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Abstract. Properties of local functions of fields are discussed. A condition, called the
Borchers condition, is introduced which is weaker than duality but allows the construction
of a maximal local extension of a system of local algebras. This extension will satisfy
duality. The local structure of the generalized free field is studied, and it is shown that
duality does not hold for the local algebras associated with certain generalized free fields,
whereas the Borchers condition is satisfied for all generalized free fields. The appendix
contains an elementary proof of duality for the free field.

1. Introduction

In the construction of local dynamical theories one usually considers
Hamiltonian densities which are local functions of the basic fields.
Equations of motion involve polynomials or other local functions of the
fields. It is therefore of interest to investigate general properties which
all local functions of fields should possess. The fields will be assumed to
satisfy the restriction that the vacuum vector is analytic for the field
operators, so that according to Borchers and Zimmerman [1] a system
of local algebras Bφ(R) can be associated with each field φ(x). This means
that an algebra Bφ(R) of bounded operators is associated with each
region R and satisfies locality:

B^RJCB^RtY if R2CRi

c. (1)

Here Bφ(R}' denotes the commutant of Bφ(R] and Rc denotes the causal
complement oϊ R: the interior of the set of points space-like to all points
in R. The local algebra Bφ(R) is constructed as the von Neumann algebra
generated by the spectral projections of fields averaged with test functions
with support in the region R.

In addition to the locality condition (1) a variety of restrictions
on the local algebraic structure may be imposed. One such restriction
of this sort is that of duality:

Definition 1. Duality: The duality condition holds for the region R
if
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Duality is known to be satisfied by the algebras associated with the
free field [2] if the regions .R are restricted to be diamonds1. In what
follows we shall consider only two sorts of regions: diamonds R and
their causal complements Rc. The algebra B(RC) is defined as the von
Neumann algebra generated by diamonds whose closures are contained
in Rc:

B(Rc)=ί_(j B(R2)}".
(R2CRC }

We shall show that duality does not hold for the algebras associated
with certain generalized free fields, but a weaker condition, called the
Borchers condition, and introduced in the next section, will hold for all
generalized free fields. If we are given a system of local algebras which
satisfy the Borchers condition but not necessarily duality, it will be shown
that there exists a maximal local extension of the given algebras, and
that this extension will satisfy duality.

Langerholc and Schroer [3] have given a definition for a field ψ(x)
to be a local function of the field φ(x): Any bounded operator b which
commutes with φ(x) for all x in a region R should also commute with
ψ(x) for x in the same region R. To make this precise, let 2 be the dense
set of vectors obtained by applying polynomials in the fields φ and ψ
to the vacuum vector.

Definition 2. Local functions of fields: The field ψ(x) is said to be a
local function of the field φ(x) if (tff, φ(h) g) = (φ(h)f, bg) for all f,ge&
and all real test functions h with support in the region .R implies that
(tff,Ψ(h)g) = (ψ(h)f,bg) for f,ge& and suppheR.

Since we have assumed that the vacuum is analytic for φ and ψ it
follows [1] that φ(h), ψ(h) are essentially self-adjoint on 2, and therefore
this definition is equivalent to

Bψ(R)CBφ(R). (2)

The equivalence of Definition 2 with Eq. (2) is important since the
verification of the algebraic property (2) may be reduced to the study
of functions of the form

(Vf,φ(x)g)-(φ(x)f,bg).

1 The class of regions called diamonds is defined as follows: Let xί and x2 be space-
time points such that x2 — Xι is parallel to the positive time axis: x2 — xί=(a,Q). The
intersection of the interior of the forward light cone from xί and the interior of the backward
light cone from x2 defines a diamond D which is said to be generated by the line segment
x2 — *!- The base of the diamond, denoted D, is the sphere {x = (t, x): £ = ί0, |x — JCG| < a/2}
where (xί + x2)/2 = (t0, x0}. Diamonds form a base for the usual topology of space-time
and are equal to their double causal complement: R = RCC. Diamonds also satisfy the
independence property given by extended locality [4].
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Let φ(x) be a local irreducible field and suppose ψ(x) is relatively local
to φ. Then [1] the algebras associated with ψ and φ are relatively local:

Bψ(R)CBφ(RJ. (3)

If furthermore φ satisfies duality then (3) becomes

Bψ(R)CBφ(R).

