continuation of the partial-wave amplitude into the
complex angular-momentum plane. It is possible to write equations for
A(s9 ΐ) that guarantee crossing symmetry for the full amplitude, F(s, t\
and the idea is to control the /-plane singularities in such a way that the
boundedness of \A(s, l)\ as s-> oo is assured. The problem of positivity
is probably too delicate to be handled analytically; but it is not unrea-
sonable to try to guarantee boundedness, and to relegate positivity to a
numerical investigation.

This article is planned as the first in a series, in which the above
programme will hopefully be implemented. In this paper we consider the
very simplest case which exhibits the structure of the Sommerfeld-Watson
representation: that of potential scattering without Regge poles. In
Section 2, we set up the equations, which involve a Froissart-Gribov
representation for A(s, /), and the double spectral part of the Sommerfeld-
Watson integral. We define a Banach space of doubly Holder-continuous
functions, and explain how, with the help of the contraction mapping
principle, one may show that the equations have a solution, if the partial-
wave Born term is small enough in norm. Sections 3 and 4 are devoted
to the technical aspects of the demonstration and some bounds on Legend-
re functions and upon integrals are to be found in the two appendices.
In Section 5, we collect the various constraints that have to be satisfied,
if our proof is to work: these results duplicate some of the findings of
Blankenbecler, Goldberger, Khuri, and Treiman [5], but our methods are
capable of considerable generalization. We discuss the extension to
relativistic pion-pion scattering in Section 5.

2. Sommerfeld-Watson Transform

The usual Sommerfeld-Watson transform is

αo2 _ +

J

e _ i e smπί

Here F(s, t) is the scattering amplitude written as a function of s = 4(q2 + 1)
and t = — 2q2(i — z\ where q(s) = (s — 4)*/2 is the momentum and z is the
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cosine of the scattering angle. (We use the relativistic definition of 5,
rather than the more usual nonrelativistic s = q2, simply for convenience
later, when we turn to pion scattering with full crossing symmetry.)
The contour of integration is a straight line parallel to the imaginary
axis in the complex ί-plane, at the position Re/= — i + ε, with 0<ε<^,
and A(s, I) is the partial- wave amplitude, which is supposed to exist as a
function holomorphic in /, for Re / ̂  — \ + ε. We shall in fact construct
functions A(s9 /) with this property, such that F(s, ί->ί) is well-defined by
(2.1).

It is convenient to transform to the variable y, defined by

(2.2)

and to use the reduced amplitude

B(s9y) = (s-4ΓlA(s9l). (2.3)

The ^-discontinuity of the s-discontinuity of F(s9 ί), for t ̂  4, s ̂  σ(t)
t — 3

= 4 - , may be written [5]

ρ(s,t) = θ(s-σ(t))iq(s) ] dy(y- is)P^+B+iy(z)(s- 4Γ1 + 2ε+2ίy

— GO

.B(s+9y)B(s.9y) (2.4)

where the suffices ± mean that the boundary values of the function must
be taken respectively above and below the cut on the real s-axis. In
Eq. (2.4), use of the unitary condition has been made. Define

1 °° a?'
D(s,t)=— j - - ρ(s',ί), (2.5)

π σ\t} s -s
and

_ 2 °°
B(s9y)=—(s-4Γ*-ε-iySdtQ-t+8 + i y ( z ) D ( s 9 t ) + V ( s , y ) 9 (2.6)

π 4

where Vis the partial-wave Born term, which may be calculated explicitly
from the Schrodinger potential.

In this work, we shall be interested in studying the mathematical
structure of the Eqs. (2.4)-(2.6). We shall show that, if the partial-wave
Born term, V(s, y), satisfies certain conditions, then there is a fixed-point,
B(s9y) = B(s,y), from which the following unitary amplitude may be
constructed :

dtf

π s — s , i — i
F(s, t) - FB(s, t) = — J - - ί — - β(s', t') (2.7)
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Here we may allow the Born term, FB, to depend on s as well as ί, with the
restriction that it be real for s ̂  4. It may be written

We shall quote sufficient conditions on V(s, y\ such that the integrals in
(2.7) are well-defined. It is to be noted that (2.7) will agree with (2.1).

