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Abstract. We prove that the relative entropy is decreasing under a trace-preserving
expectation in B(3Cl\ and we show the connection between this theorem and the strong
subadditivity of the entropy. It is also proved that a linear, positive, trace-preserving
map Φ of jB(jΓ) into itself such that ||Φ|| ^ 1 decreases the value of any convex trace function.

The main object of this note is to prove that the relative entropy
is decreasing under a trace-preserving expectation from B(j^) to a
von Neumann subalgebra (Theorem 1). We will show the connection
between this theorem and the property of strong subadditivity of the
entropy functional in quantum statistical mechanics [1]. The theorem
is a generalization of a result by Umegaki [2] [for the case B(3ί?)~]
and hence of an inequality in information theory [3]. The proof rests on
a result by Lieb [4] on a generalized Wigner- Yanase- Dyson inequality.

The intuitive content of Theorem 1 is that an expectation always
decreases the information content of the states, especially it makes it more
difficult to distinguish two states from each other. Theorem 2 makes a
similar but weaker statement for a larger class of maps: a positive,
tracepreserving map of jB(jf) into itself with norm at most equal to one
decreases the value of any convex trace function on B(3f).

Let A,BεT+ (Jf) (the positive trace class operators in a separable
Hubert space Jf). The entropy of A is defined by

S(A) = TrS(A), S(A) = -AlogA.

If {|/>} is a complete orthonormal set of eigenvectors of A or B then
we can define the relative entropy2 through

S(A \B) = Σ <z| (AlogA-AlogB + B- A) |i>

(see [5] for details). In [5] it was shown that if S(A\B)<oo we have

S(A\B) = ΎΐS(A\B)

1 For Jf read 3? throughout.
2 In [5] this was called the conditional entropy.
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where

) = supλSλ(A\B)eT+(Jίr) (1)

) = λ-lίS(λA + (i-λ)B)-λS(A)-(l-λ)S(B)],λe(Q,i)

Sλ(A\B) is monotonously increasing when /l-»0.
The following properties are elementary: if λt>0, Σ λ f = l , then

Σ A£S(X£) ̂  S(Σ Af A f) (concavity)

S(UAU+) = S(A) for unitary 17,

S(A + B) = S(A) + S(B) if AB = 0 ,

S(UAU+\UBU+) = S(A\B) for unitary 17,

if
^1^2 = β1B2-^1β2-^2B1=0.

An expectation from a von Neumann algebra j/ to a von Neumann
subalgebra & is a linear map Φ of <s/ onto ^ satisfying

1. Φ° Φ = Φ,
2. | |ΦX||^| |X| |,all*ej*.
It then follows that [6,7]
3. ΦI = I,
4. Φ(XY) = (ΦX) 7, all YE &,
5.
6.
In the following we will only consider the case of an expectation

from B(^f) to a von Neumann subalgebra j/. We call Φ tracepreserυing
if Tr ΦX = ΎrX for all X e T(jf). If Φ is tracepreserving then the adjoint
of Φ on the space of normal states is just the restriction of Φ to the unit
sphere of T(2tf ). Furthermore if X e T(^f) then ΦX is the unique element
of si such that

(2)

for all
We now state the main theorem.

Theorem 1. Let Φ be a trace-preserving expectation from
to a von Neumann subalgebra s/. If A,BeT+(3ί) then S(ΦA\ΦB)

The proof will be given via a number of lemmas where A, B, Φ, and
will be as given in the statement of the theorem.
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Lemma 1. Let X e T(jf ) and let K(X) be the weakly closed convex
hull of the set {UXU~\U unitary e jtf'}. Then

ΦY = ΦXforall YeK(X).
Furthermore, let £(<$/') be the set of nonnegative real functions on the

set U(<$/f) of unitary operators in jtf' which are nonzero only on a finite
number of points and which satisfy Σ /([/)= 1. PutfX = Σf(U) UXU'1.

Then there is a sequence {fn}CE(jtf') such that fnX-*ΦX weakly.

Proof. From the normality of the trace follows that Φ is normal
(compare [7] Proposition 6.1.1.), hence ultra-weakly continuous.
Furthermore (2) is easily seen to imply that Φ(UXU~l) = ΦX for all
unitary U e j/'5 hence as Φ is ultra- weakly continuous Φ Y = ΦX for all
Y E K(X). The first statement of the lemma follows from [8] Theorem 2
and the last from [9] p. 168 (property P').

Lemma 2. S(A\B) is jointly convex in A and B: if λt>^, Σl = 1,
S(ΣλiAi\ΣλίBi)^ΣλiS(Ai\Bi).

Proof. From a theorem by Lieb [4] we know that Ύr(A1~pBp),
pe(0, 1), is jointly concave in A, B. Differentiation at p = 0 together
with the fact that the function is affine for p = Q gives the statement.

Introduce the auxilary quantity

H(A) = S(A) + Tr^ log Tr,4 .

