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Abstract. We first present an elementary commutation theorem for operator algebras
on Hubert space. This theorem is then applied to give an elementary proof of duality for
free Bose fields.

1. Introduction

In the approach to quantum field theory which employs von Neumann
algebras of local observables (see [10] and references therein), the
property of duality states that the commutant of the algebra associated
to a nice region in space-time is exactly the algebra associated to the
space-like complement of the region. This property has played an
important role in recent work of Doplicher, Haag and Roberts concerning
the relation between fields, observables, gauge groups and superselection
sectors (see [6,7] and the references therein). The first proof that duality
holds for free Bose fields was given by Araki [1,2]. Another proof, using
infinite tensor products, was given by Dell Antonio [4]. A somewhat
simplified version of Araki's proof was then given by Osterwalder [15],
and, most recently, Eckmann and Osterwalder have given another
proof by applying Tomita-Takesaki theory [9]. In this paper we give a
yet simpler proof of duality. Our proof consists of first proving a fairly
general commutation theorem for operator algebras, which was
motivated in part by Dixmier's commutation theorem for quasi-Hilbert
algebras [5]. We then show that our commutation theorem can be
applied to the Fock representation to prove duality. Our commutation
theorem may conceivably be useful in proving duality in more compli-
cated situations.

2. The Commutation Theorem

If A is a *-algebra of bounded operators on a Hubert space, then we
will let A denote the (von Neumann) algebra of all those bounded
operators which commute with every element of A. We write A' for (AJ.
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The Commutation Theorem. Let V be a Hilbert space, and let A and B
be *-algebras of bounded operators on V. Assume that A and B commute,
that is, ab = ba for all aeA, beB, and assume that the *-algebra, C,
generated by A and B has a cyclic vector, w. Then A = B" (and so B' = A")
if the following condition is satisfied:

Coupling Condition: If x is in the closure of Aw (or we could use B'w
instead) and if

1) <x, αw) = + <α*w,x) for all aeA
2) <x,bw>=-<6*w,x> for all beB,

then x = Q.
In this case the strong operator closure of A will contain the identity

operator on V, and similarly for B.
Conversely, if A = B", and if the strong operator closures of A and B

contain the identity operator on V, then the Coupling Condition is satisfied
for any x in the closure of Aw + B'w.

It should quickly be remarked that in most potential applications
one will probably not know much about A' and B', and so the situation
in which this theorem will probably be most useful is that in which
Aw + Bw is already dense in V, so that one needs to check the Coupling
Condition for all x e V. At any rate this will be the case in the application
discussed in the next section.

We obtained the proof of the fact that the Coupling Condition implies
commutation by trying to imitate the proof of Dixmier's commutation
theorem for quasi-Hilbert algebras (p. 70 of [5]). In particular, the
Coupling Condition plays a role analogous to that of axiom v) in
Dixmier's definition of a quasi-Hilbert algebra. Although it is not
entirely explicit in Dixmier's proof, this role consists of ensuring that
operators in A1 can be approximated by operators in B in the strong-*
operator topology (p. 20 of [19]) obtained from a sufficiently large set
of vectors (namely a cyclic vector in our case). Our theorem is also fairly
closely related to Lemma 5.2 of [20]. It will be shown elsewhere [17]
that our theorem can be used to give a quite simple proof of the commuta-
tion theorem for tensor products of von Neumann algebras.

Proof. We assume first that the Coupling Condition is satisfied.
Let t E A. We show that the Coupling Condition ensures that there is a
sequence {bn} in B such that

bnw-*tw and έ>*w—>ί*w.

(strong-* convergence on w). To this end, let V denote V with complex
conjugate structure (p. 9 of [5]), and for v e V let v denote the correspond-
ing element of V. On V x V define an inner product by

<(w l9 ϋj, (u2, £2)> - <χ, u2y + <ι;2, ϋ!> ,
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so that V x V becomes a Hubert space. Let

K = {(sw,(s*wf):seyl'}
and

L={(bw,(b*wY):beB}.

Then K and L are linear submanifolds of V x V, and L is contained in K.
Since (f w, (ί* w)~) is in K, it suffices to show that L is dense in K.

Let K denote the closure of K in F x V. If L is not dense in K, then
there is a non zero element, (x, y), of K which is orthogonal to L, that is,
such that

< x , b w > = -<b*w,y> for all fee 5.

Since (x, y) is in K, there is a sequence, {sj, of elements of A such that

snw-+x, s*w^y.

