Expectations and Entropy Inequalities for Finite Quantum Systems

Göran Lindblad
Department of Theoretical Physics, Royal Institute of Technology, Stockholm, Sweden

Received March 19, 1974; in revised form July 16, 1974

Abstract

We prove that the relative entropy is decreasing under a trace-preserving expectation in $B\left(\mathscr{K}^{1}\right)$, and we show the connection between this theorem and the strong subadditivity of the entropy. It is also proved that a linear, positive, trace-preserving map Φ of $B(\mathscr{K})$ into itself such that $\|\Phi\| \leqq 1$ decreases the value of any convex trace function.

The main object of this note is to prove that the relative entropy is decreasing under a trace-preserving expectation from $B(\mathscr{K})$ to a von Neumann subalgebra (Theorem 1). We will show the connection between this theorem and the property of strong subadditivity of the entropy functional in quantum statistical mechanics [1]. The theorem is a generalization of a result by Umegaki [2] [for the case $B(\mathscr{H})$] and hence of an inequality in information theory [3]. The proof rests on a result by Lieb [4] on a generalized Wigner- Yanase- Dyson inequality.

The intuitive content of Theorem 1 is that an expectation always decreases the information content of the states, especially it makes it more difficult to distinguish two states from each other. Theorem 2 makes a similar but weaker statement for a larger class of maps: a positive, tracepreserving map of $B(\mathscr{K})$ into itself with norm at most equal to one decreases the value of any convex trace function on $B(\mathscr{K})$.

Let $A, B \in T_{+}(\mathscr{K})$ (the positive trace class operators in a separable Hilbert space \mathscr{K}). The entropy of A is defined by

$$
S(A)=\operatorname{Tr} \hat{S}(A), \quad \hat{S}(A)=-A \log A
$$

If $\{|i\rangle\}$ is a complete orthonormal set of eigenvectors of A or B then we can define the relative entropy ${ }^{2}$ through

$$
S(A \mid B)=\Sigma\langle i|(A \log A-A \log B+B-A)|i\rangle
$$

(see [5] for details). In [5] it was shown that if $S(A \mid B)<\infty$ we have

$$
S(A \mid B)=\operatorname{Tr} \hat{S}(A \mid B)
$$

[^0]where
\[

$$
\begin{align*}
\hat{S}(A \mid B) & =\sup _{\lambda} \hat{S}_{\lambda}(A \mid B) \in T_{+}(\mathscr{K}) \tag{1}\\
\hat{S}_{\lambda}(A \mid B) & =\lambda^{-1}[\hat{S}(\lambda A+(1-\lambda) B)-\lambda \hat{S}(A)-(1-\lambda) \hat{S}(B)], \lambda \in(0,1)
\end{align*}
$$
\]

$\hat{S}_{\lambda}(A \mid B)$ is monotonously increasing when $\lambda \rightarrow 0$.
The following properties are elementary: if $\lambda_{i}>0, \Sigma \lambda_{i}=1$, then $\Sigma \lambda_{i} S\left(A_{i}\right) \leqq S\left(\sum \lambda_{i} A_{i}\right)$ (concavity)
if

$$
\begin{array}{rlrl}
S\left(U A U^{+}\right) & =S(A) & & \text { for unitary } U, \\
S(A+B) & =S(A)+S(B) & & \text { if } A B=0, \\
S(A \mid B) \geqq 0, & =0 & & \text { iff } A=B, \\
S\left(U A U^{+} \mid U B U^{+}\right) & =S(A \mid B) & & \text { for unitary } U, \\
S\left(A_{1}+A_{2} \mid B_{1}+B_{2}\right) & =S\left(A_{1} \mid B_{1}\right)+S\left(A_{2} \mid B_{2}\right) \\
A_{1} A_{2}=B_{1} B_{2} & =A_{1} B_{2}=A_{2} B_{1}=0 .
\end{array}
$$

An expectation from a von Neumann algebra \mathscr{A} to a von Neumann subalgebra \mathscr{B} is a linear map Φ of \mathscr{A} onto \mathscr{B} satisfying

1. $\Phi \circ \Phi=\Phi$,
2. $\|\Phi X\| \leqq\|X\|$, all $X \in \mathscr{A}$.