After some experimentation, we have found it satisfactory to look
for solutions in a Banach space of doubly Holder-continuous functions,
/(s, y\ which is specified by means of the following norm :

(2.9)

where the suprema are to be taken over s1>s2^4, — oo<y 2 <oo,
bil > Ij^l The indices are subject to a number of restrictions, which we
shall give in detail in Section 5. It should be noted that, if |[/]| < GO, then
automaticallv

(2.10a)

+ i | ~ * ~ v > (2.1 Ob)

Sί ~ S2

Si

μ yι-V2
J>ι+ί

Q

P - A
o «
1 2

λ\y2 JV

2,^)1

Sl — S2

Si

(2.10c)

(2.10d)

We shall devote most of the rest of the paper to a proof that, if \\B \\ < GO
and ||F|| < co, then B(s,y) is well defined by (2.4)-(2.6), and moreover
that a constant, K, exists such that

By an immediate extension of the method of proof, it follows that, for
any two functions Ba(s, y) and Bb(s, y) that belong to the space, the corre-
sponding image functions Ba(s, y} and Bb(s, y) satisfy

Ba-Bb\\. (2.12)
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It follows easily from the contraction mapping theorem that if
< (4τc)~ \ then there is a fixed point B — B in the ball

(113)

and that there are no other fixed points in the larger open ball ||B||
<(2κΓ1[l].

To begin the proof of (2.1 1), we shall combine (2.4)-(2.6) together and
change orders of integration. This change may be justified, under the
restriction that \\B\\ < oo, most easily by considering a continuation into
the lower half y-plane. The result is

7T I S — S

d t / 2 t

2' (114)

The ί-integral here needs very careful handling when y' ~ y and s' ~ s.
We have the formula

00

J dzβ_ i + ε + ί y(z)P_ i + ε + f /(z)
ZQ

where

[ft(z0)P;^(z0) - Qί(z0)PΓ(z0)] . (2.16)

The formula (2.15) is in the first place derived for / real and y in the
lower half-plane (the z-integral is then absolutely convergent), and then
y is allowed to tend to the real axis (the point y = yr being excluded).
Unfortunately, the arguments of the two Legendre functions in (2.14) are
different. Accordingly we write the ί-integral in (2.14) in the form

Λ1(s'ιy9y') + Λ 2 ( s 9 s ' ' , y 9 y ' ) , (2.17)
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where

2ί

s'-4,

.=&'-4)-"-— — ;.:;, Λ'^r *'~rίm (us)
and where Λ2 is the remainder, namely

Λ2(s, s ' ; y , y ' )

It

»(,') S-4

(2.19)

The purpose of the factors (s — 4)~*~ε~iy and (sr — 4)~*~ε~ιy is to ensure
that the asymptotic behaviour of the integrand in the yi2-integral is
reduced by t ~ *, as compared with that in the /^-integral. The /l2-mtegral
converges absolutely for both y and y' real, and we can be quite brutal
in our majorizations here, in a way that would not have been possible
with the original ί-integral in Eq. (2.14).

We write (2.14) in the form

5(5, y) - V(s, y} - B^s, y) + B2(s, y) , (2.20)

where B^ corresponds to the right side of (2.14), with Λί in place of the
ί-integral, and where B2 is the remainder term, i.e. with Λ2 in place of the
ί-integral. In the following sections, we shall study the boundedness and
Holder-continuity of Bγ and B2.

3. Study of Bι(s9y)

We may write

,y) (3.1)
π 4 s —s

where

(3.2)
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with

and with

8(s'-3)(s'-4)-2,

n\* •> y) \y~1)] uy
— 00

ΐ dV / +
— 1 wy ••

- « I / -

[
ί

y

' '4- 2 1

/ — i — 2zε
G ίY \Λ, , /> . {jn\s •> y )

for «= 1,2. InEq. (3.4),

G2(s', /) = B(s'+ , y')B(s'_ ,

(3.3)

(3.4a)

(3.4b)

S (3.5)

ε . (3.6)

In Eqs. (3.2), (3.5), and (3.6) the powers of sr and (sf — 4) are such that the
Legendre functions multiplied by these powers can be estimated by
^'-independent bounds; this can be seen from Eqs. (3.3) and (A. 19)—(A.24).

