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Abstract. We establish a one-to-one correspondence between the continuity properties
of the S-matrix at the 2-particle threshold and the rate of convergence of the Haag-Ruelle
approximations Ψ(t) for asymptotic 2-particle states Ψ with smooth wavefunctions. It
turns out that the norm distance \\Ψ — Ψ(t)\\ approaches 0 like ί~5/4 if the S-matrix has the
normal threshold singularities and like ί~3/4 in the exceptional case where the threshold
has ''absorbed" a bound state. These connections are valid both in relativistic quantum
field theory and in non-relativistic models with short range interaction.

I. Introduction

In [1] we investigated within the framework of quantum field theory
the rate of convergence of the Haag-Ruelle-approximations Ψ(ή at
large times t for arbitrary collision states Ψ with finite energy. In
particular for states Ψ with smooth asymptotic wave functions we
proved that the norm distance ||*F—*F(ί)|| approaches 0 almost like
£~3 / 4. It is well known that this estimate can considerably be improved
if Ψ corresponds to an asymptotic particle configuration where no
two particles have the same velocity [2, 3]. Consequently, only those
parts of Ψ which correspond to a configuration of particles with
asymptotically coinciding velocities can cause a slow decrease of
\\Ψ—Ψ(t)\\. Therefore one expects that the rate of convergence of
\\Ψ—Ψ(ή\\ is intimately connected with the threshold singularities
of the iS-matrix.

It is the aim of the present paper to study this connection in more
detail. To this end we isolate, for large t, the leading contribution to
Ψ - Ψ(t) and give an estimate of the remainder (Chapter II). For reasons
of simplicity we shall restrict our attention to asymptotic 2-particle
states. The expression thus obtained has a very simple structure and
can be used to establish the desired connection (Chapters III and IV).
It turns out that \\Ψ — Ψ(t)\\ decreases asymptotically like Γ 5 / 4 if the
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S-matrix has the usual singularity at the 2-particle threshold [4, 5].
Guided by experience with non-relativistic scattering theory, one can
also imagine models in which the threshold has "absorbed" a bound
state. In this exceptional case the S-matrix is more singular and the norm
distance \\Ψ—Ψ(t)\\ behaves asymptotically like ί~3/4. This coincides
with the estimates derived from the basic principles and therefore we
do not believe that the results given in [1] can be improved without
further specification of the dynamics.

Another by-product of our investigations which might be interesting
in its own right is that the elastic 2-particle scattering amplitude T(s, t)
restricted to the forward direction t = 0 can be defined as a locally square
integrable function of s (except at the threshold). For the proof of this
statement we apply a very direct method which does not make use of
any sophisticated arguments (Chapter IV).

Finally we look at non-relativistic theories with short range inter-
particle forces and discuss a simple model. As expected the results are
completely analogous to the relativistic case (Chapter V).

Our assumptions and notation are the same as in [1]: we are dealing
with a local, relativistic quantum theory of a chargeless massive particle
with spin 0. It is an important feature of such models that the collision
states can be created from the vacuum vector Ω with the aid of a set &
of almost local, bounded 1-particle creation operators [1]. Let Ψpι for
example be an outgoing 2-particle state with a wavefunction / which
has compact support in momentum space. Then one can find a suitable
operator A e & to construct the Haag-Ruelle approximations of Ψfui

Ψf(t) = $d3x d3yf(t\x, y) A(t9 x) A(t, y) Ω . (1)

Here f(t | x, y) denotes the configuration space wavefunction at time t

) (2)

and ωp = (\p\2 + μ 2) 1 / 2, μ being the mass of the particle. The approxi-
mations Ψf{t) converge strongly towards ΨJui in the limit ί-*oo and an
analogous statement holds for the incoming states.

II. Asymptotic Expansion of Haag-Ruelle Approximations

It will be convenient in the following to assume that the wave function
/ of ΨfUi is arbitrarily often differentiable in momentum space. Yet in
spite of this simplification the calculation of the leading contribution to
Ψp1 - Ψf(t) for large t is still pretty technical and not very amusing.
For this reason let us first of all sketch the idea of the proof and then
go into details.
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We start with the time derivative dtΨf(t) of the Haag-Ruelle approxi-
mation Ψf(t) defined in Eq. (1). It is well known that dtΨf(t) can be
expressed as follows:

dtΨf(t) = id3xd3yf(t\x9y)j(t9x)A(t9y)Ω (3)

where j = (2π)~2 - $ d4pί'(p0 — ωp)A(p) is an almost local, bounded1

operator which annihilates the vacuum. Since the norm of the com-
mutator [/(ί, JC), A(t, yj] decreases rapidly if |JC — y\ becomes large,
only those regions of R 6 which are not too far separated from the plane
JC = y can contribute to the integral in Eq. (3). Accordingly, one
decomposes the function f(t | JC, y) into two parts

f(t\χ,y)=f[t
χ+y χ+y

f(t\χ,y)-f
x+y x + yX

and the expression in the curly brackets can be neglected in the limit

of large times. The main contribution fit x+y χ+y\ behaves
2 ' 2 /

asymptotically like a solution / of the Klein-Gordon-equation with
mass 2μ which is multiplied by ί"3/2. Therefore one splits

x + y x + y
and a part which can likewise

be neglected. The expression thus obtained is the leading contribution

to dtΨf(t) and since Ψ}ut - Ψf(ή = J dτ dτΨf(τ) this yields after a careful

estimation of the remainder:

Theorem 2.1. Let f be an element of ^(IR6) with compact support.
Then

Ψ°f

ut-Ψf(t)=] dττ-3/2ρf(τ)Ω+O(Γ312) for t>02. (4)
t

Here we have introduced the operator ρ^(τ) = j d3zf(τ,z)ρ(τ,z) where
ρ = J d3z'[j(z'), A( — z')] is a n almost local creation operator and

r;,5/2

with

1 This is so since the Fourier-transform A(p) of A(x) has compact support. We may
even assume that the support of A(p) is contained in the forward cone.

2 The symbol O(t~a) denotes a strongly continuous vector-valued function for f > 0
which decreases in norm like t~a.
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As indicated above, to verify this theorem we need several estimates
of wavefunctions in configuration-space which will be given in the sequel.
Since the proofs are a straightforward application of methods already
used in [1] we keep them brief.

Lemma 2.2. Let f be an element of ^(IR6) satisfying f(p, p) = 0
for all p. Then

id3xd3y(ί+\x-y\)-2N \f(t\x9y)\2£c \t\-5 if N^3.

Proof. Using similar arguments to those in the proof of Lemma 3
of [1] one realizes that all configuration space wavefunctions f(t\x,y)
which behave in momentum space like/Xp, q) = (p — q\ g(p,
can be represented by

f(t\x,y) = Γx Σ (x-y)khk(t\ 1

where hk and ft are again from ^(IR6). Thus one gets

\hk(t\x,y)\2 + \h(t\x9y)\:I
It follows from the work of Araki [6] and Ruelle [7] on solutions of the
Klein-Gordon-equation that the integral on the right hand side of this
inequality decreases like |ί |~3 if N^3 and this proves the lemma for the
special class of wavefunctions given above.

If / is any function satisfying the assumptions of the lemma then
one can decompose it as follows:

f(p> q)= Σ (P - i)i (P - $2 (P - q)ϊ Qwi

gijk, gn are elements of 5̂ (1R6) and for gn we have in addition the inequality
(i + \P + q\lΓ'\gn(P>9)\£cmn \p-q\n

9meH. The first term of this de-
composition is a sum of functions which all belong to the class just
considered and therefore the lemma can be applied. To get an estimate
of the remainder one splits gn into (r ̂  1)

£«(P>«) = h?lP ~ «]) * QrkP> ί) + (1 - WίP - q]))' gn(P> ϊ )

where ^G^°°(1R 3 ), h(k) = 0 for |fc|o^ 1 and h(k)=ί for |fc|^2. Because
of the support properties of (1 — ft) the L2(IR6)-norm of (1 — h(r[p — f̂]))
• gn(p, q) has the bound c r~""3 / 2. The non-overlapping part ft(r[jp — qj)
' §n(P> 4)can be estimated with the aid of Lemma 3 of [1] giving altogether

J d3x d3y(ί + \x- y\)~2N \gn(t\x, y)\2 Sc r " 2 " " 3 + cN r4iV Γ2N.
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If one minimizes the right hand side of this inequality with respect to τ it
becomes evident that the integral decreases faster than |ί |~5 for iV^3
and large n.

This technique of decomposing the wavefunction / into a non-
overlapping part fr and a remainder Δfr also plays a key role in the proofs
of the following two propositions. Since the non-overlapping part fr

can always be estimated with methods similar to those used in [1] we
shall restrict ourselves to indicating why the contributions due to the
remainder Δfr decrease fast enough if r becomes large.

Lemma 2.3. Let f be an element of
large N

f(t\x,y)-f[t

). Then for sufficiently

\-2N x + y x+y 1-5

Proof. If / were antisymmetric the result would follow from the
preceding lemma. Hence we may suppose / is symmetric. (Actually
only this case is of interest to us anyway.) Taking this into consideration

x + y x +
we get for </(ί I x, }>)--/ U the representation

Since (COS^(JC — y)(p — q) — 1) has a double zero at p = q and the
derivatives with respect to p and q are bounded by polynomials in
|JC — y\ one can conclude that the contribution of SJY to the integral
under investigation decreases like r " 1 0 . Consequently (iV^4)

\-2N f(t\χ,y)-f[t
χ+y χ+y

t-2(N-2)

which shows that this expression decreases faster than |ί| 5 + 15/N and
therefore "almost" like | ί | " 5 if iV is large. For the proof that the integral
decreases exactly like |ί| ~5 for some finite N a more refined decomposition
of the integrand is necessary. (Compare the proof of Lemma 2.2.) Yet
we omit the details.