It then follows that $[6,7]$
3. $\Phi I=I$,
4. $\Phi(X Y)=(\Phi X) Y$, all $Y \in \mathscr{B}$,
5. $\Phi X \geqq 0$ for $X \geqq 0$,
6. $\Phi(X)^{+} \Phi(X) \leqq \Phi\left(X^{+} X\right)$.

In the following we will only consider the case of an expectation from $B(\mathscr{H})$ to a von Neumann subalgebra \mathscr{A}. We call Φ tracepreserving if $\operatorname{Tr} \Phi X=\operatorname{Tr} X$ for all $X \in T(\mathscr{H})$. If Φ is tracepreserving then the adjoint of Φ on the space of normal states is just the restriction of Φ to the unit sphere of $T(\mathscr{H})$. Furthermore if $X \in T(\mathscr{H})$ then ΦX is the unique element of \mathscr{A} such that

$$
\begin{equation*}
\operatorname{Tr} \Phi(X) Y=\operatorname{Tr} X Y \tag{2}
\end{equation*}
$$

for all $Y \in \mathscr{A}$.
We now state the main theorem.
Theorem 1. Let Φ be a trace-preserving expectation from $B(\mathscr{K})$ to a von Neumann subalgebra \mathscr{A}. If $A, B \in T_{+}(\mathscr{K})$ then $S(\Phi A \mid \Phi B)$ $\leqq S(A \mid B)$.

The proof will be given via a number of lemmas where A, B, Φ, and \mathscr{A} will be as given in the statement of the theorem.

Lemma 1. Let $X \in T(\mathscr{K})$ and let $K(X)$ be the weakly closed convex hull of the set $\left\{U X U^{-1}, U\right.$ unitary $\left.\in \mathscr{A}^{\prime}\right\}$. Then

$$
K(X) \cap \mathscr{A}=\{\Phi X\}
$$

$\Phi Y=\Phi X$ for all $Y \in K(X)$.
Furthermore, let $E\left(\mathscr{A}^{\prime}\right)$ be the set of nonnegative real functions on the set $U\left(\mathscr{A}^{\prime}\right)$ of unitary operators in \mathscr{A}^{\prime} which are nonzero only on a finite number of points and which satisfy $\Sigma f(U)=1$. Put $f X=\Sigma f(U) U X U^{-1}$.

Then there is a sequence $\left\{f_{n}\right\} \subset E\left(\mathscr{A}^{\prime}\right)$ such that $f_{n} X \rightarrow \Phi X$ weakly.
Proof. From the normality of the trace follows that Φ is normal (compare [7] Proposition 6.1.1.), hence ultra-weakly continuous. Furthermore (2) is easily seen to imply that $\Phi\left(U X U^{-1}\right)=\Phi X$ for all unitary $U \in \mathscr{A}^{\prime}$, hence as Φ is ultra-weakly continuous $\Phi Y=\Phi X$ for all $Y \in K(X)$. The first statement of the lemma follows from [8] Theorem 2 and the last from [9] p. 168 (property P^{\prime}).

Lemma 2. $S(A \mid B)$ is jointly convex in A and B : if $\lambda_{i}>0, \Sigma \lambda_{i}=1$, $S\left(\Sigma \lambda_{i} A_{i} \mid \Sigma \lambda_{i} B_{i}\right) \leqq \Sigma \lambda_{i} S\left(A_{i} \mid B_{i}\right)$.

Proof. From a theorem by Lieb [4] we know that $\operatorname{Tr}\left(A^{1-p} B^{p}\right)$, $p \in(0,1)$, is jointly concave in A, B. Differentiation at $p=0$ together with the fact that the function is affine for $p=0$ gives the statement.