We shall now outline the essential steps in showing that B^s.y) is
bounded and doubly Holder-continuous and, in fact, that

Here, and in what follows, K is a generic constant, which may change
from one line to the next: the important point is that there exists such a
number, and that it depends only on the various indices. The details of the
proof were given in a recent preprint [7] with the same title as this paper.

It is straightforward, from Eqs. (2.10) and (A.19)-(A.24), to derive
an optimum bound on G1 (sf, y'). To show that Gl (s', y') is /-Holder
continuous, one uses the mean value theorem, and one needs a bound
on the derivative of a Legendre function with respect to y [see the discus-
sion in Appendix A, following Eq. (A.25)]. Equation (3.4b) and Theorem 1
of Appendix B can then be used to show that Iγ (s', y) is bounded and
y-Holder continuous.

Because of the presence of the s'-singular integral in Eq. (3.1), we see,
by analogy with Theorem 2 of Appendix B, that we must also show that
G^s', y') is s'-Hδlder continuous and, in fact, doubly Holder continuous
in s' and y'. The s'-Hδlder continuity is established by using the mean
value theorem. To show that G^s', y') is doubly Holder continuous, one
uses the double mean value theorem to derive the bound

\R(sl9y'2)\ + \R(s29 y\)\ + \R(s'2, y'2}\^

• sup • sup
dy'ds'
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for ρ ̂  μ, where the suprema are taken independently over the ranges
D4,/ι] for y' and [s2, s[~] for s'.

R(s\y>) = P_i + ε+iy,(z0)(s>-4Γ1+2ε+2iy'^-2*, (3.9)

and one needs as well the properties of B(s, y) given in Eq. (2. 10). Theorem 2
can then be used to show that 1^ (X, y) is doubly Holder continuous in
s' and y. A similar argument can be used to show that I2(s', y) is bounded
and in fact doubly Holder continuous in s' and y; in the treatment of
/2(X, y) it turns out to be more convenient to use the definition in Eq. (3.4a).

From the properties of the Legendre functions in Appendix A it is
then straightforward to show that D(sf, y) is bounded and doubly Holder
continuous in sf and y. It is important to note that |D(s, y)| behaves
like (sf — 4)ε as s1 1 4 and thus the threshold requirement for Theorem 2
of Appendix A is satisfied [Eq. (B.ll)]. The s'-Hδlder difference,
\D(s[,y) — D(s2,y)l and the double Holder difference however behave
like (s2 — 4)ε~μ as s2 I 4 where s1 Ξ> s2 ̂  4. Therefore, to apply Theorem 2
we must make the requirement

Then we find that

\B,(s, y)| g K \\B\\2 s2 -2λ+ε+-+δ \y + i

ιι2 „-: \y2

(3.10)

(3.1 la)

. (3.lib)

In the following we shall choose μ and ρ to lie in the intervals

0<μ<min{|,ε}, (3.12)

(3.13)

Finally we see that Eq. (3.11) implies that Eq. (3.7) is valid on condition
that the powers of s and |y + i\ in the above inequalities are not greater
than the corresponding powers in Eq. (2.10). Moreover, we require that
the power of s be greater than — 1. These restrictions may be expressed as
follows :

i + ε<^f + ε/2 (3.14)
and either

-μ (3.15a)

(3.15b)

(a) 0^v<

or

(b) i + iρ

where δ > 0 may be as small as one pleases.
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4. Treatment of B2(s,y)

It can be proved from Eq. (2.14), with A2 replacing the ί-integral,
that B2(s, y) is bounded and s-Hδlder continuous. To do this, we show
first that

E(s,s'y) =
GO

4)2i''Λ2(s,έ ,y,tf (4.1)

satisfies the conditions on the spectral function in Theorem 3 of Appendix
B (generalized to the case when the spectral function also depends on a
parameter y). Thus we must demonstrate that E ( s , s ' , y ) is bounded
s'-Hδlder continuous and s-Holder continuous. It is somewhat simpler
to establish the y- and double Holder continuity of B2(s, y) than was the
case for B^s, y\ since now the y1 integral is not singular. Thus one does
not need to establish Holder continuity with respect to y', but only with
respect to y, which is simply a parameter, insofar as the s'-integral is
concerned.

