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Abstract. The momentum-space subtraction procedure for defining renormalized
Feynman integrals is modified to allow for subtraction operators more general than the
usual Taylor operators. The added generality permits one to assign subtraction degree
less than four to some terms of the unperturbed Lagrangian.

1. Introduction

In the momentum-space version [1,2] of BPH renormalized perturba-
tion theory [3,4], there now exist standard techniques [5, 6] for deriving
field equations and Ward-Takahashi identities for composite fields (such
as currents). The methods of calculation are straightforward once one
has written down a Lagrangian density =^EFF as a linear combination
of field products of canonical dimension less than or equal to four (more
generally, the space-time dimension), and assigned to each such product
M a subtraction degree δ(M\ with dimM^δ(M)^4. There is one
rather awkward feature of this procedure, namely the constraint, inherent
in the subtraction scheme of Ref. [1], that all terms of the unperturbed
part =£?0 of =^EFF must be assigned degree four. There are numerous
applications, most notably where masses are associated with spontaneous
symmetry breaking, where it is desirable to assign some terms of J5f0

a degree less than four. In the present note we modify the subtraction
procedure and convergence proof of Ref. [1] so as to permit "soft"
(degree less than four) terms in J5?0.
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2. The Subtracted Integrand

In renormalized perturbation theory, Green's functions are expressed,
via the Gell-Mann-Low formula, as sums of contributions from various
Feynman diagrams. Each diagram corresponds, in momentum space,
to a product of delta functions of energy-momentum conservation, free
two-point functions and integrals of the type

ί UG(P> k) — subtractions) dk (1)

where G is a proper (amputated, one-particle irreducible) subdiagram
of Γ, with external momenta p = {pl5 . . . pn} and internal "loop" momenta
fc = {fe1? . . . km}. Typically IG has the form

α bcσ

where Pa is a polynomial in the momenta laτ flowing into the vertex Va,
and Δαbσ is a function of the momentum labσ flowing through the line
Labσ connecting vertices Va and Vb. It is of the form

PabσVa bσ

where Pabσ is a polynomial in I%bσ9 μ = 0,1, 2, 3, and the mass parameters
m 1,m 2,.. ., of the theory and μlbσ is a non-negative, homogeneous (of
degree 2) function of the mass parameters alone (further restrictions on
μ2

abσ will be introduced below). In order to accommodate models in which
the unperturbed propagators have poles at more than one value of p2,
we do not exclude the possibility LabQ = Labσ for ρ φ σ.

As in Ref. [1], the subtraction procedure consists of a set of rules for
constructing a "renormalized" integrand RG(p, k, m, w, ε), where we have
made explicit the dependence on m = mί,..., md and w = w 1 ? . . . , we, the
"hard" and "soft" mass parameters of the theory, respectively. For ε > 0,
one must verify that

JGε = j dk RG(p, fc, m, w, ε)

is absolutely convergent and, for ε->0, the integral tends to a covariant
tempered distribution. Specifically we define

RG = SG Σ ΓK-τyWϋ) (3)
UeJ^c yeC/

where
(a) 2FG is the set of all forests (families of non-trivial, non-overlapping,

one-particle irreducible subdiagram) of G.
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(b) IG(U) is the unsubtracted integrand written as a function of
variables associated with U. In particular

_ _
*abσ\abσ~ p2 2 ( γ\ , Pm2 , ..2 \

labσ ~ μ>abσ\mι W ) ~r l&\labσ + f^abσ)

(4)
P(l ) - + P ( P m wy)λ a\laτ) ί a\lav m' vv ) i

where y is the smallest element of U containing Labσ (resp. Va) and

Pabσ = <?ai,σW) + klbσ(W)9 (5)

where py = external momenta of y, considered as independent variables,
ky — "loop" momenta of y, which, if the routing of momentum through
subdiagrams is done in an admissible fashion (see Ref. [1] for a precise
definition), are linear combinations of the fef for δ e U,yCδ.