Introduce the auxilary quantity

$$
H(A)=S(A)+\operatorname{Tr} A \log \operatorname{Tr} A
$$

Lemma 3. Let P be a projection in \mathscr{K} and put $A_{P}=P A P$ etc. Then

$$
\begin{gathered}
H\left(A_{P}\right) \leqq H(A) . \\
S\left(A_{P} \mid B_{P}\right)+S\left(A_{I-P} \mid B_{I-P}\right) \leqq S(A \mid B) .
\end{gathered}
$$

Proof. The first inequality is a direct consequence of Theorem 2 in [10]. Note that $U=2 P-I$ is unitary and that $A^{\prime} \equiv A_{P}+A_{I-P}$ $=\frac{1}{2}\left(A+U^{+} A U\right)$.

Hence, by Lemma 2:

$$
S\left(A^{\prime} \mid B^{\prime}\right) \leqq \frac{1}{2} S(A \mid B)+\frac{1}{2} S\left(U^{+} A U \mid U^{+} B U\right)=S(A \mid B)
$$

The second statement follows from the fact that

$$
S\left(A^{\prime} \mid B^{\prime}\right)=S\left(A_{P} \mid B_{P}\right)+S\left(A_{I-P} \mid B_{I-P}\right)
$$

Lemma 4. Let $\left\{P_{n}\right\}$ be a sequence of projections such that $P_{m} \leqq P_{n}$ for $m \leqq n, \operatorname{dim} P_{n}$ is finite for all n, and $P_{n} \rightarrow I$ strongly when $n \rightarrow \infty$. Put $A_{n}=P_{n} A P_{n}$. Then the sequences $H\left(A_{n}\right)$ and $S\left(A_{n} \mid B_{n}\right)$ are monotonously increasing and

$$
S\left(A_{n}\right) \rightarrow S(A), \quad S\left(A_{n} \mid B_{n}\right) \rightarrow S(A \mid B)
$$

Proof. The monotonicity follows from Lemma 3 and the convergence of $S\left(A_{n}\right)$ from the appendix of [1]. In order to prove the last of the statements we first observe that the convergence $A_{n} \rightarrow A$ is uniform. In fact

$$
\begin{gathered}
\operatorname{Tr} P_{n} A^{2} \rightarrow \operatorname{Tr} A^{2} \\
0 \leqq \operatorname{Tr}\left[P_{n}\left(A^{2}-A_{n}^{2}\right)\right]=\operatorname{Tr}\left[P_{n} A\left(I-P_{n}\right) A\right] \leqq \operatorname{Tr}\left[A^{2}\left(I-P_{n}\right)\right] \rightarrow 0,
\end{gathered}
$$

hence

$$
\operatorname{Tr}\left(A-A_{n}\right)^{2}=\operatorname{Tr}\left(A^{2}-A_{n}^{2}\right)=\operatorname{Tr}\left[A^{2}\left(I-P_{n}\right)\right]+\operatorname{Tr}\left[P_{n}\left(A^{2}-A_{n}^{2}\right)\right] \rightarrow 0
$$

But $\left\|A-A_{n}\right\|^{2} \leqq \operatorname{Tr}\left(A-A_{n}\right)^{2}$, consequently $\left\|A_{n}-A\right\| \rightarrow 0$. As the function $x \log x$ is continuous on $(0, \infty)$ we obtain

$$
\left\|\hat{S}\left(A_{n}\right)-\hat{S}(A)\right\| \rightarrow 0
$$

Hence, for every finite-dimensional projection P

From

$$
\operatorname{Tr}\left[P \hat{S}_{\lambda}\left(A_{n} \mid B_{n}\right)\right] \rightarrow \operatorname{Tr}\left[P \hat{S}_{\lambda}(A \mid B)\right]
$$

$$
\begin{aligned}
S(A \mid B) & =\sup _{P} \operatorname{Tr}[P \hat{S}(A \mid B)] \\
\operatorname{Tr}[P \hat{S}(A \mid B)] & =\sup _{\lambda} \operatorname{Tr}\left[P \hat{S}_{\lambda}(A \mid B)\right]
\end{aligned}
$$

it follows that $S(A \mid B)$ is lower semicontinuous under the convergence $\left(A_{n}, B_{n}\right) \rightarrow(A, B)$:

$$
S(A \mid B) \leqq \lim \inf S\left(A_{n} \mid B_{n}\right)
$$

But from Lemma 3 we know that $S\left(A_{n} \mid B_{n}\right) \leqq S(A \mid B)$, hence $\lim S\left(A_{n} \mid B_{n}\right)$ $=S(A \mid B)$.

