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Abstract. It is shown that Meller matrices S, and scattering matrix S in axiomatic
field theory can be expressed through their adiabatic analogs. In particular, it is proved
under certain conditions that S_ = slir(rjl S,(0, — o0) W, where W, is a trivial phase factor

P
[ie. a unitary operator of the form expi [r(k)a™* (k) a(k) dk]. Corresponding results in
Hamiltonian approach are discussed.

Let H(g) be a family of energy operators depending on parameter g,
0=g<=1, and let h(r) be an even continuous function decreasing fast
at infinity and satisfying A(0)=1 and 0 < h(r) <1 (one assumes usually
h(t)= e~ ). We define an adiabatic S-matrix as an operator

S,=8,(c0, —c0)= slim  S,(t¢t,)
t—00,tp—> — 0O

where « is positive,
S,(t, to) = exp(iH(0) 1) U (t, to) exp(~ iH(0) £,)
and U,(t, t,) is a solution of the equation

0U(tto) _
o
with the initial condition U,(to,t)=1 (i.e. U,(t,t,) is an evolution

operator for the timedependent Hamiltonian H(h(«t))]. Adiabatic
Mpller matrices are defined as S,(0, + o0) = sli+m S,(0, t).
t—= o0

H(h(at)) Uy(t to)

The main result of the present paper is the proof of equalities
connecting the scattering matrix S and Megller matrices S, with their
adiabatic analogs in axiomatic quantum field theory (this result can be
called an adiabatic theorem). Corresponding results in a Hamiltonian
approach [1] will be discussed briefly at the end of the paper. It is
important to note that in constructing the adiabatic S-matrix we need not
add counter-terms to the Hamiltonian H; thus the renormalization
of one-particle energy and field operators does not enter in this construc-
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tion (this is an essential distinction between our result and the usual
approach to the adiabatic hypothesis).

We list now the conditions of our main theorem. We shall proceed
from axioms of Haag-Araki type but will not require Lorentz-invariance
and microscopic locality. For simplicity we assume that there is only
one type of particle and that all energy operators H(g) in the family
considered have the same ground state (vacuum) @. The generalization
to several particle types is simple. On the other hand the discussion of
the case with vacuum polarization involves a more elaborate procedure
about which some remarks will be made at the end.

Specifically we shall suppose that a C*-algebra (0) of bounded
operators in a Hilbert space 5 is associated with every bounded open
region ¢ in Euclidean space E®. We shall consider in the space # the
momentum operator P and the energy operator H(g) depending on a
parameter g, where 0 < g < 1. The operator e ‘F* 4¢'P* will be denoted
by A(x) and the operator exp(iH(g)t) A(x)exp(—iH(g)t) by A(x,t|g).

Our axioms are the following:

1) If 0, CO,, then A(O,) C A(O,).

2) If Ae A(0), then A(x, t]g) e A((O + x),), where O + x denotes the
translate of @ by the 3-vector x and (0 + x), is |t|-neighbourhood of
O+ x [ie. £€(0+ x), if and only if the distance o(&, O + x) < |t].

The operator A(x,t|g) is infinitely often differentiable with respect
to g and continuous with respect to x, t, g; for every m

am
” A(x,r|g>H§cm||A||.

ag™
3) If
AeW0O,), BeAO,)
then
IAllIBI
A Bl|SCy—
L4, Bl N (@, Oy

where N is an arbitrary integer, 9(0y, @,) is the distance between O,
and @, (macroscopic locality in the sense of Araki).

4) Ground state @ of the energy operator H(g) does not depend
on g and satisfies P® = H(g) ¢ =0.

5) There exists a vector distribution @(k|g) [one-particle state of
H(g)] that continuously depends on g and satisfies the following
conditions:

a) H(g) ®(k|g)=w(k|g) ®(k|g), where w(k|g) is a positive smooth
function of k, g and a strictly convex function of k;

b) PP(k|g)=k®(k|g),

c) {P(klg), d(K'|g)) = (k- k),
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d) for every koe E*, 0<g,<1 one can choose such an operator
A e W(0), that

(ko |go), A®) +0.