In other words, duality implies that the Borchers class of an irreducible
local field φ consists of local functions of φ, a fact which has been
pointed out by Guenin and Misra [5]. On the other hand if there exists a
field ψ in the Borchers class of φ such that ψ is not a local function of φ,
i.e. Bψ(R)$Bφ(R)9 then duality cannot hold for the algebras Bφ(R).
This situation will be seen to arise for certain generalized free fields.

2. The Borchers Condition and Duality

Borchers has shown the following important result, which is the
basis for the definition of the Borchers class of relatively local fields.

Theorem. (Borchers) [6]. Let φ(x) be an irreducible local field and
let ψ^x) and ψ2(x) be local relative to φ : [φ/(x), φ(yj] = 0 for (x — y)2 < 0
z = l , 2 . Then it follows that ψ1 and ψ2 are relatively local: [ι/?1(x),
ψ2(y)~]=Qfor(x-y)2<0. D

An analogue of this result for a system of local algebras can be
formulated as follows. Let {B(R)} be an irreducible system of local
algebras. Let b± be a bounded operator which commutes with the
operators space-like to the diamond Rί:bίe B(R1

c)f. Likewise let
62 e B(R2

c)f. Then if R^ and R2 are space-like separated, the analogue
of the above theorem would be that b1 commutes with b2. This statement
may be reformulated if we define

Definition 3. If R is a diamond, B(R) = B(RC)'.^
If Rc is the causal complement of a diamond, B(RC) = ί (J B(R2)\ " .

\R2CRC )

We may then state the Borchers condition for local algebras as
Definition 4. The Borchers Condition: (B(R)} form a system of

local algebras.
A system of local algebras for which the Borchers condition is

valid satisfies additional restrictions on its local structure which are
illustrated in the following propositions.

Suppose (B2(R)} is a local extension of {B(R)}: i.e. {B2(R)} is a
system of local algebras such that B2(R) D B(R) for each diamond R. Then

B2(R)CB(Rc)r =

and we have shown the following proposition.
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Proposition 1. The Borchers condition implies that (B(R)} is the
maximal local extension of (B(R)}. Π

Note further that the Borchers condition implies that B(R) satisfies
duality:

B(R) C B(Rc)f C B(RC)' = B(R).
Therefore

B(R) = B(Rcy . (4)

On the other hand it is clear that the duality condition for B(R) implies
that the system (B(R)} is local. Thus,

Proposition 2. The Borchers condition holds if and only if B(R)
satisfies duality. Π

We see therefore that although the original system need not satisfy
duality, when the Borchers condition holds there exists a maximal
local extension which does satisfy duality. The algebra B(R) is maximal
only if duality holds. However, B(RC) — the algebra associated with
the region space-like to the diamond R - is already maximal as the
following proposition shows.

Proposition 3. The Borchers condition implies that B(RC) is maximal. Π

Proof. Equation (4) implies that B(RC) = B(R)f = B(RC). Since B is the
maximal local extension it follows that all local extensions coincide on Rc.

This interesting result will be shown explicitly in the next section
for the generalized free field.

3. The Generalized Free Field

The results of the preceding section can be illustrated with the
local algebras associated with the generalized free field. These algebras
are constructed as follows. Consider the Hubert space

JίT = L2(P\ d*(p)) ®L2(M, dρ(m))

where P3 denotes the real three-dimensional "momentum" space with
Lebesque measure d3(p\ and M denotes the real line with the measure
dρ(m) in the "mass variable" m. The measure dρ is a regular Borel
measure of slow increase [7] which implies that

Q[/] = ί dρ(m) f(m) = J dm ρ'(m) f(m)

defines a tempered distribution ρ'. The support of ρ is contained in the
positive real axis {m^O}. The Fock space 2F over ffl is constructed
from symmetrized tensor products of the "one particle space" 2tf\
Creation and annihilation operators ά*(h), a(h) are defined for all h E J^
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and satisfy the commutation relations

|V (ΛJ, αt(Λ2)] = 0 [α(^)? α(Λ2)] = 0

I(Λ m) Mp? m)

Equation (5) can also be written in the form

\_a(p, m\ a^(p', m')] = Qf(m) δ(m — m') δ3 (p — p ' ) .