We begin by obtaining bounds on A2(s, s' y, y'), which was defined in
Eq. (2.20). As we have already remarked, the ί-integral here is absolutely
convergent for y and y' real; and so we may hope to be able to treat this
term in a more cavalier manner than was possible for A^. However,
although we shall be able to obtain a bound on \\B2\\, this will be at the
expense of constraints on the indices that are more stringent than those
that we imposed in Section 3. A straightforward bound on the integrand
in (2.20) would yield the estimate

s"- (4.2)

where

s i i<β<i (43)
o — 4 4 ̂  fc ̂  2

Here and in what follows, δ will be taken to be a generic small positive
number which may be as small as one pleases, and which may change
from one equation in which it occurs to the next. This estimate does not
have the required large-y behaviour, namely\y + i\~*~v [see Eq. (2.10)].
In order to improve the bound (4.2), we integrate (2.20) by parts, obtaining

(4.4)
00 V '

' J dt r _i + ε + ί y,(
σ(s')
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It is convenient to express Φ(s,s',y,t) directly in terms of the hyper-
geometric functions:

Φ(s,s',y,t)

)T1. (4.5)

where

5 _ 4 f 5_4H]-s-^

(4.6)

F is the standard standard hypergeometric function and

Cs(ί) - - i [((*,(ί))2 - ί)1 fe« + ((zs(t))2 - I)1)] " * , (4 7a)

zs(ί) = 1 +^j- *;(*) = 1 +^7^4- (4.7b)

In both the terms in Eq. (4.4) we have improved the y-behaviour
considerably, since Φ(s, s;, y, ί) behaves like >;"^ for large j;. However,
in the unintegrated term, the derivative of the P-function behaves like
y'* for large y', which leads to stringent constraints on the index v. By
using the bounds on the Legendre and hypergeometric functions given
in Appendix A it is then possible to derive an alternative bound on Λ2

from Eq. (4.4). However, it proves advantageous to use a bound which
is a compromise between Eq. (4.2) and the above estimate on Λ2, namely,

μi^s^yOlH^IΊ^l1^

^κ\y' + i\*-η\y + i\-*+'l+δ(s + s')p(1-'l) + δs'rη '

with 0^7/^1. In Eq. (4.8),

By using the mean value theorems it is possible to show in a similar
way that Λ2(s, s'; y, y') is doubly Holder continuous in the variables sy,
s'y. From Eq. (2. 10) it then follows that E(s, s', y) is doubly Holder continu-



Sommerfeld-Watson Representation 65

ous in sy, s'y. Finally, we find, on applying Theorem 3 of Appendix A, that

\B2(s9y)\^κ\\B\\2s'a\y + iΓ^+lί

9 (4.10a)

\B2(sι>3>ι) - B2(S2, yi) - B2(*ι, y2) + ̂ fe ^2)! (Λ.ΛU,
(4.1Ub)

i; — v Q

\y [ j l - ϊ + V + H+Q + δ 'I >

where
a = 2λ-(rη + p(l-η) + ε + δ) (4.11)

and
Q<μ<a<i. (4.12)

The above set of inequalities implies that

\\B2\\£κ\\B\\2

9 (4.13)

provided that the y' integral in Eq. (4.1) converges and that the powers
of s and \y -h i\ in Eq. (4.10) are not greater than the corresponding powers
that occur in Eq. (2.10). If we combine these constraints with Eq. (4.12)
and note that δ > 0 can be chosen as small as we like, we find that we must
impose the requirements

rη + p(i - η) + ε + μ < λ ̂ ^(1 + rη + p(l - η) 4- ε), (4.14)

l-η/2 + μ/2<v<i-η-μ-ρ, (4.15)

and
0<η<^-3μ-2ρ (4.16)

where μ and ρ are restricted as in Eqs. (3.12) and (3.13).

