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Abstract. We consider a two-dimensional Ising ferromagnet with (4-) boundary
conditions and negative external field, where a Markovian time evolution is assumed.

We construct, suitably restricting the allowed configurations at t =0, a non equilibrium
state with positive magnetization such that:

1) only one phase is present,

2) the relaxation time for unit volume is finite and can be made very large.

These results are obtained following a general method for describing metastable
states proposed by Lebowitz and Penrose and exploiting the analysis of the Ising-spin-
configurations in terms of contours given by Minlos and Sinai.

Introduction

In 1971 Penrose and Lebowitz [1] proposed a general method for
describing metastable states in statistical mechanics, where for the first
time the dynamical and static aspects of the problem were coupled in a
precise way.

Given a finite system K and called S the set of its possible configu-
rations (s) and G(s) the associated Gibbs distribution, the program is to
find a subset R of S such that, if at t =0 we consider the state described
by the probability distribution:

P(s)ocG(s) seR
P(s)=0 s¢R

then, for suitable values of the thermodynamical parameters:
i) only one thermodynamic phase is present;
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ii) the conditional probability p(¢) that the system, being in R at
t =0, has escaped from R by the time ¢ is very small.

iii) the relative weight of the configurations contained in R is
negligible at equilibrium.

These properties translate in quantitative and precise terms what
is expected on physical grounds from a metastable state. Lebowitz
and Penrose were able to successfully study in this framework the Kac
potentials in the so called Van der Waals limit [2]. In this case the smooth
analytic behaviour exhibited at the first order phase transition gives
a natural way to identify uniquely, via an analytic continuation, a class
of non equilibrium states, whose relaxation time to the stable equilibrium
states is found to go to infinity in the above mentioned limit.

The aim of this paper is to study, with the general method proposed
in [1], a system with short range interactions. In contrast with the
generalized Van der Waals case, in this case there are weighty arguments
[3-5] for the existence of a singularity forbidding any real analytic
continuation beyond transition point. This fact leads us to expect some
ambiguity in the definition of metastable states.

Also on a purely physical ground one cannot expect a blind extension
of the results on metastability of the Van der Waals systems to the short
range ones.

We will consider an Ising spin system with n.n. interactions, where
the dynamics of a Markovian process is assumed [6—8]. In Section I,
we briefly recall the known equilibrium results for this system and
derive, by the use of a master equation, expressions of the dynamical
quantities of interest.

In Section II the subset R is defined and the physical ideas leading
to this choice are illustrated.

In Section III, studying the static properties of our state we prove
that it is actually a pure phase. We also show, that the relative weight
of configurations contained in R at equilibrium decreases exponentially
with the size of the system.

In Section IV we explicitly work out rigorous lower and upper
bounds for the relaxation time and discuss the choice of R that maximizes
this quantity. We further show that, for suitable values of the thermo-
dynamical parameters, it can be made very large.

In Section V we summarize the results of the previous sections in
two theorems. The reader is referred to this last section for a full picture
of our results.

For the purpose of geometrical visualization all the calculations
refer to the two dimensional case; generalization of the results to higher
dimensions does not present any particular difficulty.
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We remark that the contours technique employed in this paper can
be generalized to a continuous system [9] (the Widom and Rowlinson
model). This should allow to apply our analysis to a system with a
natural time evolution.

Section I

a) Equilibrium Properties of the Ising Model. We consider an Ising
ferromagnet, with n.n. interaction only, enclosed in a finite box A
on a two-dimensional square lattice Z2. Boundary conditions are
specified by the choice of a spin configuration t outside 4.

The energy of a spin configuration ¢ inside A is given by:

J J h
E,.l0)= ) Z 010w — Y z O) Ty — 2 Y O (L1
ek yed Gk keA
K¢ A

where J >0 and % is the external magnetic field. The spin correlation

functions, for any 4 € A, are defined through:

Z l_[ O-ke“ﬁEA,r(o')

(OaDamn= " "g‘e_m,(w (12)
and the free energy, (multiplied by — f), is given by:
1 - 1
FB, h, A, 1)=——1 PEazd = —_1InZ"(A,h). 1.3
(BhA7)= Y e ALK

The equilibrium properties of the Ising model are described in terms
of the spin correlation functions <{o,),, and the free energy F(B,h)
of the infinite volume system, which are obtained as limits of {6,4) 4 .
and F(B, h, A, 7) with a proper choice of t for any A4 as A—oo [10].
The main results on equilibrium properties may be summarized as
follows:

For p < B, (B, is the reciprocal of the critical temperature) the system
is always in a pure phase. The free energy F(B, i) is an analytic function
of § and h, even in h. The spin correlation functions do not depend on
boundary conditions and have cluster properties, that is: {o,0p)
—<04> {opy—0 as the distance between 4 and B, d(A4, B)— .