Define the field

φ(x, m) =

, m) = ]//?2 + m

which is defined analogously to the free field of a single mass. The fields
φ(x, m) = φ(ί = 0, jc, m) and π(x, m) = δr</>(ί = 0, jc, m) are tempered distri-
butions satisfying the commutation relations

[0(x, m), φ(x', m')] = 0 [π(x, m), π(x', m')] = 0

[0(jc9 m), π(jc', m'J] = iδ3(x — xf) ρ'(m) δ(m — m') .

It is easily seen by their construction that the fields φ(x,m), π(x,m)
form an irreducible set of operators and the set 2 obtained by applying
polynomials in the (averaged) fields φ(x, m), π(jt, m) to the vacuum is
dense in the Fock space 2F .

It is useful at this point to introduce an additional variable 5 and to
define f0(x, 5) = J am cos(ms) 0(x, m) .

This is essentially the Fourier transform2 of φ(x, m) with respect to the
mass variable m. It is symmetrized in the variable 5 so that

The field φ(x,s) satisfies the five-dimensional wave equation, with s
playing the role of an additional space-like variable:

The customary generalized free field is just the boundary value of
φ(x, s) at the surface 5 = 0:

φ(x) = φ(x9s = 0) (8)

2 We use the same symbol φ for the field as a function of (x, m) and its fourier transform
as a function of (x, s). No confusion should arise since the variables will always be explicitly
indicated.



54 L. J. Landau

and satisfies the commutation relations

[_φ(x\ φ(x'}~\ = j dρ(m) A0(x - x', m)
where

f W - -

Jo , (2π)3

The above construction involving the five-dimensional wave equation
is closely related to the Jost-Lehman-Dyson representation [8] as
well as to the construction of Araki [9]. A similar technique was used
by Haag and Schroer [10] in discussing the time-slice axiom for the
generalized free field. The following uniqueness theorems for the wave
equation can now be used to analyze the relation between φ(x\ which
is the boundary value of φ(x, s) on the surface 5 = 0, and φ(x, s)9 π(x, s),
which are the boundary values of φ(x, s) on the surface t = 0.

Uniqueness Theorems [8], Suppose the distribution F(x, s) satisfies
the wave Eq. (7) and let R5 be the βve-dimensional diamond centered
about the origin x = 0, s = 0 with3 base R5. Then

i) ifF(t = 0, jc, 5) vanishes together with its time derivative dtF(t = 0, JK, s)
in R5, then it "will vanish in the entire diamond R5.

ii) IfF(x9 s = 0) vanishes together with its normal derivative dsF(x, s = 0)
on the surface s = 0 in a neighborhood of the time-like line which generates
the diamond R5, then it will vanish in the entire diamond R5. Π

The vacuum is analytic for all the fields which have been introduced
in this section so that we may define several systems of local algebras.

Definition 5. a) B(R) = BΦ(X}(R).
b) B0(Λ) = Bφ(x^(R xM) = Bφ(x,s}(R x S).
c) B0(«) = Bφ(Xtm}(R xM) = Bφ(XίS](R x S).

κ(x,m) π(x,s)

In the above definition
a) B(R) is the algebra we are primarily interested in, generated by the

spectral projections of the generalized free field, Eq. (8), averaged with
test functions in the variable x with support in the four-dimensional
diamond R.

b) B0(R) is generated by the spectral projections of the fields φ(x, m)
averaged with test functions whose support in the variable x is contained
in the diamond R but whose support in the variable m is arbitrary;
i.e. with support in R x M. In terms of the variables x, 5, B0 can clearly
also be defined by Bφ(x S)(R x 5) which is generated by the spectral
projections of the fields φ(x9 s) averaged with test functions with support
in R x S, where S denotes the real line (variable 5).

3 See Footnote 1 for the definition of the base and generator of a diamond. (In the
case of five-dimensional diamonds the base will naturally be four-dimensional.)
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c) B0(R) is generated by the spectral projections of the fields φ(x, w),
π(x, m) averaged with test functions with support in R x M.