In order to get an idea how the function f(t\z,z) behaves asymp-
totically one can apply the method of stationary phase. The leading
contribution turns out to be

) (5)

andwhere Sk is the 3 x 3 matrix (S*)^- =
2ώL
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For the difference between f(t\z,z) and f(t\z) we have the estimate:

Lemma 2.4. Let f be an element of ^ (IR 6 ) . Then

Proof. As in the preceding lemma we content ourselves with showing
that this expression decreases "almost" likejί|~5. To this end we re-
present the difference between fit | z, z) and f(t | z) as follows:

where
g ίp q\ = e~ίt(ωp + ωq) _ e-ίt(ώp+q+(p-q) Sp+q(p-q)) ^

A straightforward calculation shows that

where g{p, q) is a continuous function which is polynomially bounded.
Because of the fourfold zero of 9t(p, q) at p = q the contribution due to
Δfr can be estimated by c r~14 t2 giving altogether

for arbitrary AΓeN. From this inequality the statement of the lemma
follows at once.

For the proof of the theorem yet another inequality is needed.
Using the fact that the operators A and j in Eq. (3) are almost local and
jΩ=j*Ω = 0 one can show that

(6)

for all N e N with constants cN not depending on / and t [1].
Now we are equipped with the tools needed to complete the argument.

To begin with we replace the unspecified function f{p,q) in dtΨf(t)
by a more special wave function which coincides with f(p, q) on the
plane p = q; the difference between the corresponding states is O(ί"5 / 2)
because of Lemma 2.2 and Relation (6). We take as the new wave-
function

-(p-q) SP+9(p-q) f(l±3_
J\ 2 '

(
\ 2 ' 2

lu2

where Sp+q is the 3 x 3 matrix introduced above. Since Sp+q^ ^3 1
ω

and / e ^ ( I R ) has compact support it is obvious that this function

(which we shall again denote by / ) is an element of ^ ( 6 )
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Then we proceed as was sketched in the first part of this chapter:

( j£ _|_ -y j£ _|_ -y

t ~ , ~

the difference being O(t~512) because of Lemma 2.3 and Relation (6).
Introducing ?(x + y) and j(x — y) as new variables shows that the
asymptotically leading contribution in dt Ψf(t) has the form

at which ρ — J d3z'[j(z% Λ( — z')~]. It is obvious that ρ is again an almost
local operator and ρ*Ω = 0. Hence the norm of this state can be estimated
as in deriving Relation (6):

Md3zf(t\z,z)ρ(Uz)Ω\\2Sc ίd3z\f(t\z,z)\2

c being a constant not depending on / and t. From this inequality^ and
Lemma 2.4 it follows at once that f(t | z, z) may be replaced by f(t | z)
(see Relation (5)), the error being O(Γ5/2). Taking the special form of
/(JPJ Q) given above into consideration one gets after some trivial
calculations

r ; ,5/2

and this proves - using the notation of the theorem - that

dtψf(ή = r 3 / 2 Qf(t) Ω + O(r512).

The required result then follows on integrating.

III. An Equivalence-Theorem

The simple f-dependence of the leading contribution $™ dτ τ~ 3/2ρf(τ)Ω
will enable us to derive a useful relation between the rate of convergence
of ΨfUt — Ψf(t) and certain continuity properties of the state QfΩ = ρ/(0) Ω
in momentum space. To begin with we note that

where H is the Hamiltonian and P the momentum operator. Our
assumptions on the particle spectrum of the theory imply that the
selfadjoint operator (H - ]/P2 + 4μ2) has an isolated eigenvalue, - 2 μ ,
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and a continuous spectrum starting at — μ. Obviously the eigenvalue
— 2μ corresponds to the vacuum and the continuum between — μ and 0
is exclusively due to 1-particle states. Taking into account the fact that
QfΩ is orthogonal to Ω and all 1-particle states3 we get therefore

ρf(t)Ω= J eitλE(dλ)ρfΩ
o

where E(dλ) denotes the spectral measure of (H — ]/P2 + 4μ2). The
integration of this equation yields after application of the Fubini-
Tonelli theorem

00 00

J dττ~3/2ρf{τ)Ω = t~1/2 j φ(λt) E(dλ) ρfΩ for ί > 0 .
t o

(Here we have introduced the function φ(u) = u1/2 f£° dv v~3/2eιv which
will be analysed to a certain extent in Appendix A.) The above relation
together with Theorem 2.1 are the basis for the proof of the following
proposition.

Theorem 3.1. Under the hypotheses of Theorem 2.1 the following
statements are equivalent provided that \ < α < §:

i) Ψ}* - Ψf(t)= 0(Γa) for t>0.
ii) ||J£ E(dλf) ρ/Ω\\2S c λ2*'1 for λ^O.

Proof, i) Our previous results imply that the first relation is
equivalent to

r 1 / 2 j φ(λt)E(dλ)ρfΩ= 0(Γ«) (a)
o

and taking the norm of this equation yields for large t

j\φ(λ't)\2.(ρfΩ,E(dλ')ρfΩ)SC-Γ2«+1.
o

We shall show in the appendix that φ(u) is continuous for u>0 and
lim φ(u) = 2. Hence there exists a δ > 0 such that \φ(u)\ §; 1 for 0 rg u ̂  δ.