(c) Sy is the substitution operator defined by

m,

for 8 , y e l 7 ,

with the functional relation on the righthand side of (6) determined by
energy-momentum conservation at the external vertices of β.

(d) τy is the subtraction operator for the subgraph γ, defined in the
next section. In most applications τy will be the Taylor series td

p^y to
order d(y), the superficial divergence of y, in the variables py and wy,
taken about py = wy = 0.

(e) The factors in the product ΠyeC/ are written such that if yCδ,
( — τySy) stands to the right oϊ( — τδSδ).

3. Subtraction Operators

To specify what we mean by a subtraction operator, we consider the
class <& of functions of the following form:

F = |, (7)

where A and C are homogeneous polynomials in three sets of four-
momentum variables, p = {̂  •..pa},t={tί...tb} and u= {UL, . . .,MC}, and
two sets of mass variables, m= {mx, ...,md} and w={w 1 . . .w e}, with C
factorizable as

(8)
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where /Qt = Σα fp ί + Σβjtj + Σykuk, with Σ β j t j = 0 only if Σα^ΞO,
and μ^ is a non-negative, homogeneous function of degree two in m
and w. The functions μ^ need not be polynomials in the mass variables,
but they must be consistent with the polynomial nature of C1.

We now list a number of properties of the Taylor operator td

pvv applied
to functions of class <& :

(i) If Fe^, then td

pwFε%/.
(ii) td

pw is a linear mapping which is independent of the choice of
basis for the external momenta.

(iii) td

pvvF is a polynomial in p and w of degree ^ d.

(iv) For p = λp0, w = Λ,w0, λ->0, /l~(d + 1)(l - ί£w)F-» const.
(v)

(vi)
(vii)
Property (i) is trivially verified, and (ii)-(iv) are well known properties

of the Taylor series to order d and its remainder. The proof of the remain-
ing properties is completely straightforward. To show the role of the
special form of the function F, we verify explicitly inequality (vii), leaving
the remaining two inequalities as an exercise for the reader.

Proof of (vii):
First, we write

A ΣAίBί

C DE

where £f is a monomial in t, p and w,

E= ΓKί-^ + Mί+μ^))
αe/E

where
ία = Σααιίi + Σbajpj + Σcakuk

with Σ^αί ίf φ 0 for all α e 7E C {1, 2, ...,«}, and ^4^ and D are independent
of ί, p, w.

To establish (vii), it will be sufficient to verify this property for each

1 Recall that C may contain more than one factor with the same momentum /. Suppose

that 1Λ = I for α = 1,..., n and suppose that μj are the real roots of a polynomial of degree n
whose coefficients are polynomials in the masses; then μl could very well be irrational
functions of the masses, while ΠJ= 1 (I2 — μ« + iε(l2 + μ«)) would necessarily be a polynomial
in all variables. This situation in fact arises in the explicitly broken Higgs model [8].
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Property (iv) and the homogeneity of Fb imply

degίttw(ί - td

p J Ft g degF; - d - 1 . (9)

But (l-ίίjfi has the form — - R(tuPm^ where # is av pW ' E(tupmw)E(tuQmO)d+1

homogeneous polynomial: Using the fact that
we have

and degF; = degBf - deg£ = degίpwβί - degtE = degίpwFί? so that Eq. (9)
implies property (vii).

In a given field theoretical model, the number of distinct mass terms
μl which can appear in expression (8) is severely limited and we may
restrict our attention to a subset SF of<&. We define a subtraction operator
for the model under consideration to be any mapping τd

pw from 2£ into 36 '
satisfying requirements (ii)-(vii) above.

4. Modified Convergence Proof

To prove the absolute convergence of JGε, we shall need the power-
counting theorem of Ref. [1], suitably generalized to allow for the general
subtraction operators introduced in the preceding section (recall that in
Ref. [1] the subtraction operator is simply td

pί so that all mass variables
are "hard" and play no special role in the subtraction procedure). Fortu-
nately, the combinatoric part of the proof may be taken over without any
modification whatever, and we merely summarize the results.