For any bounded operator b we may define

F(x, 5) = (ftV, φ(x, s) g) - (φ(x, 5) /, bg) (9)

where/and g are chosen from Q). As discussed in Section 1, the vanishing
of F(x, s) for (x, 5) in a region .R and all /, g e 2 is equivalent to b being
in the commutant of the algebra generated by φ(x, s) for (x, s) in R.
This fact, combined with the uniqueness theorems for the wave equation,
leads to relations among the algebras in Definition 5.

Theorem 1. Let R be a diamond. Then
i) B0(R) = B0(R).

ii) The algebras {B0(R)} form a local extension of the algebras {B(R)}.
iii) The algebras {B(R}} associated with the generalized free field

φ(x) form an irreducible set of operators.
iv) B(RC) = B0(RC)
v) B(R) = Bφ(x^(R5), where R5 denotes the base of the five-dimensional

π(x,s)

diamond R5 which has the same generator as R. Π

Proof, i) Let b e B0(R)f: then F(x, s), Eq. (9), satisfies the wave Eq. (7)
and vanishes together with its time derivative in the region RxS. It
follows from uniqueness Theorem (i) that F(x, 5) vanishes in the larger
region R x S. Thus the operator b is contained in B0(R)' and this shows
that B0(R) C B0(R). It is obvious that if F(x, s) = 0 in R x S then it is also
zero, together with its time derivative, in R x S which means B0(R) C B0(R)
and thus i) is proved. Since F(x, s) vanishes in R x S it vanishes in particular
in the diamond R on the surface 5 = 0, which shows that B(R)CB0(R)
which proves ii).

iii) Suppose b commutes with φ(x) for all x. Then F(x, 5) vanishes
together with its normal derivative on the entire 5 = 0 surface. Uniqueness
Theorem (ii) then implies that F(x, s) is identically zero. Therefore b
commutes with the fields φ(x,m\ π(x,m) for all x and m. Since these
fields are irreducible it follows that b is a multiple of the identity. (This
result can of course be obtained directly from the definition of φ(x)
but it is useful to see how it arises from the point of view considered
here.)

A sharpening of the preceding argument yields iv): Let b commute
with φ(x) for x in the causal complement Rc of a diamond R. Then
F(x, 5), together with its normal derivative, is zero in the region Rc on
the surface 5 = 0. It is then easy to see, using uniqueness Theorem ii)
that F(t = 0, x, 5) and dtF(t = 0, x, 5) are zero for all 5 when x is in the
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interior of the complement of R. (See for example the discussion of
Lemma 1 in Ref. [4].) This Proves iv), and by a similar argument, using
both uniqueness Theorems i) and ii), the result v) also follows.

Consider the particular generalized free field given by dρ(m) = θ(m)dm
where dm is Lebesque measure and θ(m) is the characteristic function
of the positive real axis {m = 0}. In this case the commutation relations (6)
become, in terms of the variable s rather than m,

[φ(x, 5), π(x', s')] = -y- δ3(x - x') [δ(s - s') + δ(s + s')] . (10)

Let R be a diamond centered about the origin and let R5 be the five-
dimensional diamond with the same generator as R.LetB be the algebra
generated by the fields φ(x, s), π(x9 s) for jc in R and s sufficiently large
so that (x, s) is outside R5. Then by Theorem 1 v) and Eq. (10) it follows
that BεB(R)'. On the other hand B is noncommutative by (10) and is
contained in B0(R) = B0(R). Thus B(R)^B0(R). There is a wide class of
generalized free fields for which B(R)3=B0(R), but we are content with
exhibiting this one example.

Nevertheless there certainly are many cases for which B(R) does
equal B0(R). If the measure dρ(m) falls off exponentially in m, i.e.
§dρ(m)eam< oo for some positive α, then F(x, s), when averaged in jc,
is analytic in 5 in a strip about the real axis, and so if F vanishes in R5

it will vanish in R x S. This has the consequence that

B(R) = B0(R) [ρ(m) exponentially decreasing] . (11)

In particular this equality holds for any generalized free field of compact
support in the mass variable.

