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Abstract. We consider the P(φ)2 hamiltonian whose interaction density is given by

λP(φ(x))

where k is odd and 1 ̂  k < deg P. For sufficiently large μ we show that there is a gap in
the energy spectrum. In addition we obtain new regions of analyticity in λ and μ for the
Schwinger functions and the pressure.

§ 1. Introduction

The P(φ) quantum field hamiltonian in two space time dimensions
is given formally by

(1.1)

where H0 is the free hamiltonian of mass m0 , P is a positive polynomial
and E is the vacuum energy. In [2, 3], it was shown that for sufficiently
weak coupling (λ/ml small) the vacuum (ground state) of H is unique
and that the mass of H is positive. In this paper we consider the Hamil-
tonian

Hμ = H0 + $:Pμ(φ(x)):dx-Eμ (1.2)
where

(1.3)

and fc is odd, 1 ̂  k < n = deg P. Our main result is that if μ is sufficiently
large then the mass of Hμ is positive. We also show that the infinite
volume Schwinger functions are analytic in λ and μ, provided |λ|, |Imμ|
are small, ReΛ, > 0 and |μ| is large. The results of [2] can also be obtained
for large μ.

If P(ξ) = λξ4 + μξ, μ Φ 0, Simon and Griffiths [10] have established
uniqueness of the vacuum and analyticity of the pressure (vacuum energy
per unit volume) as a function of μ for Reμ>0. Their proof follows
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from the Lee-Yang theorem and from an approximation of the Euclidean
field model by an Ising model. The cluster expansion [3] combined
with these results and an argument of Lebowitz and Penrose [5] shows
that if μ φ 0 the pressure p(λ, μ) is real analytic in λ for all λ > 0. We also
show that for small coupling, the mass is a real analytic function of
λ, 0 ̂  λ rg λ0 for λ0 sufficiently small.

The proof of our main results relies on a "high temperature" cluster
expansion developed in [2, 3] together with some elementary transfor-
mations in function space. The idea behind our proof is to transform
Hμ so that the following conditions hold:

(a) The coefficients of the interaction are small relative to the trans-
formed bare mass as μ-> oo.

(b) The vacuum energy per unit volume is small relative to the
transformed bare mass as μ-^ oo.

We shall see that these conditions are essentially sufficient for the
convergence of the cluster expansion.

Heuristically the low energy spectrum of H is governed by the
behavior of P(ξ) at its minima. In the conventional picture if P has a
unique minimum then H has a unique vacuum and the curvature of P
at its minimum approximates the mass off/. If n ̂  4, note that as μ-^ oo,
Pμ(ξ) has a unique minimum and the curvature at the minimum tends
to infinity. The proof of our main result is based on the estimate

Pμ(ξ + a)-Pμ(a)^c0(f-mξm (1.4)

where c0 > 0, 2 ̂  m ̂  n and a = a(μ, λ) is the value of ξ which minimizes
Pμ(ξ). This estimate allows us to control the vacuum energy per unit
volume i.e. condition (b). To obtain condition (a), we expand Pμ(ξ + a)
— Pμ(a) in powers of ξ.

Pμ(a) = ΣbMa"-*? (1.5)
i = 2

where bt are uniformly bounded in μ. We shall see that
where ε is independent of μ. Thus as a (equivalently μ) becomes large
(1.5) shows that the coefficient of ξ2 dominates the remaining coefficients.
Since the coefficient of the quadratic term in φ may be incorporated
into WQ in H0 we see formally that the transformation φ(x)-+φ(x) + a
enables us to establish (a).