Proposition 1. Assume that $\left\{f_{k}\right\} \subset E\left(\mathscr{A}^{\prime}\right)$ satisfies $f_{k} A \rightarrow \Phi A, f_{k} B \rightarrow \Phi B$ weakly. Then

$$
\begin{gathered}
\lim S\left(f_{k} A\right)=S(\Phi A) \geqq S(A) \\
S(\Phi A \mid \Phi B) \leqq \liminf S\left(f_{k} A \mid f_{k} B\right) \leqq S(A \mid B) .
\end{gathered}
$$

Proof. First we note that $S(A) \leqq S(\Phi A)[11,12]$ and that $\Phi f_{k} A=\Phi A$, hence

$$
S\left(f_{k} A\right) \leqq S\left(\Phi f_{k} A\right)=S(\Phi A), \quad \text { all } k
$$

The same inequalities obviously hold for $H(A)$. There is a sequence of projections $\left\{P_{n}\right\}$ in \mathscr{A} satisfying the conditions of Lemma 4 (this follows from the fact that Φ is tracepreserving: use the spectral measure of ΦA where $A \in T_{+}(\mathscr{K})$ has the support projection $\left.I\right)$. From the definition of Φ follows that

$$
\Phi\left(P_{n} A P_{n}\right)=P_{n}(\Phi A) P_{n}
$$

As f_{k} is built up of elements of \mathscr{A}^{\prime} we see that

$$
f_{k} P_{n} A P_{n}=P_{n}\left(f_{k} A\right) P_{n}
$$

In the finitedimensional space $\mathscr{K}_{n}=P_{n} \mathscr{K}$ the convergence $f_{k} A_{n} \rightarrow \Phi A_{n}$ is uniform and obviously, when $k \rightarrow \infty$:

$$
\begin{aligned}
H\left(f_{k} A_{n}\right) & \rightarrow H\left(\Phi A_{n}\right) \\
S\left(f_{k} A_{n} \mid f_{k} B_{n}\right) & \rightarrow S\left(\Phi A_{n} \mid \Phi B_{n}\right) .
\end{aligned}
$$

From Lemma 4 we obtain that $H(A)=\sup H\left(A_{n}\right)$, hence $H(A)$ is lower semicontinuous i.e. $H(\Phi A) \leqq \lim \inf H\left(f_{k} A\right)$. But $H\left(f_{k} A\right) \leqq H(\Phi A)$ for all k, hence $H(\Phi A)=\lim H\left(f_{k} A\right)$ and $S(\Phi A)=\lim S\left(f_{k} A\right)$.

In the same way it follows that $S(A \mid B)=\sup S\left(A_{n} \mid B_{n}\right)$ and $S(\Phi A \mid \Phi B)$ $\leqq \liminf S\left(f_{k} A \mid f_{k} B\right)$. As $S(\Phi A \mid \Phi B) \leqq S\left(f_{k} A \mid f_{k} B\right)$ for all k we cannot conclude that $S(\Phi A \mid \Phi B)=\lim S\left(f_{k} A \mid f_{k} B\right)$. From Lemma 2 and the unitary invariance we have
hence

$$
S\left(f_{k} A \mid f_{k} B\right) \leqq \Sigma f_{k}(U) S\left(U A U^{+} \mid U B U^{+}\right)=S(A \mid B)
$$

$$
S(\Phi A \mid \Phi B) \leqq S(A \mid B)
$$

Remark. The only difficulty remaining in proving Theorem 1 lies in the fact that we do not know if there is a sequence $\left\{f_{k}\right\} \subset E\left(\mathscr{A}^{\prime}\right)$ which implements Φ on both A and B.