These methods are also useful in discussing causality for the general-
ized free field. (See Mollenhoff [11] and the discussion of Haag and
Schroer [10].) Let R be a diamond centered about the origin and define
Rτ = Rn{\t\<τ} where τ may be taken arbitrarily small but nonzero.
Assume the measure dρ(m) is exponentially decreasing. If b is a bounded
operator which commutes with B(Rτ) then F(x, s) will vanish in Rτ on the
surface 5 = 0. From uniqueness Theorem ii) it is seen that for each jc in R
there is a neighborhood of 5 = 0 for which F(t = 0, jc, s) and dtF(t = 0, jc, s)
are equal to zero. Since these functions are analytic in s, it follows that
they are equal to zero in RxS. Thus the operator b commutes with
B0(R) = B(R) [Eq. (11)]. Therefore

B(Rτ) = B(R) [(?(m) exponentially decreasing] .
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Returning to the consideration of the Borchers condition and
duality for the generalized free field, we note first that the algebras
B0(R) satisfy duality:

B0(R) = B0(Rc)f. (12)

This follows because the fields φ(x,m\ π(x,m) behave essentially like
superpositions of free fields, and duality has been shown to hold for a
free field by Araki [2]. A discussion of the duality relation (12) for B0

is given in Section 4.
Equation (12) and Theorem 1 iv) imply

B(R) = B(RC)' = B0(Rcy = B0(R) . (13)

Since (BQ(R)} is a system of local algebras we have

Theorem 2. The Borchers condition is valid for the algebras B(R). Π

We have previously seen that there exist generalized free fields for
which B(R)*B0(R) = B(R) [Eq.(13)] and therefore for these fields
duality does not hold. Duality will however hold for all generalized
free fields with exponentially decreasing measures dρ(m) since Eqs. (11)
and (13) imply

B(R) = B(R) [ρ(m) exponentially decreasing]

which holds in particular for all generalized free fields with compact
support in the mass variable.

The maximality of B(RC) follows from Theorem 1. iv) and Eq. (13):

Summarizing we see that although duality does not hold for all
generalized free fields, the Borchers condition is valid for all generalized
free fields. Duality will hold for those generalized free fields with an
exponentially decreasing measure in the mass variable m. From the
general results of Section 2 we know that (B(R)} is the maximal local
extension of {B(R)}. The fact that the algebra B(RC) associated with the
region space-like to a diamond is maximal depends on Theorem 1 iv)
which in turn results from uniqueness Theorem ii) for hyperbolic
differential equations.

It is interesting to observe that for an arbitrary generalized free
field φ, there exists a local field φΆ in the Borchers class of φ which is
irreducible and satisfies duality: The Fourier transform is given by
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4. Duality for B0(R)

A basic result of Araki [12] (see also [13]) concerning duality for
Fock-representations of creation-destruction operators can be used to
prove duality for B0(R). Araki's basic duality result can be described
as follows. Let J^R be a real Hubert space and 3^ the complexification
of J^R. Let 3F be the Fock space over Jf . For each vector h e Jf , creation
and destruction operators af(/z), a(h) are defined in the usual way, so
that e.g. ά*(h) creates a one particle state with wave function h from the
no-particle state. Auxiliary fields are defined for h e Jt?R by

- -

r - -

Let J^and^ be subspaces of Jί?R and define B(^^2] as the von
Neumann algebra generated by the spectral projections of the fields
Φ(h) with /z e Jfi and77(A) with heJ^2. With J^1 denoting the orthogonal
complement in JjfR of J^, Araki showed

Theorem. (Araki) [12]

Jtrf). D (14)

This result may be applied to the study of the free field [2,14] by
taking J-f = L2pΓ3, d3(x)) where Jf 3 denotes three dimensional coordinate
space with Lebesque measure d3(x), and Jf^ is the set of real L2-functions.
The (time-zero) free fields φ(h\ π(h) of mass m are defined for4 h e ̂  by

(15)

where vvm = |/— V2 + m2. Denoting by jB(Λ) the von Neumann algebra
generated by the spectral projections of the fields φ(h\ π(h) with4

), we have

4 ^ denotes infinitely differentiable real functions of rapid decrease as |JC|^QO.
denotes the set of h E y with compact support in the region R.
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The duality relation B(RC)' = B(R) for the free field then follows from
Eq.( 14) and the result [14]

3(R) (16)

where the bar - denotes closure in L2 and R' is the interior of the
complement in X3 of R.