§ 2. The Main Results

Our main theorems are formulated and proved in the framework
of Euclidean field theory. See [4, 6, 7, 11]. Let Λ = ΛL be a square
of area L2 centered at the origin. We define ΔΛ to be the Laplacian with
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periodic boundary conditions on A (i.e. the Laplacian on the torus).
Let dqAtm2 be the Gaussian measure on £P (R2) of mean zero and co-
variance (— AA + m2

))~1. In general if C is a continuous scalar product
on £f(R2) we denote the corresponding measure of covariance C by
dqc. Let P(ξ) be a polynomial in ξ which is bounded below. We define

\-S:P(q(x)):dx] (2.1)
[ Λ \

and the expectation

The pressure is defined to be

p(λ, μ, ml) = Hm -̂ - log J δΛJ,λP + μξk) dqΛ^a . (2.3)

The Wick order : : in (2.2) is defined with respect to the measure dqAifn2.
(A brief discussion of Wick order appears later.) The existence of the
periodic pressure has been established in [13]. We thank B.Simon
for this information.

If A = q(xι) . . . q(xm)9 then <^Xι,p,mg defines the space cutoff Schwinger
(correlation) functions. More generally let A be a localized monomial,
i.e.

where WE L2(Tll

i = lAi) and AtcA denotes a unit lattice square. For
ί E R2 let TA(q} = A(q(- - ή). Also we define

DXo(s)={xe<C\\x-x0\^ε}.

Theorem 2.1. Let A be as above, and let λQ be positive. For μ0 = μ0(^o)
sufficiently large, there exists ε = ε(μ0,/l0)>0 such that

, (2.4)
and

lim (AyΛLίλP+μξk>m2 (2.5)
L-* oo

exists for all λ e £>A0(
8) αnί^ H E ^μ0(

ε) Moreover there is a positive con-
stant m independent of A1 and A2 and a constant C= C(A1, A2) such that

\{A, ΓA2y - (A,y <^2>| ̂  Ce~ |ί|w . (2.6)

Here < > denotes the infinite volume expectation.
Remarks. When A is a product of fields and μ and λ are real (2.5)

defines Euclidean invariant Schwinger functions from which a Wight-
man field theory can be constructed. See [8]. Convergence of (2.5) and
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(2.4) imply that the Schwinger functions and the pressure are analytic
for λ e Dλo(ε) and μ e Dμo(ε). Finally (2.6) implies the existence of a mass

gap.
As in Lebowitz-Penrose [5] we use the following theorem (Mal-

grange-Zerner, see [14]) to extend the domain of analyticity of (λ, μ, WQ).

Theorem 2.2. Let KC<Cbe the closure of a bounded simply connected
domain such that a disc Dμo is contained in K. Let I be a closed interval
on the real λ axis, and let Dλo be the disc whose diameter is I. Let F(λ, μ)
be a function with the following properties :

(i) F(λ, μ) is jointly analytic in λ and μ for all λεDλo and μeDμo.
(ii) F(λ, μ) is analytic in μ, μ e K for each λel.

(iii) There is a constant M such that

for all λ E /, μ e K. Then F(λ, μ) is jointly analytic for λ e I and μ e K.

Corollary 2.3. // P(ξ) = λξ4 + μξ the pressure p(λ,μ) is jointly real
analytic in λ for positive λ and complex μ with Re μ φ 0.

Proof. Following Lebowitz and Penrose [5] we set F(λ, μ) = e~p(λ'μ}

and verify (i), (ii), and (iii) using Theorem 2.1 and the Simon-Griffiths
generalization of the Lee-Yang theorem [10]. Given Λ,0>0 we choose
μ0 sufficiently large and define K to be any rectangle contained in the
right half plane and containing Dμo(ε). Now (i) follows from Theorem
2.1 and the remark following it. Condition (ii) is an immediate conse-
quence of the Lee Yang theorem. Since

is uniformly bounded for μ e K and for λ e Dλo(ε) real (iii) holds. Hence
it follows that p(λ, μ) is jointly real analytic in λ near λQ and complex
analytic in μ e K where Dμo c K and K is a compact subset of Reμ > 0.
The corollary now follows.

Remark. A similar result should hold for the Schwinger functions.
We also include another application of Theorem 2.2, which is not

directly related to the main results of this paper. Let m(λ) be the physical
mass for a λP(φ)2 theory and let Z(λ) be the field strength renormali-
zation.