Proof of Theorem 1. Choose a sequence of projections $P_{n} \in \mathscr{A}$ satisfying the conditions of Lemma 4, and let $f_{k} \in E\left(\mathscr{A}^{\prime}\right)$ be such that $f_{k} A \rightarrow \Phi A$ weakly. Hence

$$
f_{k} A_{n} \rightarrow \Phi A_{n}
$$

in norm. For a given k there exists $g_{j} \in E\left(\mathscr{A}^{\prime}\right)$ such that (remember that $\left.\Phi f_{k} B=\Phi B\right) g_{j} f_{k} B \rightarrow \Phi B$ weakly when $j \rightarrow \infty$, hence

$$
g_{j} f_{k} B_{n} \rightarrow \Phi B_{n}
$$

in norm. If $\left\|\left(f_{k}-\Phi\right) A_{n}\right\| \leqq \varepsilon(k)$, choose $g_{j, k}$ such that

Obviously

$$
\left\|\left(g_{j, k} f_{k}-\Phi\right) B_{n}\right\| \leqq \varepsilon(k)
$$

$$
\left\|\left(g_{j, k} f_{k}-\Phi\right) A_{n}\right\|=\left\|g_{j, k}\left(f_{k}-\Phi\right) A_{n}\right\| \leqq\left\|\left(f_{k}-\Phi\right) A_{n}\right\| \leqq \varepsilon(k)
$$

Hence $h_{k}=g_{j, k} \cdot f_{k}$ satisfies

$$
h_{k} A_{n} \rightarrow \Phi A_{n}, \quad h_{k} B_{n} \rightarrow \Phi B_{n}
$$

in norm. As in the proof of Proposition 1 it follows that
and from Lemma 4

$$
S\left(\Phi A_{n} \mid \Phi B_{n}\right) \leqq S\left(A_{n} \mid B_{n}\right)
$$

$$
S(\Phi A \mid \Phi B) \leqq S(A \mid B)
$$

Corollary. Let $\left\{P_{k}\right\}$ be a set of mutually orthogonal projections in \mathscr{K} satisfying $\Sigma P_{k}=I$. The map $\Phi: A \rightarrow \Sigma P_{k} A P_{k}$ is a trace-preserving expectation which describes the interaction of a finite quantum system with a classical apparatus measuring an observable with eigenspaces P_{k}. Consequently

$$
S(\Phi A \mid \Phi B)=\Sigma S\left(P_{k} A P_{k} \mid P_{k} B P_{k}\right) \leqq S(A \mid B)
$$

This generalizes an inequality proved in [5].
We will now show the connection between Theorem 1 and the property of strong subadditivity.

Let ϱ, ϱ be two states on a quasilocal algebra over some configuration space (e.g. Z^{v}) such that the local algebra of a bounded region is of the type $B(\mathscr{K}), \mathscr{K}$ separable. We denote the Hilbert space corresponding to the bounded region Λ by \mathscr{K}_{Λ}. The state ϱ restricted to $B\left(\mathscr{K}_{A}\right)$ is then represented by a density operator ϱ_{Λ} in \mathscr{K}_{Λ} [13].

Proposition 2. For $\Lambda \subset \Lambda^{\prime}$ we have

$$
S\left(\varrho_{A} \mid \varrho_{A}\right) \leqq S\left(\varrho_{A^{\prime}} \mid \hat{\varrho}_{A^{\prime}}\right)
$$