5. Conclusion and Generalization

In Section 3 we proved that \\B^\\ exists [Eq. (3.7)] and in Section 4
that \\B2\\ exists [Eq. (4.13)]. If we now assume that

I I V I I < oo (5.1)

it follows immediately from (2.20) that

\\B\\ ^κ\\B\\2+\\V\\, (5.2)

provided that there are ranges of the indices for which both Eqs. (3.7)
and (4.13) are valid. First we see from Eqs. (3.14) and (4.14) that we require

max (I + ε, rη + p(i - η) + ε + μ} < λ ̂ f + ε/2 (5.3)
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where r is defined in Eq. (4.3), p in Eq. (4.9). The inequalities which ε, μ,
and η must satisfy are given in Eqs. (3.10), (3.12), and (4.16). We also see
that, since ρ satisfies (3.13), Eqs. (3.15) and (4.15) imply that v must simply
satisfy inequality (4.15). Thus, as we mentioned at the beginning of
Section 4, the strongest constraints on v come from the analysis carried
out in that section. In the proof, it is in fact sufficient to take μ and ρ very
small and positive, which means that v can range from slightly larger
than \ to just less than 1. Similarly, for sufficiently small μ, and for
suitable values of η and ε, λ can range from slightly larger than £ to just
less than J.

Thus, when the above restrictions on the indices hold, there is a fixed
point

B(s,y) = B(s,y) (5.4)

if || V\\ is small enough [see the discussion after Eq. (2.12)]. The restriction
\\V\\ <(4κ)~1 [where K now refers specifically to the constant appearing
in Eq. (5.2)] defines the class of Born terms for which our proof is valid:
it would be possible in principle to calculate K explicitly, but we have
been content simply to show that such a K exists. Further, since we are
mainly interested in the structure of the Sommerfeld-Watson equation,
with a view to eventual generalization (which we discuss below), we shall
not re-express the restrictions on V(s9 y) in terms of restrictions on the
potential.

A simple generalization, which can be discussed in the framework of
potential scattering, is the situation that obtains when there is an exchange
potential. In the case that there is symmetry between the s- and w-channels,
the only change is that Eq. (2.5) is replaced by

1 °° Γ 1 1 1
D(s, t) = — f dsf — + — ρ(s', ί), (5.5)

π 4 [ s — s s — u \

where u = 4 — s — t (we use relativistic notation for convenience). The
whole proof goes through with very little change, since the denominator
(sf — u} is quite harmless. We have the following term, in addition to that
on the right-hand side of (2.14):

o y oo oo

—2~(s — 4)~^~ε~ιy J ds'q(sr) J dy'(y' — iε)
71 4 - 0 0

B(s'+,y')B(si,y')(s'-4Γ1 + 2e+2iy'

I It \ / 7t \
(5.6)
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Because of the occurence of ί in the denominator (s' +1 + s — 4), the
ί-integral here converges absolutely, for y and j/ real, and so we may treat
the whole term much as we treated the £2~

term in Section 4. Note that
there is no singular integral here, either in y' or in 5'.

It will be shown in a subsequent paper [8] how our proof may be
generalized to the case of relativistic pion-pion scattering. The first
change is the replacement of the nonrelativistic momentum in (2.4) and
(2.14) by the relativistic phase-space factor

. (5.7)

Secondly, the Legendre function in (2.1) becomes

in order to ensure t u crossing. The Legendre function in (2.4) remains
as it is, but a factor of \ must be introduced, because of (5.8). Now ρ is
only the elastic contribution to the double spectral function, and (5.5)
must be further generalized by writing

D(s,t)= —
π

1

s—s s —u
(5.9)

An extra factor 2 comes into (2.6), because of the presence of the u-channel.
It is shown in Ref. [8] how the norm may be generalized to handle the

extra term ρ(ί, s). In this connection, one simplification is that a Holder-
continuous cut-off function, h(s), with the property that it is equal to
unity in the elastic region, may be inserted before the integral in (2.4).
This is possible in the relativistic case, since elastic unitarity does not
hold for s > 16; and the effect is simply to redefine V(s9 y), which is now
no longer simply a Born term, but contains a crossing-symmetric contribu-
tion from the deep inelastic double-spectral function.