6) Every point (w, k) belonging to multi-particle spectrum of
operators (H(g), P) [i.e. to spectrum of these operators in subspace
orthogonal to @ and &(f'|g) = f(k) ®(k|g) dk] satisfies > w(k|go)+e
if k, g are sufficiently near kg, g, (here &> 0).

7) Ifg(r)isasmooth function, then the evolution operator U(t,, t,|g(t))
corresponding to time-dependent Hamiltonian H(g(t)) can be constructed
by means of multiplicative integral [i.e.

Ultsstolg(e) = Jim TT exp(~iH(g() 4z,

in the sense of norm limit].

We shall fix now a smooth even finite function h(t) of real T which
satisfies 0 < h(t) £ 1 anywhere and h(z) = 1 in some neighbourhood of the
point T=0. The radius of this neighbourhood will be denoted by o
and the radius of the support of function h(t) will be denoted by 4 [i.e.
h(t) =1 for |z] £ 6 and h(z) =0 for |1] = 4].

The evolution operator corresponding to the time-dependent
Hamiltonian H(h(at)) will be denoted by U,(t, t,) [in other words
Uy(t, to) = U(z, to [ h(x))].

We shall consider the set B of the operators which can be represented
in the form

A=Y 4, (1)

1

s

n

where )
An € gI((On) B nlLrg nk”An“ =0

for arbitrary k (here O, is a sphere:
0, ={x|lx|<n}).

Under the conditions listed above one can by Haag-Ruelle methods
construct for each Hamiltonian H(g) the Mpller matrices S, (g) as
operators mapping from an “asymptotic space” i, into #. The
asymptotic space S, is defined as the space of the Fock representation
of the CCR, its vacuum vector is denoted by 6:

[b(k), b(k)]=[b" (k),b" (K)]=0,  [b(k),b"(kK)]=d(k—k), b(k)0=0.

The scattering matrix S(g) is defined by the formula S(g)=S%(g9) S_(9)
and acts in .
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It is convenient to define the Mgller matrices (for any fixed g) in the
following way. Let us call an operator B € B a “regular creation operator”
if it can be represented in the form

B={o(x,t) A(x, t) dxdt

where ce %1, AeB and if it satisfies the conditions B*® =0, B®
is a one particle state [i.e. B® =&(f)]. Now S, are those isometric
operators from S, into 5 which for arbitrary regular creation operators
BY .. B™ and smooth, finite functions ¢,(k),..., ¢, (k) satisfy the
equality

lim BY(qy,1) ... B"(g,, ) =Ssb" (f;0) ... b* (£,8)0. ()

t—>t o
-Here , .
BY(g;, 1) = ¢i(x) BO(x, 1) dx,

b (fip) = filk) (k) b (k) dk .
The functions @ and f; are given by the formulae:
Pi(x)=(2m)73 [ e ieWrTikxg (k) dk,
BY® =a(f).
Following Haag-Ruelle considerations [3], [4] one can verify that

operators S, exist and are defined uniquely by Eq. (2). (For details see [2].)
We can now state our main theorem.

Theorem. Under conditions 1)—7) one can prove the equalities

S-(1)=slim slim U,(0,1)5-(0) W), ©)
. (1)=slim slim U,(0,1)S.,(0) W,(0) @

where
W, (1) =exp(i | r,(k|t) b* (k) b(k) dk),

el ) = oo (k| (o) dx

By means of adiabatic Mgller matrices the Egs.(3),(4) can be
represented in the form

S_(1)=slim 5,0, — o0) S_(0) exp(i | ¢,(k) b™ (k) b(k) dk)
=slim 5,(0, — o) exp(i J 0.(K) aii (k) a;, (k) dK)
S (1) =slim S,(0, + 00) exp(—i | 4(K) agu (k) aoui(k) dK) ,

! & denotes as usual the space of smooth functions decreasing faster than any power
at infinity.



Adiabatic Theorem 37

where .
0,(k)= [ (w(k|h(x1))— a)(kIO))d1:=%j w(k|h(c)) — w(k|0)) do

(=}

— 0

= lim_(r,(k|0) — to(k]0)),
ai,(K)=S_(0)b(k) S='(0), o (k) =5.(0) b(k) 53 (0)

— in- and out-operators corresponding to the energy operator H(0).