Corollary 2.4. The functions m(λ) and Z(λ) are real analytic functions
of λ for 0<λ^λ0 and for λ0/ml sufficiently small

Proof. The proof of this result relies on the results of [2] and [3].
Let

, p) = $e-ίχ ^Φ(x) Φ(0)>£2j/lP,m2 dx .
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By analytic continuation of the Lehman spectral formula, and results
of [2] we have for real λ

/ n x ZW °? do(m2,λ} ,^_
F(λ9 p) = 2 , 2 + J 2 2 (2.7)

P +m(/ίj 4(m0-ε)2 P +m

Here ε > 0 can be chosen arbitrarily small by decreasing A0. Let z = (0, p^.
Then from (2.7) we have Γ ,. , .

• n\ $zF(λ,z)dz
ιm(λ) = \ (2.8 a)

§ F ( λ 9 z ) d z
and

πiZ(λ) = $zF(λ9z)dz. (2.8 b)

The contour is defined to be {z||z — zm0 | =m0/2}. To show m(λ) is real
analytic in λ it suffices to show that F(λ9 z) is real analytic in λ for z
belonging to the contour. Now we observe that for λ0 > 0 sufficiently
small,

(i) F(λ9z) is jointly analytic in z and λ, for Re/l>0, |λ|^Λ,0 and
|z| ̂  δ, where (5 > 0 is sufficiently small. This is an immediate consequence
of the exponential cluster property proved in [3] for complex λ.

(ii) For real λ9 0^/l^/l 0, F(λ, z) is analytic in z when zeA. Here
A = A1^jA2 is a region which contains the contour of the integrals
in (2.8) and Ai are simply connected regions containing |z| ̂  δ.

(iii) For real λ9 0^λ^λ0 and ze A, F(λ9 z) is uniformly bounded.
(ii) and (iii) follow from (2.7) and uniform bounds on F(λ9 0), provided

A is bounded away from + im0. Hence by Theorem 2.2, with μ = z and
K = A1 or A2, it follows that F(λ9 z) is analytic for 0 < λ < λθ9 z e A. This
completes the proof.

We conclude the section with a review of Wick order. The Euclidean
field with a momentum cutoff r is represented by

qr(x) = q(δr( - x))

where δr is the Fourier transform of characteristic function of the interval
[ — r, r]. We define the Wick order of q"(x) with respect to dgc by the
limit as r->oo of [n/2]

where cnj = n! 2 ~ Vj! (n - 2;)! and

In [1] it is shown that (2.9) converges as r-> oo in Lp(Sf', dqc)9 i^p<oo
for a large class of covariances. When C = ( — Δ H-mo)"1, the above defi-
nition coincides with the standard definition of Wick order. An easy
computation shows that 2

σr(x) = $qr(x)2 dqΛ>mι ^ Const, log (-̂ - + 1 .
\ m o /
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The proof of our main theorem involves changes in the mass ap-
pearing in the covariance of our Gaussian measure. For this reason
we give a formula relating Wick order : :Wι? with respect to the two
covariances „ „

C. = (-AΛ

[11/2]

:βW:*ϊ = Σ
where for large L j

'' 4π2

= -—log I—I
See ([4] § II) for details. 4π \mι

§ 3. Proof of Theorem 2.1

In this section we prove Theorem 2.1 assuming estimates on the
vacuum energy per unit volume established in the next section. We
apply three elementary transformations to Hμ so that condition (a) of
§ 1 holds.

(α) Translation. The transformation q(x)^>q(x) + c for c real yields
the identity

J / λ\ 2 _ / AC\ 2 /Q 4\
\Λ/A,P,mo\Λ/Λ,pc + Cmoξ,mo \^Λ)

where

and

(β) Scaling. By the change of scale x^>xs we have

where ' ' °
As(q) = A(q(s-)).