Proof. Let $\mathscr{K}_{A^{\prime}} \equiv \mathscr{K}_{12}=\mathscr{K}_{1} \otimes \mathscr{K}_{2}$ where $\mathscr{K}_{1}=\mathscr{K}_{\Lambda}, \mathscr{K}_{2}=\mathscr{K}_{\Lambda^{\prime}-\Lambda}$. Then $\varrho_{\Lambda} \equiv \varrho_{1}=\operatorname{Tr}_{2} \varrho_{12}$ where $\varrho_{12} \equiv \varrho_{\Lambda^{\prime}}$ and Tr_{2} denotes the partial trace over \mathscr{K}_{2}. Put

$$
\mathscr{K}_{12}^{n}=\mathscr{K}_{1} \otimes P_{n} \mathscr{K}_{2}
$$

where $\left\{P_{n}\right\}$ is a sequence of projections in \mathscr{K}_{2} satisfying the conditions of Lemma 4. Then we have the uniform convergence

$$
\begin{aligned}
A_{n} & =I \otimes P_{n} \varrho_{12} I \otimes P_{n} \rightarrow \varrho_{12} \\
B_{n} & =I \otimes P_{n} \varrho_{12} I \otimes P_{n} \rightarrow \varrho_{12} \\
A_{1 n} & =\operatorname{Tr}_{2} A_{n} \rightarrow \varrho_{1} \quad \text { etc. }
\end{aligned}
$$

Define an expectation

$$
\Phi: B\left(\mathscr{K}_{12}^{n}\right) \rightarrow B\left(\mathscr{K}_{1}\right) \otimes\left\{\lambda I_{2}^{n}\right\}
$$

($I_{2}^{n}=$ identity in \mathscr{K}_{2}^{n}) through

$$
\Phi A=\operatorname{Tr}_{2} A \otimes C_{2 n}
$$

where $C_{2 n}=\left(\operatorname{dim} \mathscr{K}_{2}^{n}\right)^{-1} I_{2}^{n}$. Then

$$
S\left(\Phi A_{n} \mid \Phi B_{n}\right)=S\left(A_{1 n} \otimes C_{2 n} \mid B_{1 n} \otimes C_{2 n}\right)=S\left(A_{1 n} \mid B_{1 n}\right) \leqq S\left(A_{n} \mid B_{n}\right)
$$

From Lemma 4 it follows that

$$
S\left(A_{n} \mid B_{n}\right) \rightarrow S\left(\varrho_{12} \mid \varrho_{12}\right)
$$

Let $\left\{Q_{m}\right\}$ be a set of projections in \mathscr{K}_{1} satisfying the conditions of Lemma 4. Then

$$
S\left(A_{1} \mid B_{1}\right)=\sup S\left(Q_{m} A_{1} Q_{m} \mid Q_{m} B_{1} Q_{m}\right)
$$

and a reasoning similar to that of Proposition 1 gives that

$$
S\left(\varrho_{1} \mid \hat{\varrho}_{1}\right) \leqq \lim \inf S\left(A_{1 n} \mid B_{1 n}\right)
$$

hence that

$$
S\left(\varrho_{1} \mid \hat{\varrho}_{1}\right) \leqq S\left(\varrho_{12} \mid \hat{\varrho}_{12}\right) .
$$

Remark. The inequality proved above is nothing but a slight generalization of the property of strong subadditivity of the quantummechanical entropy [1]. This is easily seen by taking three disjoint regions $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$ and putting

$$
\begin{gathered}
\Lambda^{\prime}=\Lambda_{1} \cup \Lambda_{2} \cup \Lambda_{3}, \quad \Lambda=\Lambda_{1} \cup \Lambda_{2} \\
\varrho_{\Lambda^{\prime}}=\varrho_{123}, \quad \varrho_{\Lambda^{\prime}}=\varrho_{1} \otimes \varrho_{23}, \quad \varrho_{\Lambda}=\varrho_{12}, \quad \varrho_{\Lambda}=\varrho_{1} \otimes \varrho_{2} .
\end{gathered}
$$

Then, if the terms are finite,

$$
\begin{aligned}
S\left(\varrho_{123} \mid \varrho_{1} \otimes \varrho_{23}\right) & =S\left(\varrho_{1}\right)+S\left(\varrho_{23}\right)-S\left(\varrho_{123}\right) \\
S\left(\varrho_{12} \mid \varrho_{1} \otimes \varrho_{2}\right) & =S\left(\varrho_{1}\right)+S\left(\varrho_{2}\right)-S\left(\varrho_{12}\right) .
\end{aligned}
$$

Hence, from Proposition 2, we get the strong subadditivity:

$$
S\left(\varrho_{123}\right)+S\left(\varrho_{2}\right)-S\left(\varrho_{12}\right)-S\left(\varrho_{23}\right) \leqq 0 .
$$

Conversely the joint convexity of $S(A \mid B)$ follows from the strong subadditivity. In fact the strong subadditivity implies equation (4) of [14] which by our formula (1) implies the convexity of $S(A \mid B)$.