In the proof of (3), (4) we shall use some lemmas. First, we introduce
in the set B a topology by means of the set of norms ||A|,, where || 4]|,
denotes the greatest lower bound of such C that the operator 4 can be
represented in the form (1) with |A4,]| £ Cn™ %

Let T be a space of the piecewise continuous functions of 4 variables
decreasing faster than any power, with topology defined by the set of
norms

loll, =suple(x, O] (1 + [x] + [¢)*.

Lemma 1. If A, Be B, A, u are complex numbers, 0 < g <1, (x,t) € E*,
peT, g(r) is a smooth function with values in [0; 1], then operators
A(x, tlg), f o(x,t) A(x, t|g) dxdt are infinitely differentiable in B with
respect to g and operators

AA+uB, AB, A%, A(xtlg)

a m
Ults, tolg(v)) AU(to, t119(c))

belong to B and are continuous with respect to A, B, ¢, g, A, 1t in the topology
of B (in particular, this means that B can be considered as a topological
x-algebra). For arbitrary N one can choose such a function oy(A, B)
continuously depending on A, Be B that the following inequality holds:

ILU (21, 0 19(x) A(x) Ulto, ty 19(r)), Bl

®)
L+t —tl"
= Gn(A’ B) 1 + lx|N s
in the case g(t)= g we obtain that
{4t
A(x, t]g), B]II £ _—
ILA(x, t1g), Bl| = on(4, B) T (6)

The proof of this lemma can be easily obtained from conditions
1), 2), 3), and 7).

Lemma 2. One can find such real function A(kl|g) that for every
AeB the function {**19(k|g), ADY is smooth. For arbitrary smooth
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Sfinite function f(k|g) one can choose a family of regular creation operators
B which is smooth (infinitely often differentiable with respect to g in the
topology of B) and satisfies

Blo=| f(k|g) e 19 d(k|g) dk .

Let A,, A, be two smooth families of operators, A; @ =0. By means
of inequality (6) one can prove that

m

amQ x|g)

' i+ lxl”
o(x]g) =< A4y(x) @, 4,0> = <[4, , A,(x)] D, D) ,

where

m and N are arbitrary integers. One can conclude from this estimate
that the function | e"**o(x|g) dx is smooth.

Let us consider the set F of functions having the form {®(k|g), B,®)
where B, is a smooth family of regular creation operators. If v, (k|g) € F,
r,(k|g) € F then the function

r1(klg)ra(klg)=(2m) " [ (B(x) @, BP ) &' dx

is smooth. Furthermore, for every k,e F?, 0<g,<1 we can take a
smooth family of regular creation operators B:4= [a(, x|g) A(x, t|g)
dxdt, where A is the operator satisfying the condition 5d), &(t, x|g)
is the Fourier transform of a(w, k|g), the function a(w, k|g) vanishes for
(w, k) belonging to the multi-particle spectrum of H(g), P and for (w, k)
in the half-space w =<0, a(w(kylgo), kolgo)+0. The function ry(klg)
corresponding to this family does not vanish for k=k,, g=g,. These
two remarks are sufficient to prove the existence of such real function
A(k|g) that for arbitrary r(k|g)e F the function exp(iA(k|g))r(k|g) is
smooth (the proof is given in the appendix to [2]; it is based on the
topology of fibre boundles). The function A(k|g) satisfies the conditions
of the lemma.

It is easily seen that from the smooth family of regular creation
operators B/ satisfying B/ ® = [ e'**19 f(k|g) ®(k|g) dk one can con-
struct the famlly Bl satlsfymg Bleg = e*k19 f(k|g) p(k|g) D(k|g) dk
by means of the formula

B ={ §(x]g) Bj(x) dx.

With the help of this observations one can construct the operators
B/ from the operators By# if the function f(k|g) has sufficiently small
support. Arbitrary smooth finite function f(k|g) can be represented
as a sum of smooth functions with small supports; using this repre-
sentation one can construct the operators B/ for this function.
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Further we shall replace without change of the notation the vector-
valued distribution @(k|g) by exp(iA(k|g)) ®(k|g) [this distribution
satisfies the conditions 5a)-5d) and consequently can be considered
as one-particle state].

We shall also suppose that

<q>(k|g>, = ¢(k’|g>>

[one can easily see that this equality is fulfilled by the corresponding
choice of the function A(k|g)].