Similar results hold when > f,, if h+0. For f>§,, at h=0, the
system undergoes a phase transition: The free energy is not differentiable
in h, at h=0, the spin correlation functions depend on boundary con-
ditions, and do not describe in general a pure phase.
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From now on, we only consider the situation where spins outside A
are all positive: in this case for f = ', with a proper ' > f., the following
results hold [11].

i) The spin correlation functions decrease, as A—oo, to limits
{04+ p satisfying, for any h =20

1Ko 408) 1= 04>+ 5 {T)+ 4| Sconst. e” P~ B,

ii) the central limit theorem holds for quantities like the total
magnetization or the total energy of the system.

These properties, which characterize a pure phase, may be obtained
when the temperature is low enough by the contour description of the
Ising model.

In general, for fixed boundary conditions, a spin configuration is
uniquely specified by the set of contours, that is the set of non inter-
secting polygonals separating opposite spins [10].

With the boundary conditions chosen, all the contours are closed
and in a given configuration the outer contours are the ones not embraced
by other contours.

The probability to find a family y,, ..., y, of outer contours is expressed
by [12]

ﬁi #(Vi» h) Z/ l—[ [L(?, h)

1 FicA4 7e(5)
seees ¥n) = 14
QA,h(yl Tw) 2,5, h) (I.4)

with p(y, h) = e*l”l?l—ﬁ%I@(v)IC— (v, h)
EaB,m= % [T wtr.h

{icA ye(y}

where [y is the lenght of the contour y, {~*)(y, h) is the partition function
for the region @(y) enclosed in y, where all the internal spins adjacent
to the boundary are negative (positive). The primed sum runs over the
families {7} of outer contours compatible with y,,...,7,, that is no one of
the 9 intersects of embraces any of the y,, or is contained in any of the
regions @(y,;). If we consider in the denominator of (I.4), only the con-
tribution of the set of configurations obtained by “erasing” y,... V.,
that is by flipping all the spins inside each of the @ (y,), in the configurations
where y,, ... y, are present, we get the inequalities

| Z:_(Vi»h)

o) =

0 =T e #n
1
Observing that:

o) K
S ke R IUE S NPT

—hke@(y)
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whe see that, when h=0,{"(y, B)/{"(y, h)=<1 and @44y, 70
<exp { -BJY; |y,~|} that is the upper bound (1.5) decreases exponentially
1

with the total lenght of the contours.

The interest of this description lies in the fact that the outer contours
correlation functions obey a set of integral equations a la Kirkwood
and Saltzbourg. These equations were derived and studied in detail by
Minlos and Sinai in a fundamental series of papers [12—14]. We will
summarize in the sequel that part of their analysis which will concern us.

For any h=0, B> B!, we can uniquely define a function over the
families of compatible outer contours, satisfying:

i) 0,(y; ... y,) s analyticin f and hif h %0,
i) 0,017 Sexp |~ Ll
1

~(B=8") % Tulvil
iii) Se '

(4, B)

QA,h(%m?n)— Hi 214 @n(y1---70)
1

where y4(y;) =1 if ©(y;) € 4, is zero otherwise, and ®(4, f) 5= 0.

The deduction of these results relies essentially on the exponential
behaviour of the upper bound (L.5), for £ = 0. This allows one to prove
that the spin correlation functions (that can be expressed as sums of
contours correlation functions with coefficients not depending on A)
converge uniformly in A, and to derive by standard methods their

analyticity and cluster property.

b) Master Equation. Following a standard procedure [6-8], we
introduce a time evolution in the Ising model by assigning the probability
W, (6, 6), of a transition from the configuration ¢ to the configuration
¢’ in the unit time, satisfying the detailed balance condition:

Wy(o',0) e PEAD =W (6,6") e PEal®) (L7

we further require that, for any pair of configurations e, ¢’, there is a
sequence 6, 6%, ..., 6" of configurations st. e¢'= 6, 6"=0', and
W't 6)+0,i=1,..,n—1.

If p,(o; t) is the probability distribution over the configurations in A
at the time ¢, we can write the master equation as:

% Pa(@:0) =3 {Wy(0,6) pslo’, 1) = Wy(0',0) pslo, 1)} . (18)
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Let now R, be a subset of the set of spin configurations in A, and consider
the initial condition:

6¢R,
pale,0)= {Ke~BEA(o-) oeR,

where K is the normalization constant.
The solution of the Eq. (I.8) for this initial condition is such that the
quantity p(R,;t)= Y p,lo:t) never increases with time, while its

6eRy

derivative never decreases. This is proven in Appendix A.