Then for all α e ̂  we have

w, αw)

Replacing α and £> by α* and fr* and taking complex conjugates of the
above equations, we find that both x + y and x — y satisfy Eqs. (1) and (2)
of the Coupling Condition. Furthermorex-hyandx — yare both in the
closure of A'w. Since we are assuming that the Coupling Condition
holds, it follows that x = 0 = y. Thus L is dense in K.

Now let teA', reF, b, ceB + Cl. Then c*tbeA, so that by the
above arguments (with t replaced by c*tb) there is a sequence {bn} in B
such that

bnw-+c*tbw , fr*w

Then for α, d 6 A + <C1 we have

Since w is assumed to be cyclic for C, it follows that ίr = rί, that is, that
4' £ B". Since A £ F, we have A = B" as desired. (Shoichiro Sakai has
pointed out to me that a quite similar argument is used in the proof of
Theorem 1 in [18].)

We indicate now why the strong operator closure, B, of B, will contain
the identity operator on V (and similarly for A). Now B will contain _a
maximal projection, namely the supremum of all the projections in B,
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and this will be the projection onto the closure of BV. Thus we must
show that BV is dense in V. If it is not, let x be the component of w in the
orthogonal complement of BV. Then, since BV is invariant under A,
and w is cyclic for C, we have x Φ 0 and x ε A'w. Then x satisfies Eqs. (1)
and (2), and so the Coupling Condition fails to hold.

Conversely, suppose that the strong operator closures of A and B
contain the identity operator on F, and that there exists a non-zero x
in the closure of A' w + B' w which satisfies Eqs. (1) and (2) of the Coupling
Condition. We will show that A' φ B". Now x will not be orthogonal to
both A'w and B'w. We give the argument for the case in which x is not
orthogonal to B'w. Otherwise the roles of A and B must be interchanged
in the following argument. Now B'wΏ. A" w, and if they are not equal
then B' Φ A" and we are done. So we can assume that x is not orthogonal
to A"w. But by von Neumann's double commutant theorem (p. 40
of [5]) A' is the strong operator closure of A, and so Aw is dense in A'w.
Thus we can assume that x is not orthogonal to Aw.

Let us form the Hubert space V x F, and let A act on it by a(u, v)
— (au, av). Then the commutant of this action of A is given by 2 x 2
matrices whose entries are easily seen to be in A', acting on V x V in the
obvious way. Let K be the subspace in V x V generated under A by the
vector (w, x), and let P be the projection on K. Since K is ^-invariant,
P is in the commutant of A, and so is given by a matrix

fl
where d, e, f e A', and 0 ̂  d g 1 , 0 ̂  / g 1 . We will show that e is not in B".

Now Eq. (1) of the Coupling Condition can be rewritten as

for all a e A. In other words, it says that (x, — w) is orthogonal to K, and
so P(x, — w) = 0. In terms of matrix elements we obtain

dx — ew = 0 .

Now because the strong operator closure of A contains the identity
operator on F, we have (w, x) e K, and so P(w, x) = (w, x). Thus we obtain

dw + ex = w .

Suppose that e were in B". Now Eq. (2) of the Coupling Condition
clearly holds for elements of the strong operator closure of B, which by
von Neumann's double commutant theorem is just B". Thus it would
hold for b = e. But then we would have

= <x, e w> = — <e* w, x>

= — <w, exy = — <w, w — dwy = <w, (d — 1) w> ̂  0 .
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From this it would follow that dx — 0 and (d — 1)w = 0. From the latter
it would follow that d acts as the identity on Aw. But then from the former
it would follow that x is orthogonal to Aw, contrary to assumption.

Q.E.D.
We remark that some statement concerning the identity operator

being in the strong operator closures of the algebras is necessary for the
proof of the converse statement, as can be seen by considering the case
in which A consists of all operators on V and B consists of the zero
operator alone.

That the question of when two algebras of operators generate each
others commutants can be a fairly delicate question may be seen by
considering the "factorizations which are not coupled factors" found by
Murray and von Neumann (Sections 3.1 and 13.4 of [13]). This question
is closely related to the subject of normalcy in von Neumann algebras
(see references in [21]).

3. Duality

Let G be a real Hubert space, let H be its complexification, and
let V be the Fock space over G (p. 18 of [11]), that is,

where H(p} denotes the Hubert space of symmetric tensors of order p
over H. In particular, H(Q} is taken to be the complex numbers, and we
will let w denote the number 1 from this space, viewed as an element of V
(the Fock vacuum). Then the Weyl form of the Fock representation of H
on V (p. 172 of [11]) is the projective unitary representation, F, of H
on V having the properties that for ft, k e H

where Im denotes "imaginary part of, and

where in the sum p ranges over the non-negative integers, and h(p) is
the tensor h x x h of order p. (We will use the symbol x to denote
symmetric tensor products.) To pass to the frequently used definition
in which there are additional factors of 2, (as in [10]), it suffices to pass
from h to j/2/z in the above.