From this it follows at once (putting t = δ/λ) that

λ

j (ρfΩ, E(dλ') ρfΩ) ^ c λ2*'1 .
o

3 This follows from the fact that the 1-particle creation operator A — and therefore
also j — allows only timelike momentum transfers.
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ii) Let us now estimate the norm of the leading contribution
t~1/2 - $o φ(λt) E(dλ)ρfΩ on the assumption that the second relation
holds. To begin with one realizes after partial integration that

rι ]\φ(λή\2{ρfΩ,E(dλ)ρfΩ)

= - f dλ2Re {φ(λή φ'(λt)} J ( β / β , E{dλ') ρfΩ).
o o

(The contributions of the boundaries vanish since E(dλ) is a continuous
measure in the region in question and lim φ(u) = 0.) Therefore one gets

tt-> oo /

r 1 / 2 J φ{λt)E{dλ)QfΩ
o

2

dλ\2Re{φ(λ) φ'(λ)}\

and the integral on the right hand side of this inequality exists with the
above mentioned restrictions on α. (We again refer to the appendix.) Hence
the leading contribution satisfies relation (a) and consequently

This theorem will prove to be useful as the connecting link between
the threshold properties of the S-matrix and the rate of convergence of
Ψ}ut — Ψf(t). Apart from this point it is also worth mentioning that it
establishes the Holder-continuity of the measure E(dλ) on the states
ρfΩ at λ = 0 because Ψ}ut-Ψf(t) = 0(Γ3/4+ε) for all ε > 0 as is known
from [1].

IV. Influence of the Threshold — Singularities

So far we have dealt with the vector ρΩ 4 which does not have a direct
physical significance. It is therefore the aim of the present section to
replace ρΩ by a vector which is more easily amenable to a physical
interpretation but which differs only slightly from ρΩ near the 2-particle
threshold.

For this reason let us consider the wavefunction of ρΩ in the space
of the outgoing 2-particle states. Proceeding formally it is easy to verify
that

2ω
~2

/

Assuming for the moment that this expression is continuous in p and q,
it follows at once that the wavefunction of ρΩ coincides with the 2-particle

4 Throughout this chapter the smearing of ρ with / is of no account and will be
omitted. All results remain valid if one replaces ρΩ by ρfΩ.
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forward scattering amplitude T(s, 0) 5 at the threshold p = q apart
from kinematical factors. We shall therefore proceed from ρΩ to a
vector with essentially T(s, 0) as wavefunction and it will then be
possible to infer from the behaviour of ||j£ E{dλ')ρΩ\\ at λ = 0 the
properties of T(s, 0) near the threshold s = 4μ2 and vice versa.

Carrying through this program rigorously one meets a serious
technical difficulty since the restriction of the functional T(s, t) to the
hyperplane t = 0 is a priori not well defined. Yet one can get around
this using the following trick: since the norm of the commutator
[/(z), Λ( — z)] decreases rapidly if \z\ becomes large it is obvious that the
state

ρkΩ = J d3zcoszk [/(z), A(-zj\ Ω

is strongly differentiable with respect to k. This smoothness property
of ρkΩ will enable us to define a vector which may be interpreted as the
integral J Eout(d3k) ρkΩ, Eout(d3k) being the measure projecting onto the
outgoing 2-particle states with relative momentum in d3k. An easy
formal calculation yields for the wavefunction of this vector

T(s,0).(p,AΩ)(q9AΩ) (7)
Sωpωq

which is exactly the desired expression. Since the left hand side of this
equation is an element of L2(1R6) we believe that the sensible way to
proceed is to define the restriction of the 2-particle scattering amplitude
T(s91) to the forward direction ί = 0 as a locally square integrable
function via relation (7).

Let us now state the proposition which gives a precise meaning to
J Eoui(d3k) ρkΩ. (The proof is given in Appendix B.)

Lemma 4.1. Let Φ{x),xeW be a n-times continuously differentiable
(in the strong topology) vector-valued function with compact support
and E(dnx) an absolutely continuous projection-valued measure. Let P,
be any uniformly bounded sequence of operators with finite rank such that

5 We define (in the sense of distributions)

o u t (p, q\1-S\ p\qTι = δ(ωp + ωq- ωp. - ωq) δ(p + q-p'-q')- T(st t)

where s = (ωp + ωq)
2 — \p + q\2 and ί = (ωp — ωp)

2 — \ρ — p'\2. It follows then with the aid
of the well known reduction technique [3] that