Definitions. Let Ue^G, yell. y(U) is defined to be the reduced
graph obtained by contracting each λeU, λCy, to a point. Each line
in γ(U) is labeled as in (4) in IG(U). We say that U is complete with respect
to a hyperplane H in the 4m-dimensional space of integration variables k
if Ge U and V y e [/, either all lines L of y(U) have ky

L constant on H,
or all lines L of γ(U) have ky

L variable on H (more concisely, either γ is
constant or y is variable).

Lemma 1. Let G be a proper diagram, H a hyperplane in the space of
integration momenta and ̂  tne set °f H-complete forests of G. Then the
normalized integrand RG may be written

RG= Σ Rβ(Q
Cevg (10)

RG(C)=SGγ\(fySγ)IG(C),
yeC

where
-τγ if yφB(C)v{G}

ί-τy if y
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with B(C) = {y e C : y(C) variable, y a maximal element of C contained in
λ e C, λ(C) constant.

A recursive form of the formula for RG(C) is

RG(Q = SG(i-τG)YG(C) (11)
where

) = y/y1...ya,

Iγ(C) — Part °f unsubtracted integral corresponding to y(C).

The remainder of the power-counting theorem may be stated as
follows :

Theorem. Let G be a proper diagram, H a hyperplane in the space of
integration momenta k of the corresponding Feynman integral, and C a
complete forest of G with respect to H. Let RG(C) be the partially sub-
tracted integral defined by (10) or (11) with τy a subtraction operator
(as defined in Section 3).Ift1,t2,...,thare the independent real parameters
of H, then

άQgtRG(C)<-h

so that the superficial divergence of the formal integral

is negative. Since H and C where chosen arbitrarily, we conclude, referring
to (10), that JGε and all of its subintegrals have negative superficial
divergence.

Proof. The proof depends crucially on the various properties of the
subtraction operator τr and we shall refer to these by the appropriate
small Roman numerals. We first eastablish (for given H and C e ̂ G ) the
following inequalities for Yy(C)= Yy(k(t), p\ wγ) defined by (11):

degίpv wr Ύy(k(t\ p\ wy) ̂  d(γ) - M(y) if γ is variable
(12)

de& Yy(k(t), p\ wy] ^ - M(y) if y is constant , v ;

equality holding only if M(y) = 0, where

M(γ) = 4 x Σ (number of independent loops of μ)
μeC

μ C γ , μ variable

(note M(G) ^h = dimension of H).
The proof is by induction. We assume that the equalities hold for all

A e C , λCy.
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Case I: y constant. The result follows from (11) and
a) degί/y = 0,

b) deg tS yτ y αy y ^ - M(yα) if ya is constant, equality holding only if

Proof.

degί YyJ(k(t\ p7α, wyα) g — M(yΛ) , etc., by induction hypothesis

degrτyα yyβ(fc(ί), p*«, wy«) ̂  - M(yα) , etc., by (vi)

>degί [Sy τyβ YyJ (k(t)9 p\ wy) = degίτyα yyβ(fc(f), p"-(fc(ί), P7), ™γ) ̂  ~

(= only if M(yα) = 0) since py*(k(t\ py) is independent of t for y constant.
c) deg, S(l - τ y j 7yα < - M(yα) if yα is variable.

Proo/.

deg ίpyαWVα yyβ(fc(ί), pyα, wyα) ̂  d(yβ) - M(ya) by induction hypothesis

degί(l - τyα) yyβ(k(ί), py-, ̂  < - M(yα) by (vii)

= degί(l - τ J

Case II: y variable. The result follows from (11) and
a) degtpγwγI~d(y)-M(y\
b) deg ί p V wvSy βτy β yy ̂  d(yα) - M(yα) for ya variable.

Proof.

α W V α yyβ(fe(ί), pyα, wyα) ̂  d(yα) - M(yΛ) by induction hypothesis

e w,ατyα yyβ(fc(ί), py-, wy«) ̂  d(ya) - M(ya) by (v)

ί / ? y w rτy α yyα(fe(ί), p^

c) degίprwr>Syτyα yyα ̂  ̂ (yα) - M(yα) for yα constant.