There are obviously many positive trace-preserving mappings of $B(\mathscr{K})$ into itself which decrease the relative entropy but which are not expectations (take e.g. any convex combination of unitary transformations). Therefore it is interesting to consider more general classes of transformations which have some suitable averaging property.

Let $f(x)$ be a bounded real-valued function defined in an interval I of the real line, and let A be a selfadjoint operator in \mathscr{K} with spectrum in I. Then we define $f(A)$ as usual through the spectral resolution of A. It is well known that if $f(x)$ is operator convex [15] such that $f(0)=0$ and if Φ is a completely positive map such that $\|\Phi\| \leqq 1$, then

$$
f(\Phi A) \leqq \Phi f(A)
$$

(Jensen's inequality) $[16,17]$. This class of maps includes the expectations [18]. If Φ is trace-preserving then

$$
\operatorname{Tr} f(\Phi A) \leqq \operatorname{Tr} f(A)
$$

which implies e.g. the increase of the entropy.

Now let $f(x)$ be a convex but not necessarily operator convex function on $(0, \infty)$ and let $f(0)=0$. If $A \in T_{+}(\mathscr{K})$ we introduce

$$
F(A)=\operatorname{Tr} f(A)=\Sigma_{i} f\left(a_{i}\right)
$$

where $\left\{a_{i}\right\}$ are the eigenvalues of A counted in decreasing order of magnitude including degeneracies. We get a more general class of averaging maps by finding all Φ such that $F(\Phi A) \leqq F(A)$. Define

$$
\sigma_{k}(A)=\sum_{1}^{k} a_{i}
$$

From [19] Lemma 4.1 follows that

$$
\sigma_{k}(A)=\sup \{\operatorname{Tr} P A, \operatorname{dim} P=k\}
$$

Hence if $A \leqq B$ then $\sigma_{k}(A) \leqq \sigma_{k}(B)$.
Lemma 5. $F(\Phi A) \leqq F(A)$ for all $A \in T_{+}(\mathscr{K})$ and all convex $f(x)$ iff $\sigma_{k}(\Phi A) \leqq \sigma_{k}(A)$ for all k and $\sigma_{\infty}(\Phi A)=\sigma_{\infty}(A)$.

Proof. The statement follows from [19] Lemma 3.4 and [20] Theorem 108.

The following theorem gives a characterization of the positive maps satisfying the conditions of Lemma 5.

Theorem 2. Let $\Phi: B(\mathscr{K}) \rightarrow B(\mathscr{K})$ be a positive map. Then

$$
\begin{aligned}
& \|\Phi\| \leqq 1, \quad \operatorname{Tr} \Phi A=\operatorname{Tr} A, \quad \text { all } A \in T_{+}(\mathscr{K}) \\
& \Leftrightarrow f(\Phi A) \leqq f(A) \quad \text { all convex } f, \text { all } A \in T_{+}(\mathscr{K}) .
\end{aligned}
$$

Proof. \Rightarrow Note first that $\sigma_{\infty}(A)=\operatorname{Tr} A$, hence $\sigma_{\infty}(\Phi A)=\sigma_{\infty}(A)$. Let P_{k} be the projection on the subspace of \mathscr{K} spanned by the eigenvectors corresponding to the k largest eigenvalues of A. Put

$$
A_{k}=P_{k}\left(A-a_{k} I\right)+a_{k} I=\hat{A}_{k}+a_{k} I
$$

Obviously $A \leqq A_{k}$ and $\sigma_{k}\left(A_{k}\right)=\sigma_{k}(A)$. Furthermore $\hat{A}_{k} \geqq 0$ and $\operatorname{Tr} \hat{A_{k}}$ $=\sigma_{k}\left(\hat{A}_{k}\right)=\sigma_{k}(\bar{A})-k a_{k}$

$$
\Phi A_{k}=\Phi \hat{A}_{k}+a_{k} \Phi I
$$

where $\Phi \hat{A}_{k} \geqq 0$ and $\Phi I \leqq I$.