If we consider now the quantity 1 —p(R,,t) (i.e. the conditional
probability that the system, being in R ; at t =0, has escaped by the time t)
its rate of increase is maximum at t=0; following [1] we can define
the “escape rate” from R, vg ,, as:

(1.9)

d
Upa= = PReD) (1.10)

t=0
From (I.8) and (1.9), taking into account condition (I.7) we have:

i, =K Y Y W6, 0)e PEa®, (L11)

6eRp 6" ¢R,4
The assumptions on W,(6’,6) guarantee that the Gibbs distribution
is the unique equilibrium distribution and then the probability of return
to R, is given, as in [1], by the probability to be in R, at equilibrium,

that is
Z e~ BE.A(0)

__ O6€R4
PRA——————Z Tt (112)

Section IT

In Section I we have briefly sketched a geometrical description of the
spin configuration for the Ising model. The main physical implication
of this analysis can be formulated in the following way (see for instance
[15]): among all configurations in the gran canonical ensemble
with 4- boundary conditions and 4 =0, the most probable will be those
with a large majority of positive spins and small and rare “islands”,
uniformely distributed, of negative spins.

This picture can be considered a rigorous version of the phenome-
nological theory [5] and allows one to study in a quantitative way
approximations and limits of the dropled model [3]. For instance
in the case of finite A4 the bounds for the probability of subclasses of
configurations given by Eq.(L5), when those configuration contain
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“large contours” (i.e. |y| = In|A|) give a rigorous and physically transparent
estimate of the relevance of the fluctuations that could give rise to the
opposite phase. In particular, the bounds on the temperature that
guarantee the validity of Minlos and Sinai analysis (cf. Section I) can
be interpreted as a sufficient condition to keep these fluctuations under
control in the thermodynamic limit.

With this in mind it is easy to understand how, both in the phenome-
nological and rigorous theories, when 7 <0 the positive volume effect
[see (1.5)] due to the external field, enhancing the weight of large area
contours, naturally leads to a break down when A—oo. Nevertheless
it is worth noticing that in this case, where the powerful tool of the
integral equations become useless, the description of the configurations
in terms of contours still makes sense and we can attempt, as in the
phenomenological theories, to define a metastable state by eliminating
the configurations containing “large droplets”. If ¢ is an integer let us
define a subset R, of spin configurations in A in the following way.

Calling {y}s the collection of outer contours y,,...7y, associated
to the spin configuration o

Ry={o:100)=c*Vye{1}}
and define a state by the following probability distribution:

Ke PEa@  geR,

Palo)= 0 R, (IL.1)

where E (o) is defined in Section I and K is a normalization constant.

At this stage ¢? is completely arbitrary but we expect the metastability
requirements listed in the introduction to pin down a critical value or
at least a range of critical values for the size of the droplets (i.e. for the
area of our contours).

The next two sections will be devoted to a detailed analysis of the
static and dynamical properties of a state defined by Eq. (IL.1). At the
end of Section IV our analysis will be completed fixing a range of allowed
values for ¢? such that the metastability requirements are best satisfied.
On a purely static ground, without going through all the details of the
next three sections, it is possible to get an idea of the critical size and
the difficulties related to its determination.

If we introduce A(y, h) = @ 4,,(7)/0 4.(y) Where g 4 ,(y) is the probability
to find a configuration with the outer contour y and ¢4 () the probability
to find a configuration where the contour y is absent and the region
O(y) is neither crossed nor surrounded by any other contour, we get
from Eq. (1.4)

Ay, hy= e P (0, /T (9, ) (IL.2)
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It is worth noticing that this quantity is A-independent (ie. it is
not affected by the break down of the droplet picture for large A’s
when h <0).

From the definition of ¢, ,(y) and g, ,(y) it is easy to convince
ourselves that InA(y, h) is the free energy variation associated to the
droplet y. Its behaviour can be analized in order to discriminate the
outer contours regarding to their ability to take or give free energy for
their growth.

We remark that, when h<0

+ bl
IniG. )= —BIb4 B [ Y Copagandx.  (13)
~ |hl ke®(y)
The next step, the determination of the critical size, should come out
from some sort of stationarity for InA(y, h). This task is very hard,
because the shape of the contour has to be taken into account.
But when f is very large, it is reasonable to assume that square
shapes play a dominant role. If we consider square shapes only, InA(y, h)
is bounded by two quadratic forms:

—4BJ14-m*(B) Blh| 2 <InA(q, h)< —4BJI+BIh| 2 (IL4)

where [ is the side of the square contour ¢ and m*(f) is the magnetization
in the infinite volume limit for A=0". When §—c0 we get an absolute

minimum at [= % (i.e. the estimate for the critical size given by the

droplet model [3]).

Section III

To investigate the static properties of the state described by (IL.1)
we introduce the outer contour correlation functions g ,: for any set
Y1, ..., ¥, Of compatible outer contours in 4, s.t. |@(y,)| < ¢?