We will use the following facts about Fock space several times. First,
any elementary symmetric tensor, h^ x • • • x hp, can be expressed as a
finite sum of tensors of the form h(p) where the fe's involved are real
linear combinations of the hj (see the footnote on p. 199 of [3] or the
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equation for polynomials near the top of p. 176 of [14]). Secondly, if, for
fixed heH,we take the p-th derivative at 0 of the function

t-+exp(\\th\\2/2)F(th)w

as t ranges over the real numbers, it is easily seen that we obtain (pl)^h(p}

(p. 21 of [11]). From this it follows almost immediately that, for fixed
h e H, the closed subspace of V spanned by the vectors F(th)w as ί ranges
over the real numbers, meets H(p} exactly in the one-dimensional subspace
spanned by h(p\

Now in [1,2,15] it is shown that duality for a free Bose field comes
down to the following situation. Let J and K be arbitrary (closed)
subspaces of G, and let J1 and KL denote their orthogonal complements
in G. Let M and N denote the real subspaces J + iK and Kλ -f i J1 of H.
Note that if m e M, n e N, then <m, π> is real, so that F(m) F(n) = F(n) F(m).
Let A = .R(J, K) = R(M) be the von Neumann algebra of operators on V
generated by {F(m):meM}, and let B = R(K^,J±) = R(N] be the
von Neumann algebra generated by {F(ri):n eN}. Then the relation
in the previous sentence shows that ab = ba for a e A, b e B. Duality then
becomes the assertion that A' — B (and so B' = A).

We would like to use the commutation theorem of the first section
to prove this assertion of duality. Since initially we know little about A'
and B', we will, in accordance with the remark made immediately after
the statement of the commutation theorem, first determine when Aw + Bw
is dense in V. It turns out that in the process we obtain a very simple proof
of part of the special case of the Reeh-Schlieder theorem [16] which
applies to a free Bose field (Lemma 7 of [2], Lemma 1 of [9], or p. 290
of [10]).

Proposition. IfJ + K is dense in G then Aw is dense in V (part of the
Reeh-Schlieder theorem). Conversely, if A w -f Bw is dense in V, then either
J + K or J1 -f K1 is dense in G.

Proof. Suppose that J + K is dense in G. Then M + ίM is clearly
dense in H. Let W be the closure of Aw in V. Then W will contain F(m)w
for any m e M, and so, as discussed above, will contain m(p\ It follows,
again as discussed above, that W contains any tensor of the form
m^x x mp for m^ e M. Since W is a complex subspace, it follows that
it contains any tensor of the form

(Wi -1- im\) x x (mp + im'p)

for nip m'j e M. But M + IM is dense in H, and from this it follows that W
contains H(p} for each p9 and so W = V.

Conversely, suppose that neither J + K nor J1 + KL is dense in G.
Let / and g be elements of G which are orthogonal to J + K and J1 H- Kλ
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respectively. Then it is easily seen that / x g will be orthogonal to
Aw -\- Bw, so that Aw + Bw is not dense in V. Q.E.D.

As is shown in [2, 15], the subspaces J and K which actually arise in
considering a free Bose field are always in general position, that is,
J, K, J1, X1 are pairwise disjoint. In particular J + K and J1 + Kλ will
both be dense in G, and so the above Proposition is applicable. This
shows that it is reasonable to try to apply the Commutation Theorem
of the first section, since the situation will be decided by determining
whether the Coupling Condition is true for all x e V. In more com-
plicated situations in which one might want to prove duality, if the Reeh-
Schlieder theorem holds, then this again means that it is reasonable to
try to apply the Commutation Theorem.

We now proceed to prove that duality holds for free Bose fields.

Main Theorem. Let the notation be as above. If J and K are real
subspaces of G such that J + K is dense in G, then the Coupling Condition
of the Commutation Theorem holds, and so A = B.

Proof. Let x e V, and suppose it satisfies Eqs. (1) and (2) of the Coupling
Condition. Since A and B are generated by the F(m) and F(n) respectively,
and since F(m)* = F( — m), it follows that we have

<x, F(m)w> = + <F( — m)w, x> for w e M ,

<x, F(n) w> = — <F( — n) w, x> for neN.