T(s, t) (p\ AΩ) (qf, ΛΩ) = 4πωq,
 out(p, q\j\ p') (p\ AΩ)

if
P + 4 = P' + 1 ' and ωp + ωq = ωp> + ωq..
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s-lim P, = i. Then the integrals (E(dnx) P:Φ(x) are defined as Bochner-
j-> oo J J

integrals [9] and the limit

s-lim f E(dnx) PjΦ(x) = J E(dnx) Φ(x)

exists independently of the special choice of the sequence Pj. Furthermore

d d
\\$E(dnx)Φ(x)\\SV(<&)-sup

xeW1 dx1 dxr

Φ(x)

where (&ClRn denotes the support of —Φ(x) and V(G) its
volume. I" dxι dx*

Since Eout(d3k) is an absolutely continuous projection-valued
measure and ρkΩ an arbitrarily often differentiable vector-valued
function one can conclude that the integral $ Eoλit(d3k)h(k)ρkΩ exists
if h is a smooth function with compact support. Recalling that ρkΩ
is a state of finite energy we see that only a bounded region in fc-space can
contribute to the above integral Hence if hR is a sequence of smooth
functions with compact support and hR(u)=ί for \u\^R then the
integral J Eout(d3k) hR(k) ρkΩ is independent of R for sufficiently large R.
This establishes the existence of

J Eout(d3k) ρkΩ - s-lim J Eout{d3k) hR(k) ρkΩ.

It remains to show that this vector differs only slightly from ρΩ near the
2-particle threshold: let h be a smooth function, h(u)= 1 for |u| ^ 1 and
h(u) = O for |w|^2. Then the preceding lemma guarantees that the

ί k \
integral $Eout{d3k)hI—— \ρkΩ exists for all λ>0. Since the function

{ρk-ρ}Ω has a double zero at k = 0 the second part of Lemma 4.1
implies that

\\$Eout{d3k)h {ρk-ρ}Ω <c-λ for λ>0 (8)

and this proves that the difference between ρΩ and J Eoxxt(d3k)ρkΩ is
small in the neighbourhood of the threshold.

We are now in a position to establish the desired connection between
the continuity properties of | |$ E{dλf) ρΩ\\ at λ = 0 and T(s, 0) at s = 4μ2.

Lemma 4.2. The following statements are equivalent for small λ > 0

i)
ϋ)

i 2 α - l
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Proof. Since ρΩ is a state of finite energy only the asymptotic
2-particle component of ρΩ can contribute to the first integral if λ is
small6. Now let £ m a x be the maximum energy of ρΩ. Then one can find
two positive numbers α and β depending only on £ m a x such that for
all p and q satisfying ωp + ωq^Emax

(b)

Realizing how E(dλ) acts on the asymptotic 2-particle space it follows
from this inequality that for sufficiently small λ>0 the first relation

k
of the lemma is equivalent to

therefore also to h Eout(d3k)h

$Eout{d3k)h

yi,
ρkΩ

;yr,
<c-λ

ρΩ <c-λ2*-1 and

2 α - l because of in-

equality (8).
Now with the aid of Relation (7) one gets

$E0Ut(d3k)h
yi, Qk

π 4

 f d3p d3q

64 J 2ω
p 2ωq

p-q

λ I
)τ(s,0)

(p,AΩ)(q,AΩ)

ωpωq

Using Inequality (b) once more and changing variables one can conclude
that the behaviour of this expression coincides for small λ>Q with
that of

J ds(s-4μ2)1/2\T(s,0)\2'h(s)
4-μ2

where h(s) is continuous for s > 4μ2 and lim h(s) > 0. From these facts
slA-μ2

the proposition follows immediately.
With this lemma and Theorem 2.1 now we have at our disposal the

information connecting the rate of convergence of the Haag-Ruelle
approximations with the properties of the S-matrix near the 2-particle
threshold.

Theorem4.3. The following statements are equivalent if ^ < α < | :
i) ^ ; u t - Ψf(t) = 0{Γ«\ t>0for all fe ^(1R6) with compact support.

4μ2 + λ

ii) I ds(s-4μ2)1/2\T(s,0)\2^c- λ2"'1 for small λ>0.
4-μ2

6 This is the only place throughout this paper where we really need the asymptotic
completeness of the theory.
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From this theorem and the fact that Ψ°f

ut- Ψf(t) = O ( r 3 / 4 + ε),
ε > 0 in all theories which are compatible with our assumptions [1]
we can furthermore conclude:

Corollary 4.4. For small λ>0 and arbitrary ε > 0 the estimate

4-μ2 + λ

J ds(s- Aμψ2 |T(s,0)|2 ^ c ε λll2'e

4μ 2

holds. cε is a number which does not depend on λ but which may tend to GO
ifε-+0.

Roughly speaking this proposition says that T(s, 0) cannot be
much more singular than (s — 4μ 2 )~ 1 / 2 at s = 4μ2. It is exactly this
singularity which one expects if the threshold has "absorbed" a bound
state. Since there is no reason to believe that the postulates of quantum
field theory exclude the possibility of such models this justifies our
conjecture - again using Theorem 4.3 - that the estimates for the rate
of convergence of Ψj ut — Ψf(t) given in [1] cannot be improved without
further specification of the dynamics. Apart from these exceptional
models, T(s, 0) should be uniformly bounded in a suitable neighbourhood
of the threshold s = 4μ2 [4, 5]. In these normal cases one gets for small
λ>0

"j ds(s-4μ2)1/2\T(s,0)\2^cλ3/2

4-μ2

and this implies (via Theorem4.3) that Ψ}ut-Ψf(t) = O(Γ5/%t>0 for
all asymptotic 2-particle states with wavefunctions /e^f lR 6 ) having
compact support in momentum space.