ITL wyinh) Y [T u6,h

c ( o n) — {f’)C’:lg [0 =c2Ted} (HI1)
here Q4,n\P1 2 =B, h)
4B, my= ) [T uy.h).

rica, || sc2ye(y)

It can be easily shown (see Appendix B) that the set of the ¢ , so defined
satisfy the inequalities:

—ﬂi-lml(J—'"%) 2% Inl
(Vi) Se ! e ! (IIL.2)
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provided that
< 4(pJ —20)

=B

We show in Appendix B that, as in the equilibrium case, the Minlos-
Sinai equations hold, and it is possible to define a function gj, over the
families of compatible outer contours, such that, in the region of f,
h <0 where (111.3) is satisfied with « >1In6:

(I11.3)

01, ... 7)=0 ifany y,is s.t. |@(p)| > c?

n
—2a¥;|yil
1

i, .. p) <
V1, Y Se ) (I11.4)

—a il

h |
s W) = T 1 Xa®) 050, - )| Se + G(B, A)
1

where y 4 is the same of Section I, and G(f, A) - == 0. These properties
are sufficient to guarantee that, in this region of § and h:
i) the van Hove limits (o , >}, of the spin correlation functions defined

as:
Y g FEa@
¢ __ O€cR,4
<O-A>A,h‘ Z e_ﬂEA(d) (IIIS)
oceR 4

exist, and have cluster properties, like the equilibrium ones. In particular,
the limit of the magnetization, that can be expressed as:

Copi=1+ 3 i) <00—1Dep), (IIL.6)
. .. 7:0€0(y)
is positive,
ii) the limit of the free energy

F(B,h)= Lln Y e PR = Lln ZI (A, h) (I1L7)
Al 5. 1]
exists, and it is infinitely differentiable in § and h.

iii) The central limit theorem holds, for quantities like the total
magnetization and the total energy.

Let us consider the case of |h| very small. We remark that the smaller
|h| is, the looser becomes the constraint (II1.3) on ¢, and for h—»0~ the
constraint becomes trivial.

Therefore, the infinite volume contour correlation functions exist,
for any fixed ¢, also in the limit A—07. Denoting by ¢ the set of outer
contour correlation functions of the equilibrium state, for h=07%, it
can be shown (see Appendix B) that for any set y,, ..., , of compatible
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outer contours, s.t. |@(y;)| < c?

n

n DREA
Q;:I(’yl’ ey })n)_ l_[ixc(yi) Q(’YD ey yn) _S_e ! B(Bs h, C) (IIIg)
1

where X°(y) =1 if |@(y)| £ ¢?, is zero otherwise, and
B(B,h,c)—»0 as h—0",coo if clh|<4(8J —2In6).

If we consider then any sequence of ¢, such that c—o0 as h—0", we get
03—0 as h—07, provided that for any c in the sequence the contraint
(I11.3) is satisfied, with o = 2In6.

It is therefore impossible, on a purely static ground, to define
uniquely a sequence of states joining the equilibrium state as h—0~
(i.e. an extrapolation of the “equation of state” from positive to negative h)
but a large class of sequences that exhibits this property does exist.

Consider now the relative weight of the configurations in R, at
equilibrium Py ,. It may be written as:

e BEA(9)
" _ZAm
R =

A Ye PEa@ zr (k)
[

(111.9)

Using then the inequalities:
et PIRAZE (A, —|h)) = Z7 (A, —|h) = Z7 (4, 0) 2 @14l (T11.10)

and remembering that the magnetization in R, for ¢ satisfying (II1.3)
is positive, then ZJ (A, —|h) < Z7 (4, 0), we get:

Z (A, —|hl)  Z7(A,0) < epIloAl=SInmimlal - (111.11)

P, < <
Ra= " ZI(A,0) Z7 (A, —1|h) =

Then Py —0, in the infinite volume limit. -

Section IV

In this section we investigate the dynamical properties of the state
whose probability distribution at t =0 is given by (II.1): we assume that
the time evolution of this state is described by (1.8) where W,(¢',5)
satisfies:

Wie',e)£0 iff dJkedst (Iv.1)

0= —0y
W,, < Wy(o',0) < Wy
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where W,,, W, are positive constants independent of A. For any ¢ in 4,
ke A, call (o, k) the spin configuration defined by o; = 6,(i * k), 0}, = — g
and define for any ke A the subset R of R, as

R¥={6eR,:(0,k)¢R,}. (IV.2)

By definition R contains all the configurations ¢ € R, such that k
is external to all the outer contours and is adjacent! to a number of
outer contours (at most four) that give rise, when o,— —a,, to a single
outer contour with area greater than c?.