Proo/.

degr yyα(fc(ί), Py% wyα) ̂  - M(yα) by induction hypothesis

degίτyα yyβ(fc(ί), Py% wy«) ̂  - M(yJ by (vi)

y*, wy«) g d(7β) by (iii)
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Hence

Vβ ̂ τ^ Y7u(k(t), p^ wy«) ̂  φα) - M(yα)

>), w") ̂  d(yα)

To complete the proof of the theorem, we apply these inequalities to G
itself.

Case I: G constant. Since M(G) ̂  h φ 0, we have degr YG < — M(G).
Then de&lUQ = de&(i - τG) 7G < - M(G) ̂  - Λ by (vi).

Case //: G variable. Then degίpvv YG ̂  d(G) - M(G). Hence deg^G(C)
= degί(l - τG) ΓG < - M(G) g - Λ by (vii).

This completes the proof of the theorem. If the mass parameters of
the theory are such that μ2

abσ in Eq. (4) is strictly positive for every line
Labσ, then the absolute convergence of JG and the existence of JG = lim JGε

as a Lorentz-invariant tempered distribution follows immediately from
the theorems of Ref. [1]. If some of the μ2

abσ vanish, the theorem of this
section remains valid, but does not imply the absolute convergence of JGε.

5. Applications

We now indicate how the modified subtraction procedure introduced
above can be used to formulate perturbative models in which terms of the
unperturbed Lagrangian are assigned degrees less than four. In general
we may write

^EFF=Σ CiM}* (13)
i= 1

where Mf is a product of basic fields Aj and their derivatives, δb 2 ̂ ^^4,
is the subtraction degree assigned to Mt , and c{ is proportional to a
product of masses and a power of the perturbation parameter (assumed
dimensionless without loss of generality).

To construct the renormalized Green functions of any number of
basic and composite (normal-product) fields, we introduce

N

1?S=Σ c/s
4-a'Mί = JSf0ϊ + jS?/s (Ogsgl) (14)

i = l

and define

part
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where Afs} is a free field whose two-point function is specified by j£f0s.
The righthand side corresponds to the usual sort of Feynman diagram
expansion (note, however, that Jδf}^ and Q(£s) are not Wick-ordered, so
that there will be diagrams in which a line both begins and ends at the
same vertex). For a given proper diagram G, the unsubtracted integrand
is of the general form (2), and we may apply the subtraction formula (3),
with

By = number of external boson lines of y,
Fy = number of external fermion lines of y,
£ = sum over normal-product vertices contained in γ.

Vieγ

To apply the power-counting theorem of Section 4, we note that each
coefficient ct in (14) may be written as a (non-unique) product of "hard"
and "soft" mass parameters, multiplied by a dimensionless quantity:

= n i

( i } w i l . . . \ v i β ( i } ,
ί lo)

β(ΐ) = 4-δi.

From (14) and (16), we see that we may write

m={m u : i=l, ...9N'J=i, ...,α(i)}, sw={swo :ί=l, ...,N;j= l,.

so that it is obvious that in constructing ,RG it makes no difference
whether one uses τy = f£ί$, or τy = tδ

p^γ. With the latter choice, the
theorem is directly applicable. Thus the Green functions (15) are well
defined, Lorentz invariant tempered distributions at least if all pro-
pagators have non-vanishing masses).

It is not obvious that the Green functions constructed in the above
manner are consistent with the original interpretation of δt in Eq. (13).
More precisely, do the Green functions defined by (15) satisfy the field
equations (in the sense of normal products)

8A,

kφj
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That this is indeed the case is an easy exercice (strictly analogous to the
derivation in the case where £? contains only terms of subtraction degree
four [5]) which we omit.

For a more detailed description of various recent applications of the
modified subtraction procedure, the reader may wish to consult Refs.
[7-10].
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