V. Comparison with Non-Relativistic Scattering Theory

The singularities of the S-matrix at the 2-particle threshold are due
to asymptotic configurations of particles with small relative momentum
and may be regarded as a non-relativistic effect. It is therefore not
surprising that investigations within the framework of non-relativistic
potential scattering theory yield exactly the same results as in quantum
field theory. However, we still think it worth considering the non-
relativistic case for two reasons: first the framework is simpler so the
methods of proof become more transparent and secondly there is no
lack of non-trivial models. Accordingly this chapter has two subsections.
In the first one we give the analogues of Theorems 2.1, 3.1, and 4.3, and
in the second one we consider a simple model: the scattering of a
particle by a square - well potential.
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a) Some General Results

Since in a non-relativistic 2-particle system the center of mass motion
can be separated out it suffices for our purposes to consider a 1-particle
system in an external potential. Therefore we assume that the Hamiltonian
H has, on a suitable domain in configuration space, the form

where A is the Laplacian and V the potential. To exclude singular
potentials with long range we require in addition

$d3x\{ί+\x\2)'V{x)\2<oo.

At present it is not known whether this condition ensures that the
spectrum of the Hamiltonian has no unphysical pathologies. To exclude
infinitely many bound states and a continuous singular part of the
spectrum one needs more stringent assumptions [8]. Let us therefore
explicitly assume that the Hamiltonian has the spectral decomposition

H=t λkEk+]λE(dλ)
k=l 0

where Ek is the projection onto the subspace corresponding to the
discrete eigenvalue λk. The projection valued measure E(dλ) is supposed
to be absolutely continuous.

As in the relativistic case, the scattering states are usually constructed
as strong limits of suitably chosen sequences: if Ψou\ for example,
denotes a vector which behaves at large times like the freely propagating
state Ψ9 then Ψout = s-lim Ψ(ή where

t~*O0

ψ(t) = eiHt e~iHotΨ

(Ho is the free Hamiltonian: Ho = — A in configuration space).
Having characterized the framework, we start our investigations

as in Chapter II by isolating the asymptotically leading contribution
to Ψoux-Ψ(t):

Lemma 5.1. // Ψ is a state with a wavefunction ψ{x) e 9*(1R3) then

J dττ-3/2eiHτV+O(Γ3/2) for t > 0 .
t

V denotes the vector with the configuration space wave-function V(x).
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Proof. It suffices to consider the state dtψ(t) = i eiHtVe~iHotΨ.
Representing the vector Ve~ιHotΨ in configuration space one gets

(Ve~iHotΨ)(x)=V(x)(2πit)~3/2'ίd3ye 4 ί ψ(y)

= V(x) (it)~3/2 ψ(0) + V(x) (2πίt)~3/2 J d3y [e 4 ί - 1/ ψ(y).

The second term in the second line of this equation can be estimated
as follows:

I
\Sd3y

d being independent of JC and t. Now it is easy to verify that

\\eiHt(Ve-ίHotΨ- (ίt)~3/2 ψ(0) V)\\2 g c | ί | " 5 J d3x\(ί + \x\2) V(x)\2

and integrating this inequality with respect to t yields the desired result.
It is not quite as simple to pass to momentum space in the non-

relativistic case because H may have many bound states. However,
these states do not contribute to the asymptotically leading part of

a s t h e n e χ t i e m m a shows.

Lemma 5.2. Let Ψ be a state with a wavefunction ψ(x) e Sf (1R3). Then

00

tpo^_tp(ί) = Γ1/2v?(0) r 1 / 2 . J φ(λt)E(dλ)V+0(Γ3/2) for ί > 0 .
o

(φ(u) = u1/2 - j^° dvv~3/2eiv is the function introduced in Chapter III.)

Proof. We can restrict ourselves to showing that

Σ Ek-Jdττ~3l2eίHτV=O(Γ312)
k= 1 t

since if this is so only the continuous part of the spectrum oϊH contributes
to the asymptotically leading term of Ψout — Ψ(t). Then the statement
follows from the arguments given in the first part of Chapter III. Now

=(] dττ~3'2eiλA.EkV

and this reduces the problem to a simple estimation of an integral. A
straightforward calculation shows that the above expression is O(ί" 3 / 2 )
ifAfcΦO.