(γ) Mass shift
(A} = (A} (3 3)

where the equation :P:m2 = :P~:m2 + b defines F".
The proofs of (α) and (γ) follow easily from the lattice approximation

of [4] where the Laplacian has periodic boundary conditions. Formally

eS(qΛΛq)dχ jg approximated by Tl<Xίy> e~
(qx~qy)2. The product ranges over

all nearest neighbor lattice sites in T(A\ the torus obtained by identi-
fying opposite sides of A. To establish (β) note that

(3.4)
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Remark. We have used periodic boundary conditions in order to
simplify the formulation of (γ). Dirichlet boundary conditions make
(oc) awkward.

Let a be the value of ξ e R which minimizes Re Pμ(ξ). Then

where the b^μ) are real and bounded and

Q(ξ) = i lm(Pμ(ξ + a) -
We define _ /γ , _ f , ,

Pμ(ξ + a)-Pμ(a)-b2a
n

a"-2 (3.5)

Next we apply (α), (β), (γ) (in that order) with c = a, \ b2 = σb2 s2 = an~ 2/σ
where σ is a constant independent of a to be determined. We see that

. σ i . m
where

Λ' = sΛ, A' = (Aa\

m\ = mla2~nσ + 2b2 σ
and

:R1:m2 = :R:m2σa2-n. (3.7)

Note that from (2.10) the coefficient of ξj in Re (R^ξ) - R(ξ)) is bounded
by

Const. a-j(\log(an-2)\ + i)(n~m (3.8a)

for i^j^n — 2, and is zero if 7 = n — 1 or n.
For 7 = 0 we use the fact that R(ξ) has no quadratic term to bound

the constant term of Re^O*) - R(ξ)) by

2--)+ir2. (3 8b)

Also note that the transformations (α), (β), and (γ) yield

For large μθ9 ak~n --- \ and so fc2- - ~ >0. Hence if
μ0A: Lw w / c j

we choose ε sufficiently small in Theorem 2.1, we see that the coefficients
of σR1 are small for large values of μ : μ _• μ0(

σ)
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We now prove Theorem 2.1 assuming the reader is familiar with
the cluster expansion in [3].

Proof of Theorem 2.1. The proof follows from the convergence of
the cluster expansion. It is convenient to make a slight technical modi-
fication in the expansion. We define the Wick order of the interaction
to agree with the Gaussian measures dqc(s) which arise in the expansion.
The covariances C(s) are convex combinations of ( — ̂ ,r + mo)~1 where
the subscript Γ indicates that the Laplacian has Dirichlet boundary
conditions on Γ. The dependence of the Wick order on s merely yields
extra terms when evaluating derivatives

which come from differentiating

and :A:C(S).,
with respect to s.

With the above modification we apply the cluster expansion in the
transformed variables. The cluster property (2.6) becomes

|<Λi ΓA2yΛ, - <A',yA, <rA2yΛ,\ ^ Const.*-"''
where

\

and Const, is independent of A for A sufficiently large. By (3.9) the
partition function is a nonzero multiple of

The convergence (and Euclidean invariance) of (2.5) follows as in [2]
from a more general cluster property obtained by replacing R! by R±g
above where g(x) is a measurable function of compact support such that
O^ί^l.

First we note that for fixed g

lim <AfyA,L>Rίσg,m2
L-+OO l

exists for any expanding sequence of rectangles and is just the expecta-
tion corresponding to free boundary conditions. This follows easily
from a single application of formula (1.7) in [3].

By the cluster property we have (see [3] pg 161-2)
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where d is the distance of the support of 1 — g to the localization of A' and

\ Λ — \ /A'L,Rlσ(s + (l-s)g),ml
Hence

<AyP = km <AfyΛL9Rίσg>m2
Li"* 00 -1

flf-»l

exists and is seen to be Euclidean covariant.
To prove the convergence of the cluster expansion we first choose

σ = σ(λ0) sufficiently large in order to produce a large bare mass. Then
we choose μ0(σ) and ε = ε(μ0, λQ). There are only three estimates whose
proofs require some change. The first such estimate is on derivatives of
the covariances C(s) with respect to the interpolating parameters (sb).
In the proof [3] we must replace Brownian motion on R2 with Brownian
motion on the torus because of our use of periodic boundary conditions.
If we replace distances on the plane by distance on the torus the proof
is as in [3].