Next we plan to generalize the system still further by introducing
Regge poles, so that an unsubtracted Mandelstam representation will no
longer be valid. By handling the pole terms explicitly, we hope to treat
the Sommerfeld-Watson background integral by means of the same norm
as that used in Ref. [8]. There is a good possibility that, by explicitly
imposing analyticity in angular-momentum, we can solve the problem
of the violation of the inelastic unitarity bounds that seemed unavoidable
in earlier work [1, 2] when singularities move to the right of Rel= 1.
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Appendix A. Bounds for Legendre and Hypergeometric Functions

In this appendix we establish bounds on the Legendre and hypergeo-
metric functions, some of which we have not been able to find in the
mathematical literature. The associated Legendre functions satisfy the
relationship

7(*)-ριV1(z)] (A.I)

where, for the purposes of this paper, z^l , m = 0, 1 or 2 and
v = —j±(s + iy) where y is real and 0 < ε < \. The functions Q™(z) are
defined in terms of βv(z), the Legendre function of the second kind, by

dmO (z\
fl?(z) = (z2 - I)*" ™ } m = 1, 2 (A.2)

and in terms of the hypergeometric functions, by

m , v + |,C) m-0,1,2

where

fc2 ~ I)1 (z + (z2 - 1)-)] - 1 ( ̂  0) . (A.4)

We begin by establishing a bound on the ratio of the gamma functions
in Eq. (A. 3). From the expression for the logarithm of the gamma function
given in Eqs. (8.8.24) and (8.8.37) of Hille [9] vol I, it can be shown, by
using Maclaurkfs Theorem, that

(A.5a)
Γ(l+(ε + ;») ~

*-» m = 0,l,2, (A.5b)

where K is some generic constant which may change from line to line.
Next, we consider the hypergeometric function which, when

Rec > Reb > 0, has the integral representation

F(a,b, c, ζ) = Γ(c) [Γ(&)Γ(c-&)]-».} ί'-'U - tr-'-Hl -tζ)~adt. (A.6)
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Also, from the series representation of .F, it can be shown that1

r)Γ(c) rr

provided that Re(c + n + 1) > Re(b + n + 1) > 0. Both Eqs. (A.6) and (A.7)
are valid, in particular, for ζ rg 0.

Of the 3 hypergeometric functions needed in Eq. (A.3), F(^,^,
1 ± (ε 4- iy\ C) is the most difficult to handle. It can however be shown
from Eq. (A.6) that

iy\ζ)\^κ. (A.8)

The method consists in first making the change of variable

w=-log(l-ί)

in Eq. (A.6) and then using the following theorem, which was proved in
Ref. [7]. If i

Ky) =
where

\fM\£κw-

^l, O^jS^μ, w 1 ^ w 2 > 0 and y is real, then

To obtain a bound on F(| , — i, 1 ± (ε + iy), ζ), we cannot use Eq. (A.6);
but Eq. (A.7), with n = 0, is valid. Thus, with the aid of Eq. (A.5a) we have

\-*(-tf. (A.9)

Similarly, we find from Eq. (A. 7) with n = 1 that

(A. 10)
^φ + iΓ*(-0*

Further, using the fact that

£ κ, , = 0,1,2 (A.11)

1 Note that the corresponding expression given in Ref. [10] contains a misprint.
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Finally we shall need the estimates

d
iγ \2> 2'

«C

(A.12)

(A. 13)

(A.14)

(A. 17)

We are now in a position to obtain bounds on the Legendre functions.
From Eqs. (A.S)-(A.IO) and (A.4), together with the definitions of the
Legendre functions in Eqs. (A.I)—(A.3), we find that

(A. 19)

z-l

z-l

z-l
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To obtain estimates for the corresponding derivatives with respect to
y, we note that

ay

= 0, 1,2. (A.25)

Thus, from Eqs. (A.I 1)-(A.14) we see that the derivatives with respect to
y of the Legendre functions on the left-hand sides of Eqs. (A.19)-(A.24)
can be bounded by the corresponding right-hand sides multiplied by
(1+logz).