If λk = 0 it turns out that EkV = 0: let Ψn9 n e N be a sequence of
vectors with configuration space wavefunctions ψ(n~1x\ ψe^i^R3)
and ψ(O)=l. Since F(JC)GL 2 (IR 3 ) it follows that s-lim VΨn = V. It is
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also easy to verify that ||JfJ0Ψn\\
2 = n~* J d3p\p\4 \ψ{p)\2 proving

s-lim Ho Ψn = 0. Hence if Φ is an eigenvector of H with eigenvalue 0 then

(Φ, V) = lim (Φ, F «?„) = - lim (Φ, fl0 «?„) = 0
n~~* oo λj~^ oo

and this clearly shows that Ek V = 0.
We require now that the wavefunction tpe^flR3) of !F does not

vanish at the threshold, ψ(0)Φ0. Under these premises the leading
contribution of Ψout — Ψ(t) given in Lemma 5.2 is non-trivial and the
following proposition holds:

Lemma 5.3. The following statements are equivalent provided that

| :
i) •?">«'_<p(ί)=θ(rα) for ί > 0 .

ii) \\tiE{dλ')V\\2^c-λ2*-1 for λ>0.

ίίί) II „ 1 ., V
|| H + iλ

for 2Φ0.

Proof. In order to establish the equivalence of i) and ii) one can take
over the arguments given in Theorem 3.1. The equivalence of ii) and iii)
becomes manifest after a simple calculation providing one recalls that
EkV = 0 if Ek is the projection onto the eigenvectors of H to the eigenva-
lue 0.

As in Chapter IV we shall now proceed from V to a state with a
wavefunction which is intimately connected with the scattering ampli-
tude7. For this purpose we introduce the vector valued function Vλ,
λ>0 which is represented in configuration space by Vλ(x) = V(x)

sin]/λ\x\ / τ sinl/I|jc| . . „ . .
γ= Note that f= is a rotationally invariant improper

]β\x\ \ γλ\x\ V

eigenstate of Ho corresponding to the eigenvalue λ.\ Since (l + |x|2)

• V(x) e L2(1R3) the function Vλ is continuously differentiable in the strong
topology and this guarantees (because of Lemma 4.1) that the vector

λ>0 (9)

exists if / l e ^ I R 1 ) , h(u) = ί for \u\^ί and h(u)=O for | M | ^ 2 . Making
use of the fact that \\dλ{Vλ-V}\\^c' and \\Vλ- V\\ ̂ c" λ it follows

7 The scattering amplitude T(\p\ n, ή) is (in formal language) defined by o u t (p| l - 5| p')out

— 2πi δ(\p\2 — \p'\2) T(\p\; n, it'), n, ri being the unit vectors parallel to p and p' respectively.
With this definition [8]

for \p\ = \p'\.
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furthermore that

λ
{Vλ-V} λ>0

237

(10)

which proves that V coincides with the state given by (9) in a neigh-
bourhood of the threshold.

For an interpretation of the vector (9) it is convenient to use the
energy-angular momentum basis. We define

l'
mm

)=π \p\μΩΫlm(n)$dΩΎι,m,(n')T(\p\;n,n'), E = \

where Ylm are the spherical harmonics corresponding to the angular
momentum quantum numbers /, m. It follows at once from this definition
that8

E;l,m ?•ι °
''' m 0

and specializing to rotationally invariant potentials V one gets

E l.m
τ vλ, =διoδmOh £;

0 0
^0 0

The final theorem is then an immediate consequence of these equations,
Relation (10) and Lemma 5.3.

Theorem 5.4. The following statements are equivalent for small
λ>0 and\<&<\\

i) ψ™i-ψ(ή = O(Γa), t>0 for all
ii) WSΪEidWVf^cλ2*-1.

0\2

iii) -1/2 TIE;
m 0

If the potential V is rotationally invariant this expression can be
simplified to

\dEE~
0

\ ? o o
TIE; <c'-λ,< . τ 2 α - l

b) A Simple Model

For reasons of concreteness we finally consider the model of an
attractive square-well potential with range a and strength Vo. (This

The improper states \E; /, m)out are normalized by
o u t ( £ ; /, m\E'\ V, m')out = δ(E- E) διvδmm..
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potential and the corresponding Hamiltonian satisfy our assumptions.)
It is our aim to determine both the rate of convergence of Ψoui — Ψ(ή
and the continuity properties of the S-matrix near the threshold. To this
end we calculate the behaviour of ||JQ E(dλ') Vλ,\\ for small λ and then
apply the preceding theorem.

It is obvious that only the / = 0 part of E(dλ') can contribute to the
above integral since V is spherically symmetric. Thus

j E(dλ') V = f dE\(φE, V)\2

0

where φE9 E>0 are the regular solutions of the radial Schrδdinger-
equation with angular momentum 1 = 0 which are normalized to an
energy ^-function. The differential equation for φE reads

(HφE)^=--μ^γ2-^ V(r) φE(r) = EφE(r)

where V(r) = — Vo for r ^ a and V(r) = 0 for r ^ a. It is trivial to calculate
the regular solutions of this equation,

and normalizing φE to an energy (5-function yields

\NE\=E~1/4 - (E - sin2}/E+Voa + (E+Vo) cos2]/E+V0 a)~1/2 .