Lemma 3. Let P be a projection in Jf and put AP = PAP etc. Then

Proof. The first inequality is a direct consequence of Theorem 2
in [10]. Note that U = 2P-I is unitary and that Af=

Hence, by Lemma 2 :

S(A'\B')^S(

The second statement follows from the fact that

Lemma 4. Let {Pn} be a sequence of projections such that Pm ̂  Pn for
mrgf t , dimPn is finite for all n, and Pn->/ strongly when n ̂ co. Put
An = PnAPn. Then the sequences H(An) and S(An\Bn) are monotonously
increasing and
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Proof. The monotonicity follows from Lemma 3 and the conver-
gence of S(An) from the appendix of [1]. In order to prove the last of the
statements we first observe that the convergence An-*A is uniform.
In fact

0 ̂  Tr \_Pn(A2 - A2

n)l = Tr \_PnA(I - Pn) A\ ^ Tr IA2(I - PJ] -> 0 ,

hence

Ίr(A - An)
2 = Ίr(A2 - A2) = Tr \_A2(I - Pn)] + Tr lPn(A2 - ̂ 2)]^

But || A -An 1 2<.Ίτ(A-An)
2, consequently || ̂ 4n - ^4 1|->0. As the function

xlogx is continuous on (0, oo) we obtain

\\S(An)-S(A)\\-+0.

Hence, for every finite-dimensional projection P

Tr \PSλ(An I Bπ)] - Tr [_PSλ(A \ B}\ .
From

S(A I B) = supp Tr [PS(A \ B)~]

Tr IPS(A \ B)~] = sup.Tr lPSλ(A \ B)~]

it follows that S(A\B) is lower semicontinuous under the convergence
(An,BJ-+(A,B):

S(A\B)^limMS(An\Bn).

But from Lemma 3 we know that S(An \ Bn) ̂  S(A \ B), hence limS^ | Bn)
= S(A\B).

Proposition 1. Assume that {fk} C £(<$/') satisfies fkA-+ΦA,fkB -+ΦB
weakly. Then

lim S(fkA) = S(ΦA) ^ S(A)

S(ΦA I ΦB) ^ lim inf S(fkA \ fkB) ^ S(A \ B) .

Proof. First we note that S(A) ^ S(ΦA) [1 1, 12] and that ΦfkA = ΦA,
hence

S(fkA) ^ S(ΦfkA) = S(ΦA) , all k ,

The same inequalities obviously hold for H(A). There is a sequence
of projections {Pn} in <$$ satisfying the conditions of Lemma 4 (this
follows from the fact that Φ is tracepreserving: use the spectral measure
of ΦA where A e T+ (Jjf) has the support projection /). From the definition
of Φ follows that
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As fk is built up of elements of si1 we see that

In the finitedimensional space Jίn = Pn$f the convergence fkAn-*ΦAn

is uniform and obviously, when k — > oo :

S(fkAn\fkBn)-+S(ΦAn\ΦBn).

From Lemma 4 we obtain that H(A) = supH(An), hence H(A) is lower
semicontinuous i.e. H(ΦA) ^ lim inf H(fkA). But H(fkA)<ZH(ΦA) for
all /c, hence H(ΦA) = lim £Γ (Λ A) and S(ΦA) = lim S(/k4).

In the same way it follows that S(A \ B) = sup S(An \ Bn) and S(ΦA \ ΦB)
g>]immfS(fkA\fkB). As S ( Φ A \ Φ B ) £ S ( f k A \ f k B ) for all k we cannot
conclude that S(ΦA\ΦB) = l i m S ( f k A \ f k B ) . From Lemma 2 and the
unitary invariance we have

S(fkA\fkB)£Σfk(U)S(UAU+\UBU+) = S(A\B)
hence

S(ΦA\ΦB)^S(A\B).

Remark. The only difficulty remaining in proving Theorem 1 lies
in the fact that we do not know if there is a sequence {fk} C E(stf') which
implements Φ on both A and B.

Proof of Theorem 1. Choose a sequence of projections Pne<$/
satisfying the conditions of Lemma 4, and let fk e £(X') be such that
fkA-^ΦA weakly. Hence

fkAn-*ΦAn

in norm. For a given fc there exists gj e £(«$/') such that (remember that
ΦfkB = ΦB)gjfkB-+ΦB weakly when j-^oo, hence

gjfkBn-*ΦBn

in norm. If \(fk — Φ) An\\ <j ε(k), choose ^>fc such that

_ . , ||(0MΛ
Obviously

||(0M/* - φ) ̂ »1 = \\0
Hence ftk = 0, ι([ -/k satisfies

Mn-ΦΛ, hkBn-+ΦBn

in norm. As in the proof of Proposition 1 it follows that

S(ΦAn\ΦBn)^S(An\Bn)
and from Lemma 4
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Corollary. Let {Pk} be a set of mutually orthogonal projections in tf
satisfying ΣPk = L The map Φ:A-*ΣPkAPk is a trace-preserving ex-
pectation which describes the interaction of a finite quantum system
with a classical apparatus measuring an observable with eigenspaces Pk.
Consequently

This generalizes an inequality proved in [5].
We will now show the connection between Theorem 1 and the

property of strong subadditivity.
Let ρ, Q be two states on a quasilocal algebra over some configuration

space (e.g. Zv) such that the local algebra of a bounded region is of the
type β(jΓ), Jf separable. We denote the Hubert space corresponding
to the bounded region A by tfA. The state ρ restricted to B(JίfA) is then
represented by a density operator ρΛ in j f Λ [13].