$$
\operatorname{Tr} \Phi \hat{A}_{k}=\sigma_{\infty}\left(\Phi \hat{A}_{k}\right) \geqq \sigma_{k}\left(\Phi \hat{A}_{k}\right)=\sigma_{k}\left(\Phi A_{k}\right)-a_{k} \sigma_{k}(\Phi I) \geqq \sigma_{k}\left(\Phi A_{k}\right)-k a_{k}
$$

But $\operatorname{Tr} \Phi \hat{A}_{k}=\operatorname{Tr} \hat{A}_{k}$, hence

$$
\sigma_{k}\left(\Phi A_{k}\right)-k a_{k} \leqq \sigma_{k}(A)-k a_{k}
$$

From $\Phi A \leqq \Phi A_{k}$ follows that

$$
\sigma_{k}(\Phi A) \leqq \sigma_{k}\left(\Phi A_{k}\right) \leqq \sigma_{k}(A)
$$

and the statement follows from Lemma 5.
\Leftarrow : The statement is obvious from the fact that $\sigma_{1}(A)=\|A\|, \sigma_{\infty}(A)$ $=\operatorname{Tr} A$ and Lemma 5 .

Remark. This class of maps correspond precisely to the stochastic matrices for probability distributions on a discrete set. If we put $\Phi I=I$ we obtain the analogy of doubly stochastic matrices.

References

1. Lieb, E.H., Ruskai, M. B.: J. Math. Phys. 14, 1938-1941 (1973)
2. Umegaki, H.: Kodai Math. Sem. Rep. 14, 59-85 (1962)
3. Kullback, S.: Information theory and statistics. New York: Wiley 1959
4. Lieb, E. H.: Adv. Math. 11, 267-288 (1973)
5. Lindblad, G.: Commun. math. Phys. 33, 305-322 (1973)
6. Tomiyama, J. : Proc. Japan Acad. 33, 608-612 (1957)
7. Arveson, W. B.: Am. J. Math. 89, 578-672 (1967)
8. Kovács, I., Szücs, J.: Acta Math. Sci., Szeged, 27, 233-246 (1966)
9. Schwartz, J. T.: W^{*}-algebras. New York: Gordon and Breach 1967
10. Lindblad, G.: Commun. math. Phys. 28, 245-249 (1972)
11. Nakamura, M., Umegaki, H.: Proc. Japan Acad. 37, 149-154 (1961)
12. Segal, I.E.: J. Math. Mech. 9, 623-629 (1960)
13. Ruelle, D.: Statistical mechanics. New York: Benjamin 1969
14. Baumann, F.: Helv. Phys. Acta 44, 95-100 (1971)
15. Bendat, J., Sherman, S.: Trans. Am. Math. Soc. 79, 58-71 (1955)
16. Stinespring, W.F.: Proc. Am. Math. Soc. 6, 211-216 (1955)
17. Davis, C.: Proc. Am. Math. Soc. 8, 41 - 44 (1957)
18. Nakamura, M., Takesaki, M., Umegaki, H. : Kodai Math. Sem. Rep. 12, 82-90 (1960)
19. Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear non-selfadjoint operators. Providence: Am. Math. Soc. 1969
20. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge: University Press 1934

Communicated by H. Araki G. Lindblad
Department of Theoretical Physics
The Royal Institute of Technology
Lindstedtsvägen 15
S-10044 Stockholm 70, Sweden

[^0]: ${ }^{1}$ For \mathscr{K} read \mathscr{H} throughout.
 ${ }^{2}$ In [5] this was called the conditional entropy.