These results make it possible to evaluate the expansion coefficients
of V in the energy basis

sin|/E + Vo a — ] / £ + Vo a c o s | / £ + Vo a

Inspecting this expression one realizes that the behaviour of \(φE, V)\
at E = 0 depends sensitively on the value of γVoa. There are three
significant cases to be distinguished:

i) γVoa = {In- 1) y , n G N : this implies \(φE, V)\ = E'ιl*h{E)10 and

therefore | | β E(dλ') V\\2 = λll2h(λ). It follows then from Theorem 5.4

Throughout this section h(u) denotes a function which is continuous for u > 0 and
oo > lim h(u) > 0.
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that the scattering amplitude TIE; behaves like a non-vanishing

constant at E = 0 and Ψout - Ψ(ή = O(Γ314) for t > 0.
ii) j / % α = tanj/ϊ£a: then \(φE9 V)\ =E5l*h(E\ hence ||J* E{dλ') V\\2

= λΊ/2h(λ). One can therefore conclude that (roughly speaking) Ψout - Ψ(t)
= O(t~312) for ί > 0 and the scattering amplitude vanishes at least like
£ 3 / 4 at E = 0. (A better estimate cannot be obtained from the theorem
because of the restrictions on α.)

iii) All other possible values for γVoa\ in this case is \(φE,V)\
= E1/4h(E) and thus \\ftE(dλf)V\\2 = λ3/2h(λ). Consequently the scat-
tering amplitude vanishes at £ = 0 like E1/2 and Ψout-Ψ(ή = O(Γ514)
for ί > 0 .

Among all possible cases the last one occurs most frequently since Vo

and a are not restricted by an additional condition. In this normal situation
the scattering amplitude shows the famous E1/2 behaviour at the threshold
and the approximations converge like ||ψouX— ψ(ή\\^c Γ5/4 for large t.
In the exceptional Case i) a bound state is absorbed by the threshold
and causes the slower f~3/4 decrease of \\Ψout-Ψ(t)\\. The remaining
example is likewise something out of the ordinary: there the estimate
|| y°ut _ ψφ || ^ c . t - 3/2 h o l d s for t > Q s i n c e t h e j n f l u e n c e of t h e threshold

can be neglected compared with the contributions of the bound states.

Appendix A

In Chapter III we introduced the function φ(u) = u1'2 ĵ ° dvv~ 3/2eiv,
u>0. We specify here some simple properties of φ(u) which were repeated-
ly used in our arguments:

i) φ(u) is continuous for u > 0 and lim φ(u) = 2.

ii) \φ{u)\ ^ 2 u~1 and \φ'(u)\ ̂  2 (1 •+• u~1/2).
iii) |Re{φ(w) φ'{u)}\ ̂  c u~3 for large u.

For the proof of these statements the following hints may suffice:
i) φ(u) = u112 S? dv v'312 + uί/2 S? dυ,v-3/2(eiv- ί). The first inte-

gral can be calculated explicitly and v~3/2(eίv - 1) is absolutely integrable.
ii) It follows after partial integration that φ(u) = u1/2 {iu~3/2eιu

- * !Sΐ dv v~5/2eiv) and therefore \φ(u)\ ^2-u~ι. Similarly one can show

= ̂ u'll2 ] dυv-3'2(eiv-\)-u-1(eiu-ί)
u

hence \φ\u)\ ^ 2 (1 + ι Γ 1 / 2 ) .
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iii) From the relations given in ii) one can conclude that φ(u)
1 2) and φ'(u) = -iΓ1eiu + O{ιΓ2). Therefore RQ{φ(u)φ'(u)}= iu~1eiu

Appendix B

We could not find a proof of Lemma 4.1 in the literature and therefore
give it here:

Pj is an operator of finite rank and can thus be expressed as a finite
sum of operators of rank one: PjΦ = Σjf=: cm{Ψm9 Φ) Ψm. It is therefore
natural to define

M

$E(d"x)PjΦ(x)= Σ cm$(Ψm,Φ(x))-E(d"x)Ψm.
m=ί

Since the functions (Ψm, Φ(xj) are continuously differentiable and have
compact support the right hand side of this equation is well defined as a
finite sum of Bochner integrals [9, Chapter III].

Now let X be the Borel set X = {y_: — oo < yx ^ xι oo < yn ^ xn}
and <9χ the associated characteristic function; E(x) stands for the
projection E(x) = J Θx(x;) E(dnx'). One gets immediately after partial
integration

M / - d d \
( \\n V r ArlnΎ\Ψ ... Φ(Ύ\\ • F(Ύ\ Ψ

-Φ(χ)= ( - l ) " ί ί i " x E ( x ) P f y —

and consequently

IIJ E(d"x) PjΦ(x) - J £(<fx) P rΦ(s) II

dxt

S V(G) - sup

It is self evident that the set of vectors

Φ(x)

dxn

dxr

- Φ(x) is compact as

continuous image of the compact set <&. Bearing in mind that the
operators P} are uniformly bounded and s-lim P} = 1 it follows that

„ , d d
lim sup

dxn

Φ(x, = 0.
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This proves that the limit s-lim J E(dnx) PjΦ(x) exists. In the same way

one establishes both the independence of this limit from the special
choice of the sequence P, and the estimate given for the norm of the
limit vector.
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