Proposition 2. For AC A' we have

S(ρΛ\ρΛ)^S(ρΛ,\ρΛ,).

Proof. Let tfA, Ξ j^ 2 = j^ (x) Jf2 where j^ - jf^, Jf2 - 3SCA. _ Λ. Then
QΛ = QI = Tr2ρ12 where Q±2 = QA'

 and Tr2 denotes the partial trace
over JΓ2. Put

Cn, 1 2 ~ ̂  1 09 -*« 3% 2

where {Pn} is a sequence of projections in JΓ2 satisfying the conditions
of Lemma 4. Then we have the uniform convergence

^in = Tr2Xπ-^ρ1 etc.

Define an expectation

(I2 = identity in Jf2") through

ΦA =

where C2n = (dim jfTζΓ 1 1". Then

From Lemma 4 it follows that

S(An\BJ->S(ρ12\ρ12).
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Let {gm} be a set of projections in jfi satisfying the conditions of
Lemma 4. Then

and a reasoning similar to that of Proposition 1 gives that

S(ρl\β1)^limiΏfS(Aln\B1^
hence that

S(Qι\Qι)^S(ρ12\ρ12).

Remark. The inequality proved above is nothing but a slight
generalization of the property of strong subadditivity of the quantum-
mechanical entropy [1]. This is easily seen by taking three disjoint
regions Λίy A2, Λ3 and putting

Λ' —

Then, if the terms are finite,

) = Sfei) + S(ρ23) - S(ρ123)

Hence, from Proposition 2, we get the strong subadditivity :

Conversely the joint convexity of S(A\B) follows from the strong
subadditivity. In fact the strong subadditivity implies equation (4)
of [14] which by our formula (1) implies the convexity of 5(^4 1 B).

There are obviously many positive trace-preserving mappings of
β(jΓ) into itself which decrease the relative entropy but which are not
expectations (take e.g. any convex combination of unitary trans-
formations). Therefore it is interesting to consider more general classes
of transformations which have some suitable averaging property.

Let /(x) be a bounded real-valued function defined in an interval /
of the real line, and let A be a selfadjoint operator in JΓ with spectrum
in /. Then we define f ( A ) as usual through the spectral resolution of A.
It is well known that if /(x) is operator convex [15] such that /(O) = 0 and
if Φ is a completely positive map such that ||Φ|| ̂  1, then

(Jensen's inequality) [16, 17]. This class of maps includes the expectations
[18]. If Φ is trace-preserving then

which implies e.g. the increase of the entropy.
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Now let f(x) be a convex but not necessarily operator convex
function on (0, oo) and let /(O) = 0. If A e T+ (jf ) we introduce

where {αj are the eigenvalues of A counted in decreasing order of
magnitude including degeneracies. We get a more general class of
averaging maps by finding all Φ such that F(ΦA) ^ F(A). Define

i
From [19] Lemma 4.1 follows that

σk(A) = sup {Tr PA, dim P = fe} .

Hence if A ̂  5 then σk(,4) <; σk(B).

Lemma 5. F(Φ4)^F(/1) /or α// AεT+(tf) and all convex f(x)
iff σk(ΦA)^σk(A) for all k and σ m(Φ A) = σ M(A).

Proof. The statement follows from [19] Lemma 3.4 and [20]
Theorem 108.

The following theorem gives a characterization of the positive maps
satisfying the conditions of Lemma 5.

Theorem 2. Let Φ:B(jf)-+B(tf) be a positive map. Then

all .4 e T+ ( Jf ) .

of(ΦA) ^ f ( A ) all convex /, all AeT+ (

Proof. ->Note first that σao(A) = ΊτA9 hence σaΰ(ΦA) = σao(A). Let
Pk be the projection on the subspace of 3$f spanned by the eigenvectors
corresponding to the k largest eigenvalues of A. Put

Ak = Pk(A - akl) + akl = Ak + akl .

Obviously A^Ak and σk(Ak) = σk(A). Furthermore Ak^Q and
= σk(Ak) = σk(A) - kak

where ΦAk ^ 0 and Φ I ^ /.

Tr ΦAk = σ^(ΦAk] ^ σk(ΦAk) = σk(ΦAk) - akσk(ΦI) £ σk(ΦAk) - kak .

But Tr ΦAk = ΎrAk, hence

σk(ΦAk)-kak^σk(A)-kak.
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From ΦA ^ ΦAk follows that

and the statement follows from Lemma 5.
<=: The statement is obvious from the fact that σ 1 ( A ) = \\A\\, σ^A)

= Tr A and Lemma 5.
Remark. This class of maps correspond precisely to the stochastic

matrices for probability distributions on a discrete set. If we put ΦI = I
we obtain the analogy of doubly stochastic matrices.
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