From the Laplace representation for Pv(z), one can obtain the alter-
native bound

\P^+ε+ίy(z)\^κz-- + E for z ^ l . (A.26)

Appendix B. Holder-Continuity of Integrals

In this appendix, we shall state a number of theorems concerning the
Holder-continuity of integrals. The proofs are straightforward generaliza-
tions of a demonstration contained in Muskhelishvili [11] and we shall
not give the details.

Theorem 1. Let us first consider a function f(y\ defined on the real line
(—00, oo), and let us introduce the norm

3>1-J>2

where i>β
\yl\>\y2\.If

and the suprema are taken over —co<y2<co,

ί«χ>,and

(B.2)
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then it may be shown that a constant, TC, exists such that

(B.3)

The same result holds if one replaces y, on the right-hand side of (B.2),
by y + iη, η real (when of course there is no principal value). A special
case in obtained if one, or both of the end-points of integration is finite.
It suffices then to require also that/(/) vanish at such finite end-points,
for then /(/) may simply be defined to be zero beyond the end-points,
without destroying the Holder-continuity. One is then formally back to
the case (B.2). A very simple special case is the following:

00 dvr

(R4)

y ̂  b > 0. Here one can show that I(y) is Holder-continuous, given only
that/(/) is suitably bounded; but if \\f\\i < oo, then again (B.3) holds.

Theorem 2. Consider now a function of two variables, f ( s , y). For
generality we shall allow s to range over (—00, oo), and we introduce the
two-dimensional norm:

\\f\\2 = sup {|s2 + i\λ \y2 + if \ f ( s 2 , y2)\} (B.5)

S ) m ,,_ ....... , .,„ I / ( S I > J Ί ) - / ( S I , y 2 } - f ( s 2 , y ι ) + f ( s 2 , y 2 ) \
o U|J

®, >yiέμ>0, with suprema over —oo<y2<co, \y\\>\y2\-
— oo < s2 < oo, \sί I > |s2|. Define

and consider the functions

g(y)=f(s2,y), (B.7a)
h(y)=f(sί,y)-f(s2,y), (B.7b)

where sλ and s2 are to be regarded as parameters. Then, by considering
I(s2,y) as an integral over g(y') and I ( s 1 , y ) — I(s2,y) as an integral over
h(y'\ it may be shown from the earlier results that

l l / l l 2 ^ κ l L / Ί l 2 (B.8)
Of course if

°° d<t
J ( s , y ) = P j -Γ--l(s'9y)9 (B.9)

, -0 S S

then
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In the body of the paper, the s-integrals have the semi-infinite range
[4, oo), so we need the additional condition

/(4,J>) = 0, (B.ll)

since then we can freely define /(s, y) = 0, s < 4, without destroying
Holder-continuity. Again, all the above results hold if y is replaced by
y + iη, and the P in (B.6) is dropped.

Theorem 3. Finally we consider the case when both the Cauchy kernel
and the weight function depend on s. Consider a function g(s'9 s) defined on
4^s' < oo, 4 g s < oo and introduce the norm

where max {α-fμ, b + μ] <λ< 1, μ>0, α^O, fr^rO and δ is a generic
small positive number which can be chosen as small as one pleases. The
suprema are taken over s\ ^ s'2 ^ 4, s^ ^ s2 ̂  4. // ||gf || 3 < oo, g(4, s) = 0 and

w Jsr

P f - - flf(s',s) (B.I 3)
4

ϊί can be shown that \\G\\ 4 < oo where

(B.14)

and c — max [a,b + μ + δ}. The suprema in (B.14) are taken over s1^.s2^ 4,
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