A
Lemma 3. If h(t)=0 for 1 Zat, (i.e. to = —7> then

U, (t; to) @(f|0) = exp (ir,(P|1) — ira(PIto))( i otjﬁj(flat))

Jj=0
+O€S+17]s+1(a,f, L, tO)a

where £;(f'|0) is defined by recurrence from equations

0 () - o(PIH)) (1),
(S ot 100 ) =0,

So(flo)=D(f (o)),
éj(f|0'0)=0 for jz1,00<—-4,

||'75+1(a»f, L, tO)H §C,

where C does not depend on t, t,, o« but depends on f and s (here f and f'
are smooth finite functions).

For the proof we shall note that the vector ¥(t)=U,(t,t,) @(f]0)
satisfies the equation

and

i—— = H(h(ar)) V(1) .

By the change of the variable o =at this equation can be represented

in the form
io -‘% — H(h(0)) ¥(0). )
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We shall choose the solution of the Eq. (7) in the form

N

V(o) =exp (—;"f w(Plh(a'))do’) [( > afé,-(flo)) ot g 1ol 0)|

j=0

The function #,, ,(f, o| o) satisfies the equation

dn.. 4z,
i P 1D, (10 0) — (P 11 tlo) i 21D

with initial condition Ns+1(f>lo9)=0; from this equation and the

inequality?

< const one can readily obtain an estimate

const
s+ (f,alo)| £ T

Taking into account that 5 (f,a|o)=E&(f|o)+ans,(f,alo) we see
that [n,(f, «|0)| < const.
This proves the lemma.

Lemma 4. For every smooth finite function f one can find an operator
DI ;e B which is infinitely often differentiable with respect to ¢ in the
topology of B and satisfies E(f|6)=DL ® (here s=0,1,2, ...,
— 00 <0 <o)

For s =0 one can take Da o = B, where Bf are operators constructed
in Lemma 2. For s > 0 we shall construct the operators D! ; by recurrence.
First consider a vector {,(f|o) which is defined by the equations

2 éma) (H(h(0)) — o(P|h(a))) {,(f 10),

L (flo), @(f'|h(0))>=0.

This vector can be represented in the form

o
Lflo) = {H (o), PIiGe) =110 ®

where y(w, k|g) vanishes for w = w(k|g) and is equal to i(w —w(k|g))™*
if kesuppf and (w, k) belongs to the spectrum of operators (H(g), P)
but w =+ w(k|g). The function y(w, k|g) can be chosen smooth (infinitely
often differentiable with respect to all variables) and vanishing for
|k| = const. By means of the Eq. (8) one can write that

{(flo)=[7(t, x|h(o)) E, ;1 (x. t|h(0)) Ddxdt

where J(t, x|g) is the Fourier transform of y(w, k|g), EL ;_, = d—d- DI ..

2 This inequality follows from Lemma 4.
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Applying Lemma 1 one can state that the operator
Fl =[%(t x|h(0)) EL ;_ (x, t|h(0)) dxdt

belongs to the algebra B and is infinitely often differentiable with
respect to o.
To complete the proof it is sufficient to note that

&(flo)=L(flo)+ D(4, of | h(0)
where the function 4, (k) is defined by the equations

075 5(K) = o /d{(flo) ,
520 g0 778 die= (L1 a1

Ao s(k)=0 for o=-4.

This permits us to choose the operator D/ ; as
Ao, s
D£,S=Fo{s+Bh(a’)f'

(One can prove that the function 4, (k) is smooth and consequently
the operator D/ is infinitely often differentiable with respect to o.)