Replacing m and n by tm and tn for real ί, and taking the p-th derivative
at 0, we obtain, as discussed above,

<x,m ( p )>=+<(-l)pm ( p ),x> for m e M

<x? n(p)> = -<(-l)p n(p\*y for neN

for each non-negative integer p. Let M(p} and N(p} denote the real sub-
spaces of H(p) spanned by the m(p} and the n(p} respectively. Then it
follows from the above that we have

<:x,w>= +<w,(-l) px> for u

<x,ϋ>=-<t;,(-l) p x> for υeN(p}.

If we multiply the second equation by i and subtract, we obtain

<x, u + ivy = (u + iv, (- l)px>

for all u e M(p} and veN(p}. What we will show is that the u + iv are
dense in H(p\ so that it will follow that
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for all v e H(p}. But since H(p} is a complex space, this can only be true
if the component of x in H(p) is 0. Since this will be true for all p9 it will
follow that x = 0, as desired. Thus the proof of duality comes down to
proving:

Lemma. Let p be fixed. Then the real subspace M(p} -f ίN(p} is equal
to H(p}.

The proof of this lemma seems to be slightly delicate. Our tactics
will be as follows: Define a real inner product, < , >r on H by

and similarly for H(p\ so they become real Hubert spaces (but note that
as such H(p} is not the real p-th symmetric power of the real space H).
View multiplication by i as an orthogonal operator on each. Now for
m e M, n e N we know that < w, n) is real (it is because of this that A and B
commute). It follows that <m(p), n(p)> is real, and so

Thus M(p} and iN(p) are real orthogonal. Since M(p} and iN(p) are closed,
it follows that to show that M(p) + ίN(p} = H(p\ it suffices to show that it is
dense in H (p}. We wish to place ourselves in such a position that we can
use the following fact (in which the symbol © means orthogonal direct
sum).

Sublemma 1. Let X be a real Hίlbert space, let j be an orthogonal
operator on X, and let Y and Z be two subspaces of X. Suppose that

(1) y and Z are orthogonal,
(2) Y +jY is a closed subspace, U, of X,
(3) (Z+jZ)Θ(ynjT)=C7.

Then Y@Z=U.

Proof. Since y is orthogonal to Z, it follows that Y@Z is closed
(and contained in U by (3)). Note that Z+j'Z is in fact orthogonal to
yryT (so that the hypotheses also imply that Z-f-jZ will be closed).

Let u be an element of U which is orthogonal to Y + Z. According to
(3) u = z +jz' + v where z, z' e Z, v e Yr^jY. Since u is orthogonal to Y,
and so to v, as is z+jz', it follows that ι; = 0. According to (2) we have
u = y +jyf for y, y' e Y. Then

<w, uy = <w, z +jz'> = (ujz'y
= <y +jy'Jz'y = <yJzfy = <y, u - z> - o .

Thus u = 0, and so Y + Z = U. Q.E.D.
Unfortunately this sublemma is no longer true if we do not assume

that y +jT and Z +jZ are closed. This can be seen, as was pointed out
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to me by Robert T. Powers, by embroidering on the situation obtained
by letting X = L2(R\ j be Fourier transform, 7 = L2([l,oo]) and
Z = (L2([— oo,0])). It is because of this that we need to cut down M
and N so that we can work with subspaces whose sum is closed. This
is accomplished by:

Sublemma 2. Let J and K be subspaces of a real Hίlbert space G such
that J + K is dense in G. Then there is a sequence, {er}, of projections on G,
converging in the strong operator topology to the identity operator on G,
such that for every r

(1) erJQJ anderKQK,
(2) er J-f erK = erG (and so is closed),
(3) erJ

L + erK
λ is closed.

Proof. Let P = (JnK® J^nK® JnK1)1. Then

where J1? K1 are subspaces of P which are now in general position. Then
according to a theorem of Halmos (Theorem 3 of [12]) P can be written
as 6 θ Q, and there is a positive contraction, s, from β to itself with
kernel 0, such that

Λ = {(q,s(q)):qeQ}, K, = {(q, -s(q)):qεQ} .

Let {dr} be the resolution of the identity for s, and let er—i— d(1/r}, but
now only for r a positive integer. Extend er to P by letting it act on each
copy of Q, and then extend it to G by letting it be the identity on P1.
Then s will be invertible on erQ for each integer r, and from this it is
easily seen that erJ1 + erK1 = erP. From this it follows that erJ + erK
— erG. Similar simple arguments verify the remaining assertions. Q.E.D.