The second estimate on derivatives in s may be written

where M is a localized monomial and V is a union of lattice squares
of area \V\. We bound the magnitude of the above integral by

where || ||p is the Lp(dqc) norm and p' is the dual index. The norm of
M may be estimated as in [3] by β~ ( X + 1 ) | F | for m\ sufficiently large.
The constant p > 1 is chosen in the following section and is independent
of μ. Given σ large we choose μ0 large and ε(μ0) small so that the coef-
ficients of R are bounded by 1 and

This bound is proved in § 4. The third estimate we must check is

^ (3.11)

for μ(σ) large and μ G Dμo(ε), μ e Dλo(ε). Here A is a lattice square. This
estimate follows easily from (3.10) as we shall see in § 4.

§ 4. Bounds on the Vacuum Energy

To prove (3.10) we show that for σ = 1 and large μ0

(4.1)
where α(μ)->0 as μ->oo. The desired bound for general σ follows from
scaling and choosing μ large so that α(μ) - σ= 1. In this section we set
h = σ=i for notational convenience.
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Using Jensen's inequality and the fact that

it follows that (see Lemma 11.20 of [4])

\\*v(Rι)\\pp = K(P ReΛJ dqc ̂  \gv(p Re^) dqΛ^ . (4.2)

To bound the left side of (4.2) we apply (γ) to obtain1

f δγ(p ReΛi) dqΛ<ml =
 v

 2

V -̂  , (4.3)

^((T~ "TΓ^ 2"

where /? > 0 is defined in Lemma 4.2, is independent of μ and

The denominator of (4.3) is greater than 1 by Jensen's inequality. The
next two lemmas enable us to bound the numerator.

Lemma 4.1. Let μ and λ be real and let a(μ) be the value of ξ which
minimizes Pμ(ζ). There is a constant c0 > 0 independent of μ such that

n-1? (4.5)

for I^i^n and for μ sufficiently large.

Proof. For simplicity we assume Pμ(ξ) = ξn + μξk. Note that

μ= --%"-* and
k

Setting ξ = ay (4.5) is equivalent to

f(y) = (y+iγ-^-(y+iγ+^- - 1 ^ C0/ . (4.6)
k k

Since n ̂  us even, (4.5) holds for \y\ ̂  K for large K. If \y\ ̂  ε, (4.5) holds
for small ε > 0 because the coefficient of y2 on the left side of (4.6) equals
/"(O) = n(n — k)/2 > 0. Now since f(y) ^ 0 and has a unique zero at y = 0,
there exists a constant δ > 0 such that f(y) > δ, when ε ̂  \y\ ̂  K. Now
by choosing c0 ̂  δK~l the inequality follows for ε rg \y\ ̂  K. This com-
pletes the proof.

1 For notational simplicity we define the covariance of dqΛ>2β to be
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Lemma 4.2. Let λ and μ be real and let μ be large. There are constants
M, β > 0, p > 1 independent of μ such that

- M(l + llogrl)"/2 ^p2 :R2(qr(x)):2β + (62 - 0) :gr(x)2:2,

Proof. By (3.5) and Lemma 4.1 there are constants δ and /? > 0 such
that

0 ̂  p2 R(ξ) + (fe2 - β) ξ2 - D(ξ) + const. (4.7)
where

By (2.9), (3.8) and the definition of :R2: the coefficient of qr(xy in
'•Riter)'- — R(qr) i§ bounded by

const, α~'(|log(αr)| + I)*"--'*/2

for j such that i^j^n — 2.
The coefficients are zero for j = n or n—i. The 7 — 0 coefficient is

bounded by ,
Const.-^-(|log(αr)| + l)" / 2.