For ¢ £ — 4 we obtain D£,5=D£A,s~ For g e[—4,d] one can prove by
recurrence that

04, (k)
22 = S = Ta,sVT
=0, (fle)=0, F/,=0, ===

Lemma 5. If f(k), p(k) are smooth finite functions, then the vector

ZO’.S
—0, DI =B/,

I(8)=U,(t, to) S-(0) W, (1) b* (fP) 6,
where ty < —%, can be represented in the form

r©=9,,2+R/)

where

N

Q=] ¢"*(x) ( > Och{t,,-(x)) dx,

j=0
§"*(x)=@m) > | o (k) ek, ©)
9"*(k) = o (k) exp(ir, (k|1)
IROISC(f, 9 2"t

Indeed, it is easily seen that

I'(t) = Uy(t, to) @(f'*|0).
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Combining the assertions of Lemmas 3 and 4 we see that the vector
I'(t) can be written in the form

N

I(t)=exp(ir (P|t)— ira(Plto))( Y och{t‘f;."’“) +R,(1)
j=0
To complete the proof one must use the fact that Dﬁf‘}“"“ can be replaced
by
[ ¢%(x) DY, (x) dx

(for j=0 this fact is established in the proof of Lemma 2, for j>0 it
follows from the analysis of the proof of Lemma 4).
From Lemma 5 and the equality U,(t, t) U,(t, to) = U,(t', t,) one can
deduce that
Ua(tla t) Qt,s¢ = Qt’,s© +Rs(t/’ t) (10)

where |R (¢, )| £ Co*™!, the constant C depends on f and ¢.
Lemma 6. Let ¢(k) be a smooth finite function. Then

[p-*(x)| < Cle| =32, (11)
f1@ ()l dx < C(1+[t*?). (12)
If o(x, Vip) Z &lt], then
Gt .__C_NL
[p*(x)| = T (13)

Here ¢"*(x) is defined by formula (9), N is an arbitrary integer, ¢> 0,
C does not depend on x, t, and «, V}(¢) denotes the set of points which
can be represented in the form —gradr,(k|t), where k € supp¢.

The estimate (13) follows easily from the well-known equality

[ e_i”(")qo(k) dk:fe_ia(k}(LNq’) (k)dk s

where L is an operator defined by the formula

. grad o
Ly)(k)y=—-d =
(Ly) (k) iv(uy), u eradol?
The proof of the inequality (11) is similar to that of the inequality (7)
in [2]. The estimate (12) follows from the inequalities (11) and (13).

Lemma 7. Let ¢,(k), p,(k) be two finite functions with disjoint
supports. Then there exists such ¢>0 that the distance between the sets
Vi(p,) and Vi(p,) is not less than clt| (here V}!(p,) is the set of points
having the form —gradr,(k|t) where k e suppo,).
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Using the strict convexity of the function w(k|g) one can say that
d*w (k|g) = Adk?* where k runs over a bounded set, A is positive and does
not depend on k and g (the second differential is taken with respect to k).

Therefore
d?r,(k|t) = Alt| dk?

i.e. the second derivative of the function r,(k|t) in arbitrary direction
is not less than Alt|. In particular, we can assume that

kl_

Ik——kzl’ v(o)=r,(k, +oe|t)
1 — Ky

e =

and conclude that v'(6) = Alt]. It is evident now that
|gradr,(k, [1) — gradr,(k, [0)] 2 [V'(Iky — k,[) = v'(0))
2 Altl [ky — k| -
This completes the proof.

Lemma 8. If fi(k), f,(k), @,(k), p,(k) are smooth finite functions
and functions @ (k) and @,(k) have disjoint supports, then

Cle[Y
1+ N

I[U(t+7,0) QU (Lt +7), QF, -

where
N

0= a1 3, 2D (o) .
Jj=0
C does not depend on t, 1,0, and o, N is an arbitrary integer, |o| < |1).
The proof is based on Lemmas 6, 7 and the estimate (5).

Lemma 9. Let ¢,(k),..., 0, (k) be smooth finite functions, having
disjoint supports, fi(k), ..., f,(k)-smooth finite functions, and t=t,,
toS -4, t<—an"% a>0,e>0,s=3n+ 1. Then the vector

¥, (6) = U, (t, t6) S (0) Wy(to)b ™ (f11) ... b (f,,) 0
can be represented in the form
P, =011 ... 0d +n(t) (14)
where 5
Iz@I = Clt —tol 0™,
C does not depend on t, t, and o.