The expression (L.11) for the escape rate may now be written in the

form:

z Z W(( k) ) e—ﬁEA(G')
Vg, = e, k), 6) ————.
B ked oeRK Z e PEa@

G‘ERA

(IV.3)

To derive from (IV.3) an upper bound for v, , observe that in any o € R,
the total length of outer contours adjacent to k is =4c. From (IV.1),
(I11.1), and (I11.2) it follows then

4
vg, = Wiy z Z

v
ked 1 (v

Z Qil,h(yls ceey "/v) . (IV4,)
1seee¥v)

Where y,, ..., 7, are adjacent to k, and |y;|+4---- 4|y, | = 4c
Vp, S WylA]4 Y 32173 humitinzt, (Iv.4")

122c¢
The last inequality is obtained observing that, for any k € 4, the number
of events caracterized by the presence of v outer contours (1 <v<4)

with total lenght 21, all adjacent to k, is less than or equal to 4 - 32!*4~1,
Then for

< 4(pJ —1In3)
Blhl
we have ,
. Vg, S WyylA| e= BT Indhet BN B (B h, c) (Iv.4)
with

Fz = 108/(1 — e—z(ﬂJ~ln3—|h|;]) ’

We next evaluate a lower bound for vy ,.

Let A, be the set of lattice points in A4 whose distance from the lattice
points external to A is greater than ﬂc, and consider, for any ke A4,
the set 0, of square outer contours with side c adjacent to k and containing
one of its n.n. (the one on the left, for example). For any ke A, there
are ¢ of these contours and any ¢ € R¥ contains at most one of the elements
of Q..

! We say that ke /4 is adjacent to 7 if k is external to y, and at least one of its n.n. or
n.n.n. is contained in O (y).
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We get then from (IV.3), (IV.1), and (I11.1)

URAg Wm Z z Qil,h(Q)
ke ge Qi . (IV.5)
= W, (14| — |/ 2c|oAly ce™ +PIe+Bm e F (B, )

where F, (B, h, c) is a positive function (cf. Appendix C). The last inequality
follows from

G nlg)Z e PP DIEE, (B, ) (Iv.6)

which is proven in Appendix C.

The bounds (IV.4) and (IV.5) nicely fit what is predicted by the
phenomenological theories.

The existence of a lower and an upper bound both proportional to the
volume guarantees that the relaxation time decreases linearly with
the volume and, furthermore, the argument of the exponential in the
upper (lower) bound is nothing other than a lower (upper) bound for the
free energy of a square droplet of area ¢* as expected from the theory
of spontaneous nucleation cf. (I1.4).

We notice that all the estimates giving rise to the above bounds
are independent of the volume (except for the surface term in the
lower bound) and therefore we can consider the excape rate per unit
volume v as a A-independent quantity. To get a step further in the deter-
mination of the class of states that satisfy best metastability requirements,
it would be useful to explicitly evaluate the value or the values of ¢ for
which the excape rate v has an absolute minimum.

We are not able to do this explicitly but, at least for suitable values of §
and h, the structure of our bounds allows us to define a range of values
of ¢ in which v will certainly reach a minimum.

For instance, when J > |h|= AJe #’. (A is a numerical constant)
and f very large; v reaches a minimum for ¢ lying in the range?:

i o)) zes i ol

(Iv.8)
and its actual value is bound by:

B, W, e *P72m DB < min p < B, W,e ™ 4#7 103701kl Iv.9)
Sminv =

where B, and B, are numerical constants.
2 In the evalutation of (IV.8) we have assumed that
W,/ Wy 2 1 —th(BJ — Blh])

in agreement with the generally accepted form of the transition probability for single
spin flip processes [8].
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It is worth noticing that Eq. (IV.8) gives a statistically very well
defined “critical size” centered around the value suggested at the end
of Section II.

To conclude this section we remark that (IV.9) not only shows that
the escape rate per unit volume can be made very small compared with
the rate of the Markovian process but also exhibits a dependence on the
thermodynamical parameters of the same nature of that suggested by the
phenomenological theories. In particular when f— oo both exponentials
go as 4BJ?%/|h| and this value is identical to that obtained by Langer [16]
in the framework of the droplet model.

Conclusions

The results of the previous sections can be summarized by the following
two theorems.