It is now a simple matter to prove the duality relation (12) for B0(R),
which is the goal of this section. For the generalized free field we take5

je = L2(X\d3(x))®L2(M,dρ(m)). The fields φ(x,m), π(x9m) are given
in terms of the auxiliary fields Φ, Π by Eq. (15) where fee 5^ is now a
function of the variables x and m. The duality relation for BQ(R) then
follows from the analogue of Eq. (16):

Lemma. — 0 («' x

{j/ϊv® («' x M)}1 - —^ 0(Jt x M). D
w

Consider for example the first equation of the lemma. If g is a vector
I-L

ml—^@(R'xM\ then

r,m)-77=/(*) = ()
/ww

for all F e ®(M) and f^2ί(R\ It then follows that for almost every m,

which implies that g(x, m) e ] w ® ( R ) by Eq. (16). This then implies
that __

0 6 ] W ® ( « X M) .

The second equation of the lemma is proved similarly.
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5 This is the same space as in Section 3, the relation between X and P being given
by Fourier transformation.
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Appendix

Several proofs of duality for the free field have appeared in the
literature [2, 14, 15]. We present an approach based on the expansion
formula [16]:

Q = (Ω,QΩ)+ f -(-^ί</3(*^
n~1 H' <-» 4-> (A.I)

dtί...dtn:φ(xl9Q)...φ(xn,0):

where Λ$B = A(dtB) - (dtA) B, dtφ(x,Q) = π(x9Q)9 and Ω is the vacuum
state. The colons : : denote Wick ordering.

If QεB(Rc)f then all the functions (Ω, [φ(xl90), ..., β]...] Ω) have
have support in R and thus expression (A.I) leads to the duality condition
QeB(R). Araki's original approach [2, 12] used an expansion of Q in
creation-destruction operators. The expansion (A.I) is based on a φ, π
expansion as used by Osterwalder [15]. The advantage of the expression
(A.I) is its manifest local structure. In fact we need only the weak con-
vergence of (A.I) on the vacuum vector, as the following discussion
shows.

Duality for the algebras (B(R)} is clearly equivalent to the statement:

Define
Weak Duality: Q, e B(Rc)f, Q2 e B(R)'=>(Ω, [β1? β2] Ω) = 0 .

Lemma A.I. Weak duality is equivalent to duality. Π

Proof. Let βx e B(Rc)f, Q2 e B(R)', A, Be B(R). Then A^Q^Be B(Rc)f

and weak duality implies that

By the Reeh-Schlieder theorem B(R)Ω is dense in the Hubert space
and therefore [βl5 β2] = 0.

Lemma A.2. Let Q e B(RC)' and

Q^KίxJ. . .^^^

where φε(x9 0) = translatiςn by x of φB9 φε = Jφ(x,0) hε(x)d3(x\ hε(x)
= ε~1/z(jc/ε), and h is a positive, infinitely differ entiable function with
support in {\x\ < 1 }, J h(x) d3(x) = 1.
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Then Qn εΩ = HεEnQΩ-^Q*EnQΩ where En is the projection in Fock
space onto n-partίcle vectors and Hε is multiplication by \hε(p)\2 :

HεF(pl,...pn) = \hε(p1)\2...\he(pn)\2F(p1,...pn).

The operator norm \\Hε\\ ^ 1. Π

Proof. Writing Qn ε in terms of creation-destruction operators gives

n.

= HeEnQΩ.

Since hε(p) = h(εp) we have |Λβ(p)|g 1=>||HJ^ 1, and Mph^l

=>Hε

 s7_Γg'y> / and the lemma is proved.
n

Lemma A.2 leads to the conclusion that, with Q(n} = (Ω,QΩ)+ £ 6j,ι/«»

Now suppose β e £(#c)' and Q2 e £(#J where Λ f i = {x: dist(x,
Then [_Q2,Q

(n}^=Q for all n sufficiently large which implies, according
to Lemmas A.I and A.2, that [β2?βι]=0. We have thus shown
B(RC)' C B(Rε) for all ε > 0, and so

In addition, any operator Q e Q 5(Kε) will commute with #CR2) if
ε

the closure of R2 is contained in Rc. Thus

. (A.2)

Equation (A.2) is a statement of duality. We do not pursue questions
concerning the boundary of R : p) B(Rε) = B(R) [2].
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