Without loss of generality one can assume that ¢ and ¢, are integers,
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We shall give an inductive proof of the Eq. (14). From (10) we conclude
that

Y+ 1)=U,t+1,1t) P,
U+ 1,000 ... 00 VUt +1) Uyt + 1,1) Q@
RU+1,000 ... 007 DU, t4+1) U(t+ 1,1 QU VUL (4, t4+1) Q) (@

The mistake made by the using of the Eq. (10) can be written in the

form
U+ 1,0 081 ... Q0 DU t+ 1) Ryt + 1,1)

where |R(t+ 1,1)| < Ca**! and every seminorm of Q) in B is less than
C(1+ [¢|*?) [the last fact follows from the inequality (12)]. Using these
observations and the inequalities |t| < |t,| =4, s=3n+1 one can prove
that we made a mistake not exceeding const oc2 Furthermore, with the
help of Lemma 8 one can see that

Vot + D) U+ 1,000 .. Q07 U (e, t +1) Oy U, (e + 1,0 Q1 V.

To study the mistake one must apply besides Lemma 8 the inequality
t>—ao~° and the estimate for QY given above. We obtain that the
mistake is less than const. «¥, where N is an arbitrary integer. Then
we use the Eq. (10) and conclude that

an(t + 1) ~ Ua(t + 17 t) Qg,ls) e Qg','s- 2 Ua(t7 t + 1) Qg'jf-) l,ngr-'l——ll,s):d5 .
Using several times the Eq. (10) and Lemma 8 we obtain that

~ -1 1
!Pn(t'i' 1)~ Q?—?l,s g'-li—l,g . Q; )1 s
~ 1 2
~ Qi+)1,sQ§+)1,s . Q$'21 ,S
By each of transformations we make a mistake not exceeding const o?
The number of the induction’s steps is equal to |t — t,|; hence, the summary

mistake is less than const. |t —ty| «2. Lemma 9 is proved. y

To complete the proof of our theorem we must take t = — o=

in the statement of Lemma9 (here 6 is such a number that h(r)=1
on [—6;0d]). Then we can assert that

St a(x) (P (x)_(zn) 3 j‘ e—zw(k|1)t+1kxq) (k) dk
Dfso=B{t, DIy ;=B{%n, (15)

Y ()~ ﬁ (j @(x) (jgo a"Df_“é,j(x)) dx) i)

[the mistake in (15) is less than const o].
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From the definition of the Mgller matrix S, and from the Eq. (15)
we see that

lim lim_ U,(0,7)S_(0) W,(@) b* (7, 3,) ... b* (5, 0

 tim exp (—iHu)%) U, (—% ——j:—)s_«n Wa(—%)b%al) bt

(fu3) 0
_hmexp<—1H(1 ~a) ( ) (16)

( (x)(i ol B 4(x, t|1)dx>)

([ @ix) B{i(x, t] 1) dx) @

lfl
i, 1

=S_ ()b (f1@1) ... b" (J,@,) O

To deduce the statement of the theorem from (16) it is sufficient to
remember that when limA4,x = Ax for a dense set of vectors x and the
norms of operators 4, form a bounded set, one can assert that 4 =slim A4,
(We proved our theorem for the operator S_; the proof for the operator
S, is completely analogous).

Consider some generalization of the theorem proved above. We
remark firstly that at the cost of the slight strengthening of the condition 7)
one can weaken the requirement on the function h(r) [it is sufficient
to assume that i(7) is an even continuous function which vanishes fast
at infinity and satisfies #(0)=1.]. Furthermore, in the formulation of
our main theorem one can consider immediately a topological algebra B
with properties listed in Lemma 1 in the place of family of algebras
A () satisfying conditions 1)—3). The theorem remains correct because
the proof uses these properties and conditions 4)—7) only.

In this form the theorem can be easily extended to the case when
the scattering theory is defined by the operators H(g), P and a family B
of unbounded operators. One of possible extensions is the following.
We suppose, as previously, that a momentum operator P and a family
of energy operators H(g) act in Hilbert space 5. Let D be a dense linear
subset of # which is invariant with respect to operators e'** and
Ul(t,,to]g(r)) and contains the common ground state @ of operators
H(g). We consider a complete locally convex topological x-algebra B
which consists of operators acting in D (i.e. B is assumed to be a complete
locally convex topological vector space of operators such that multi-
plication of operators and involution A— A% are continuous in B).
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A slight modification of our proof of Egs. (3), (4) permits us to assert that
these equalities remain correct for Mgller matrices, corresponding to
operators H(g), P and algebra B, if the conditions 1)—3) are replaced by
the following ones:

a) One can find such a seminorm p(4) in B that [{AP, )| =< p(4)
(i.e. the function A— (AP, @) is continuous);

b) for every 4B, 0 < g =1 and smooth function g(z) the operators
Ulty, to]g(t)) A(x) Ulty, t,]g(1)) belong to B. If F is a compact subset
of B, p —a seminorm in B, one can find such a seminorm ¢ in B and such
an integer that

p(U(ty, to1g(1)) A(x) Ulto, t; 1g(0) < (1 + ey — tof* +[xI") q(A)
for AeF. In particular, A(x,t|g)e B; we assume that A(x,t|g) is a

continuous function of x, t, g and a smooth function of g in the topology
of B. If A runs over a compact set F CB

P 4G t1a)) S (1-+ 1+ 319 g4

(here p is arbitrary seminorm in B, m is arbitrary integer, the seminorm g
in B and the integer k depend on p, F, and m).

4(4) 4(B)
1 .

9 p(CAG). BY = 47

(Here A, B run over a compact set F CB, p is an arbitrary seminorm
in B, N is an arbitrary integer. The seminorm g depends on p, F, and N.)
In conclusion we shall give some comments on the relationship
between the scattering matrix and its adiabatic analog in the Hamiltonian
approach.
Let H be a translationally invariant Hamiltonian of the form
H=H, + V, where

H, ={ e(k) a* (k) a(k) dk,,
V=Y [Vrkys oo knlly, L) a* (ky) ... a* (k,)
ca(ly) ... a(l) d"kd"l,
Vi llers skl lyy s L) =V (s o ke Ly, s 1)

(kg oty — Ly — e — 1)
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a” (k), a(k) satisfy CCR. We assume that ¥, , belong to the space &
and ¢(k) is a strictly convex smooth function which satisfies ¢(k, + k,)
< &(ky)+ e(k,) and has all derivatives increasing slower than some power.
The Hamiltonian H = H,+ V is considered as a formal expression.

Firstly, we consider the case V,, , =0 (i.e. the case of Hamiltonian
without vacuum polarization). We shall use perturbation theory,
considering Vas a perturbation. In our case we do not obtain divergences
by calculation of ¢'#'; in other words one can say that the expression
(17) determines in the frames of perturbation theory a self-adjoint operator
in Fock space. Let us consider the operator Hy+ gV depending on
parameter g together with momentum operator P = | ka™(k)a(k)dk
and algebra B of operators

A=Y funlkys Kyl L) a™ (ky)..a™ (ky)a(ly)...al,)d"kd'l - (18)

where f,, , € &, the sum in (18) is finite. B can be provided with a topology
of inductive limit: B =indlim B,, where B, is the space of operators
having the form (15) with m + n <r in the topology induced by that of &.
The operators H(g)=H, +gV, P and algebra B satisfy the conditions
of validity of Egs. (3), (4) in each order of perturbation theory. Unfortu-
nately, this observation is not sufficient to assert that Egs. (3)—(4) hold
in each order of perturbation theory. However the analysis of the proof
shows that for these equalities can be proved in the frames of perturbation
theory after some partial summation of perturbation series.

In the general case Hamiltonian of the form (17) defines an operator
in the Fock space only after volume cut-off. In this case we can not
construct objects satisfying conditions of the theorem proved above
even in the frames of perturbation theory. However there exists a
modification of our proof which leads to the equality

S= ilir})l gllrg io W2S2W2ih . (19)
Here S is the adiabatic S-matrix corresponding to the family of
operators HY +¢gV*®, operators HY and V¥ are obtained from H, and V
by means of periodic volume cut-off, W2 is a trivial phase factor (i.e. a
unitary operator of the form exp(((C + 2r,a; a,))). Operators Hy, V¥,
W2, §2 act in the Fock space F, corresponding to the finite volume Q
and i, denote the natural imbedding of the space F,, into the Fock space
corresponding to infinite volume. The proof of the Eq. (19) is also based
on the perturbation theory and uses partial summation of perturbation
series. The first heuristic proof of the Eq. (19) was given in [1]. Methods
of the present paper permit to formulate (19) as a rigorous result.
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