Theorem 1. Given an Ising spin system with n.n. interaction of strength

——‘2]— <0 and external magnetic field % <0, contained in a box A with

boundary conditions 4, call R, the subset of all spin configurations o
such that any region bounded by a contour has area less or equal to c*
where c is a fixed integer number and S, 4 the state defined by the probability

distribution
pslo)=Ke PEa@  ifgeR,
pAle)=0 otherwise

where K is a normalization constant and E 4(6) is the energy of the spin
configuration o.
If Z} (A, h) is the partition sum over R 4, and {a,> ., ACA, the related
spin correlation function, when > 2In6/J, c <4(fJ —21n6)/Bh|.
a) The following limits exist and are finite:
4 — T 1 +
Fe(B, h)—/}l_]}:} l InZ; (A, h)

{o0h= /}1_{130 o 0% n-

b) The infinite volume correlation functions have cluster properties.

c) The central limit theorem holds for the magnetization and the
energy.

d) Consider a sequence of c’s such that c—o0 as h—0" then

hl_i'%[ {o0n= <0'A>+,0

Jim F(, )= F(5,0)

where {a 4) ; o and F(f,0) are the corresponding quantities at equilibrium.
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e) If Z* (A, h) is the partition sum over the full equilibrium ensemble,
the following limit holds:

lim Z* (A, h)/Z* (A, h)=0.

A

If we define the time evolution of our system as described by a Markovian
master equation, Theorem 2 holds.

Theorem 2. Assuming that the system is in the state S, 4 at t=0 and
calling p(R 4; t) the probability to find it at timet in a configuration belonging
to R,.

o) For any A,p(R,;t) is monotonic decreasing and %p(t;R ) is

monotonic increasing function of t.
B) Define for any A the escape rate vy, from R, as

d
=L pRyt
URA dt p( A )tzo

Then, when B> 2In6/J, ¢ <4(BJ —21n6)/B|h|

F, (B, h,c) e_4ﬂjc+ﬂm*(ﬂ)lh|c2<1 +O(J%L))
b $ A

< URa <F,(B,h,c) o~ (BI—1n3)dc plhlc2
==
where m*(B) is the equilibrium magnetization at h=0", and F, and F,
are bounded, positive functions.

The above two theorems give a series of properties that nicely fit
what is expected on a physical ground from a metastable state.

S.. 4 is a state to which thermodynamics applies (Point a)) and it is
in a pure phase (Points b) and c)). Furthermore the limit of the free
energy for h—0~ over a suitable sequence of such states joins very
smoothly to equilibrium value at h=0" (Pointd). Configurations
belonging to R, are very unlikely in the full equilibrium ensemble
(Point e).

The escape rate, in full agreement with the phenomenological
theories of nucleation, is asymptotically proportional to the volume
and in a suitable range of ¢ that depends on f and h, the escape rate per
unit volume can be made very small compared with the rate of the single
spin flip process (cf. end of Section IV).

Comparing our results with what was previously known for long
range forces systems [1] we see that in contrast with the Van der Waals
theory where the isotherm in the metastable region is simply the analytic
continuation of the equilibrium isotherm, we actually get a less defined
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prescription. In particular we are not able to discriminate between a
large class of sequences of subensembles that give rise to smooth extensions
of the isotherm for negative magnetic fields.

Acknowledgement. We are grateful to G. Gallavotti for many helpful discussions
and criticism.

Appendix A
In this appendix, we show that the quantity —% P(R ;1) defined

in Section I, is a monotonic decreasing function of ¢.
To simplify our notations, we label the spin configurations in A
with an integer n, n=1, ..., 2l and define:

Won=Wylo'.0)  p()=pslo.1) g,=e " (A1)

where n and m are the indices corresponding to ¢ and ¢’ respectively.
The A dependence is omitted.
The detailed balance condition is then written:

WonGn = WonGm (A2)
and the master equation is
d 214}
— Pl = Zm WomPo() — Wi Dy (1))
s 2141 (A3)

= ;m (VVnm - ;l I/Vlm(smn) pn(t) .

Following the procedure introduced in [17], we define the 2!4!x 2!
matrix T as:

2141
T;tm_g;x—l/z 1/2( Zl VVlm mn) (A4)

T is a real symmetric matrix, and all its eigenvalues A% i=1,..., 21l
are non positive [17]. This can be easily checked using (A2) and the
fact that W, =0. The null eigenvalue is not degenerate if, for any n
and m, there is a sequel ny, ..., n, such that n, =n,n,=m,and W, , . +0.

Denoting with {Ci}, n=1, ..., 24! the normalized eigenvector of T
corresponding to A', we easily fmd

d —1/2 24! -1/2
rs pa(t) = Zm N M ()
214 2141
- Z xc; Zm G 2pnt) C, (AS)

214i 2141

Pult) =9, Z et'C, Zm G ' Pn(0) C,, -
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Let now M be the subset of indices corresponding to the subset R,
of spin configurations in A. Inserting in (AY5) the initial condition:
214)
pm(0)=gm Zkgk/z gnzKAgm meM
1 keM (A6)
Pm(0)=0 m¢M

we find eventually:

PR, t)= ZM Pml?)
2141

=K, Zi e“( Z p'ln/zcin)z

1 meM

(A7)

That proves the initial assertion.