Hence,

The lemma now follows by adding (4.7) and (4.8).
By Lemma 4.2 and the uniform boundedness of the coefficients

of the interaction, it follows from the proof in [1, Theorem 2.10] that

(4.9)

To obtain the sharper bound (4.1) we proceed as follows.
Let Yc V be a union of lattice squares zl C Y. Define ψA = SΔ(p2R2}- 1.

Then

- Σ ί Π
YCV ACY

Lemma 4.3. Given ε > 0, there is a μ0 such that if μ > μ0 then

I Γ ΓT j ^ \V\WA da A' 2 <- ε1 ' .
\A\CY '̂  =

Proof. Let R2i = \A. :R2(qr(x)): dx. By the fundamental theorem of
calculus
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We estimate TlA.cYψΔ. by applying a Holder inequality to separate the
exponential from the polynomial

By (4.9) I'",
sup p '

Using standard estimates, see [1, Theorem 2.5], and the fact that
the coefficients of R2 are 0(a~1) it follows that

p' =
Const.

a

\γ\
(4.10)

Hence the proof is complete since a 1-> 0 as μ->oo. By Lemma 4.3
we can bound (4.9) by

YCV

This completes the proof of 3.10.
To establish (3.11) we apply Lemma 4.3 to a single lattice square A.

Hence

Acknowledgements. I wish to thank Professor J. Glimm for his encouragement and
for numerous helpful suggestions. I also would like to thank Professor R. Griffiths for
bringing Theorem 2.2 to my attention.

§ 5. A Correction

In this section we correct a gap in the proof of the estimate

JVmoτ J dzτ

xydT^ Const. £Γm o l / l (5.1)
0 W(l')

which appeared in [3] p. 229. We thank Joel Feldman for pointing out
this gap and H. P. McKean for helpful suggestions.

For each path z( ) let τι;(z( )) be the first time t ̂ 0 such that z(t) e b .
We index the fc/so that W(ΐ)= {z\τt^τί + 1 ̂  ... T}, see [3, p. 229]. Let
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P^ be the Wiener probability given that paths start at x at time zero.
Then the left side of (5.1) equals

00

f f J e-m2oτPx{τ1^τ2^'-τm^T:z(T)Edy'}δ(y-yf)dT
o Σtt^T

ti^O (3.2)

oo

= IHe-morPx{τ1edt1,τ2-τ1edt2 ;z(T)edy'}δ(y-y')dT.
0

By the strong Markov property and the fact that τ f depends only on
paths up to time Σtt=T—Tf, (5.2) is bounded by

j e-^τ' + ̂ Px{τ1edti9τ2-τ1€dt2...} sup p(Tf,ξm,y)dT' (53
ϊ", f ,£0 ίmeft^, V J)

£Ex{e-m2τίe+"*(τ*-^...} sup p(n%9ξm,y).
ξmCbίn

where Ex is the expectation corresponding to Px, p denotes the Laplace
transform of the transition probability and ex+ = ex for x ̂  0 and = 0 for
x<0. Let T1=τ1 and let

Note that Ti = τi — τi-1 when τ,- — τi-1^0. Using this fact and the strong
Markov property (5.3) is bounded by

. ..}...} sup p
ξmeb'm

Since p is the resolvent kernel oϊ( — Δ+ mfy it is bounded as before. To
bound the expectations we define 7]* to be the first time a path hits an
infinite line separating b\_v and ί? . Note that for paths starting at
ξi-! e b /

ί _ l ί TI*^ T; and that Tf* is effectively a stopping time for a one-
dimensional Brownian motion whose expectation may be computed.
Thus

where rf is the distance between ^.j and the infinite line. See [12, p. 27].
By optimizing rf our proof is complete.

Remark. We have used — A as the generator for Brownian motion
rather than —\A.
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