For notational simplicity we now fix an r, and let J and K denote erJ
and erK. What we now know about J and K is that J + K is a closed
subspace, say L, of G, and that (J1nL) + (K1nL) is a closed subspace
of L [because (erJ) LnL = er(J L) in the previous notation]. Furthermore
it is clear that

Now let M = J + iK9 N = (K^nL) + i^nL) (which are just er applied
to the previous M and N). Then from the above facts it follows that
M + iM = CL, (N + iN) is closed in H, and JV + iJV0(MniM) = CL,
where CL denotes the closed subspace L + iL in H. Also, as before,
<m, n) is real for m e M, n e N.

We now need to lift these facts to H(p\ For this we need :
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Sublemma 3. Let H be a complex Hίlbert space, and let M be a real
subspace of H such that M + iM is closed in H. Then M(p] + iM(p}

iM)(p\ In particular, M(p] + ί M ( p } is closed in H(p\

Proof. Let D = M+iM. It is a triviality that M(p) + iM(p} is dense
in D(p\ so the crux of the matter is to show that it is closed.

Since Mn / M is complex, it will have the same orthogonal compliment
in H whether H is viewed as complex or real. Let M' = (MniM}λnM,
so that M' g M, i M'n M - {0}, and M + i M' = D. On M + iM' define a
new norm by \\m + im'\\ = \\m\\ + ||m'||. Then M+iM' is clearly a Banach
space for this norm, and the obvious bijection of M + iM' onto D is
continuous. Since D is closed and so is a Banach space, the open mapping
theorem is applicable to this bijection, so that its inverse is continuous.
This means that the real linear projection, P, of D onto M along iM' is
continuous, as is Q = ID — P, the projection of D onto iM' along M (where
ID denotes the identity operator on D). We extend P and Q to H by letting
them be zero on D1.

Consider H as a real Hubert space, and denote the corresponding
real p-th symmetric power by H[p]. Since we have ID = P + β, we have
I[

D

P ] = ΣEh where

,
\k]

Now it is easily seen that if fcφj then EjEk = 0. Since /jf] is the identity
operator on Dίp] it follows that each Ek is a projection (not necessarily
self-adjoint). It follows that D[p] is the sum of the ranges of these projec-
tions.

Now the real linear mapping, T, from H[p] to H(p} which carries h[p]

to h(p) is continuous (but not norm-decreasing) and surjective. This
assertion is easily verified by choosing an orthonormal basis {b,-} for H
as a complex space, and using the fact that {bp ibj} is then an orthonormal
basis for/ίasa real space. Since D is a closed complex subspace of H, the
same arguments show that T carries D[p] onto D(p\ Thus G(p} will be the
sum of the images under T of the ranges of the Ek.

Now the elementary tensors of the form

ml x --- xmkx im\ x --- x im'p_k

where the m^ ε M, m} e M' Q M, clearly span a dense subspace of the
range of Ek. But T carries such an elementary tensor into either M(p}

or iM(p\ depending upon whether p — k is even or odd. It follows that T
carries the range of Ek into M(p} or i M(p\ and consequently M(p) + i M(p}

= G(p} as desired. Q.E.D.
We now return to the proof of the Lemma, but maintaining the

notation introduced right after Sublemma 2. It follows from Sublemma 3
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that M(p} + iM(p} = (<CL)(P\ and that

But

is dense in (CL)(P), because any element of (CL is of the form m + m' where
me MniM and nϊ e(Mr\iM)-Ln(CL, so (m + m')(/)) is a real linear com-
bination of tensors of the form m(k) x m'(p~k}. But if fc = 0 then such a
tensor is in ((Mn ί M)1 nCL)(p), whereas if k ̂  1 then rri can be written as
m' + iw" for m', m" e M, and in the above tensor the Γs can be taken in
and out of the m factors, so that the tensor is clearly in M(p)nz'M(p). It
follows that

Setting y = M(p} and Z = ίN(p\ we see that the conditions of Sublemma 1
are fulfilled, and so we can conclude that

Recalling that we had changed notation after Sublemma 2, we can
write this in terms of the original M and N as

(er M)(p) + i(erN)(p) = (erH}(p} .

Since er converges strongly to the identity operator on H, it follows that
M(P) + iK(P) is dense in H(P) as desired. Q.E.D.

Setting J = K = G in the above Theorem, we immediately obtain :

Corollary. The Fock representation is irreducible.

In the case in which neither J + K nor J1 -f Kλ is dense in G, the
Main Theorem of this section remains true, but our Commutation
Theorem does not seem directly applicable. Instead one must first make
a simple reduction, which is discussed in Section 5 of [1].
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