Appendix B

In the first part of this appendix, we show that the deduction of
(II1.4), that guarantee the existence of the thermodynamic limit for the
0% may be carried out by a mere transcription of the procedure
described in [11], introduced by Minlos and Sinai to prove the existence
of the thermodynamic limit of the g4, for h = 0.

It is sufficient to check that, when h <0 and B is high enough, the
probability distribution (II.1) satisfyies the following conditions.

1) The probability to find a family y,,...,y, of compatible outer
contours in 4, such that |@(y;)| £c? has a bound that decreases ex-
ponentially with the total lenght of the contours, that is:

h
—Za%‘hﬁl

Qf/l,h(’))D"': yn)ée OC>O' (Bi)

2) The ratio between g% ,(;, ..., y,) and the probability ¢%% (v, ...,74)
to find a configuration ¢ containing the outer contours y,, ..., 7,, and
such that no one of the outer contours surrounds @(y,) or intersects
its boundary, does not depend on y,,...,7,, and has a bound that
exponentially decreases with |y,|, that is:

Ve o VSR s ) = Ay, ) S e Ma>0. (B2)

We remark that the set of spin configuration obtained by erasing any
of the contours y, ... y,, that is by flipping all the spins inside O(y;),
in all the configurations in R, where y,,...,7, are present, is still a
subset of R ,.
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The argument already used in Section I gives then:

H uiyu )y [T uG.h

F:10G) Sc? 7e{f}

c OF)cA
(Vs - V)= (B3)
> [T u6,n
{7 I@(v)[<c2 Fe (i}
eH A

< [T PMe (g YL i b
1
Qﬁ,h(%, IR yn)/Qc n()’za AR yn) = eﬂ‘”yllg_(yb h)/C+(y1, h) . (B4)

When h <0, [O() Zc2, {(p, )/ H(y, h) S PO < oMM the above
conditions (B1)and (B2) are then satisfied, provided that fJ — f|h|c/4 = 20,
o>0.

A set of integral equations for the ¢ , may be now derived as in [13]:
it is sufficient to remark that the probability 5% (y,,...,7,) may be
expressed as a linear combination of the @5 ,(Vy, ..., x> V25 oo s Vu)s K2 1.

If we define the linear operators X ,, X, and A% on the linear space
of the functions ¢ defined over the sets of compatible outer contours as:

X4@) G5 - 1) =TT Xa) @1, - 70) (B3)
where !
Xa)=1 if O@yca,
X,.(y)=0 otherwise
X@) Y1,y = H X)) 01, 70) (B6)
where .
Xo)=1 if |o@)|=c?
X.(y)=0  otherwise
(A%0) (1)
=X X4(y1) A1, ) (B7)
k=1 Fi.. P Finvi*e 7:0(7)20(y1)
and forn=>2
(A59) (1 o 1) =X () X a(y1) Ayy, b) {qo(vz, V)
+ Z (_ 1)k Z (XCXAq)) (?19 .__a?k» Y25 --- Yn)
kz1 (F1,.-.F: Ty e
= XX40) (75 - vn)}
FOMHz0(1)
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where the sum are over sets of compatible outer contours. The set of
integral equations satisfied by the ¢4 , may be written in the form:

Qo n=XX A+ A50% 1 (B8)

where 4,71, ... 7,0 =0 for n> 1, and 4,(y,) = A(y,, h).

We remark that the Minlos Sinai equations, satisfied by the g4,
may be obtained from (B8) substituting X, with the unity in the in-
homogeneous terms and in the definition of the kernel.

Consider now the Banach space # of the function ¢, defined over
the sets of compatible outer contours, with the norm:

901, -
lell = n P, ?M—Arw (B9)

Yisees

An upper bound for the norm of 4% is given by:
|450] (c)'v" {( ¢ )‘vl' ¢ }
A4] =su <sup|—= 14— +-—%5; (B10
=P T =9P13 ) T OO
where { =3e7% This bound is obtained by the inequality:

n
—aXiln

| ol © k
()G mlse ol 55 () ()
. 0 2 (B11)
+Ye Y C“}.
1

lzx+1

That is deduced with standard majorization techniques [13]. The
bound (B10) does not depend on A, and is less than one when { <1/2,
that is « = 1n6.

This result, together with the condition (B 1), is sufficient to guarantee
the existence of the thermodynamic limit of the g% ;.

The existence of this limit is sufficient for the existence of the limit
of the spin correlation functions <{o )% ,, as it is easily checked.

The Minlos Sinai equation, when |[A4%| <1, also guarantee the
validity of cluster properties for the outer contours correlation functions
[13] that, as in the general case, allow to prove exponential cluster
properties for the spin correlation functions. These properties are then
also sufficient to prove the validity of the central limit theorem [10].

Consider now #4 ;= 0% , — X.04,0 (Where g4 , are the outer contour
correlation functions defined in Section I for h=0). It is easy to check
that, when BJ — Blh| ¢/4 >2In6, 1, , is the unique solution in # of the
equation:

Nan=Exn+ A4nan (B12)

En=X (A —Ao) + A% X 04,0 — XcA4Q4,0

where
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and A, is the kernel appearing in the M.S. equation for ¢4 . To prove
(IT1.8), it is then sufficient to show that:

n

il
Iéil,h(’))b yn)lée ! B(ﬁa ha C) (B13)
where B(B, h, ¢) 555= 0.

c—> 0

It follows from the definition of & ,:

liil,h(yla cee yn)'

_S_ll(’))ls h)_)'(’yloo)' Z Z IQA,O()N)I’ "‘?kVZ’ yn)l
k=0 (F1,-..5k): [O(F)]| Sc?
Fiov1 ¥
+2 loa,0(, vg---vn)l} (B14)
7 1@@F) =c?
O(5)20(y1)
+20L0[ Y X 04,0015 - Pi P25 -+ Pl

k21 {F1,... 5k 9,;(’\)‘14:(/7
35::10F)| > c?

+z IQA,O(?’ P2s-ees 'yn)q
5 10@)>¢?
O(5)> O(y1)

where y,, ... y, are s.t. |@(y,)| < 2

—-BJ El |7l
Recalling that ¢4 o(yy, ... 7)) <e ', A(p,0)=e "/, BJ> 20, and
using standard techniques of majorization, we can get upper bounds
for the terms in the square brackets of the form:

n n
—a ¥ |yil+ 2alya| =8yl —a%: |l
1 .

C,e Cye ' (Be ?yet/Inl

respectively, where we have assumed « = In6, and Cy, C,, 0 are positive
constant. We find then:

[éil,h('yla eee yn)l

- £i| il
<e 1 [C eI Inl=alnl(hlh10G] _ 1) 1 C, (3¢ )]

(B15)

It is now easy to check that the square bracket term goes to zero, as
c—> 0, [h|—0, provided that for any c¢ and |h|:BJ—20=1h|c/4
2 A OGN/

Appendix C

In this appendix we give a lower bound for ¢4 ,(q) as the maximum
of two independent estimate. We recall that g (see SectionIV) is a
square contour of maximal area.
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a) First Estimate. Remarking that in any ¢ € R , there are no contours
embracing ¢, the probability to find g, according to the probability
distribution (II.1) may be written as:

140
(I (%% ewr.a)
icdtqudgq A, +,h
<@(Rm°')>/1,+,h

where A(q, h) is given by (I1.2), @(R,, ) is such that

24,n(@) = Alg, h) (C1)

@(RA,O')zi if O'ERA
O(R,,6)=0 otherwise
and 0%(7q is the set of sites facing the contour g from outside (inside).

Then, noticing that @(R 4, ¢) is an increasing function over the complete
set of configurations ¢, by FX.G. inequalities [18], we get:

1+40;
([
iedtqud—q A,+,h

(C2)
14 0;
g< ( )> O N>a s
icdtqud—gq A, +,h
< I (1-;@)> > ] (1+<0'2i>/1,+,h)
iedtqud—gq A, +,h iedtqudq (C3)

S ( 1 +m(p, h))8C
s\ )

where m(p, h) is the equilibrium magnetization and therefore, for h <0
we get:

(C4)

. 8¢
¢n(@) 2 Alg, b (M) .

2

b) Second Estimate. Equation (B7) for ¢ ,(q) reads:
G@=Hgh[i+ ¥ 1 X Ganlins 7] (C3)
k=1

(F1y..-Fu): Fing*+ ¢
where 7, ... J, are compatible contours intersecting g.
If we remark that the square bracket term in (C5) is the probability
to find a configuration ¢ € R ; such that no contour intersect the square q,
we get:
Q@) Z Mg, h) [1 - Qi,h(v)} (C6)

yiyng*e
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that, by the use of standard majorization techniques, becomes

—(BJ—1n3)4+B|h|c

%.n(@) = A(q, h)[1 —4c { — ¢ 2BT=Tn3=plhlc/a) |- €7

We remark that, for fixed  and || the square bracket term gets negative
for large c but, in a suitable range of f, |k and ¢ (C7) is better that (C4).
If we recall now Egs. (I1.9) and (I1.4) and put

_ 8c —4(BJ—1n3)+B|h|c
Fl(ﬁ,h,c)=max{(1+(ﬁ’lhl)), {—4c—°C }

1—e” 2(BJ ~1In3 - Blh|c/4)

(C8)
we get (IV.6).
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