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Abstract. It is shown that M011er matrices S+ and scattering matrix S in axiomatic
field theory can be expressed through their adiabatic analogs. In particular, it is proved
under certain conditions that 5_ = slim Sα(0, — oo) WΛ where W^ is a trivial phase factor

α-^O

[i.e. a unitary operator of the form exp^ § r(k) a+(k) a(k) dk]. Corresponding results in
Hamiltonian approach are discussed.

Let H(g) be a family of energy operators depending on parameter g,
O^^^l, and let h(τ) be an even continuous function decreasing fast
at infinity and satisfying h(ϋ) = 1 and 0 ̂  h(τ) rg 1 (one assumes usually
h(τ) = e~^\ We define an adiabatic S-matrix as an operator

Sa = Sα(oo, - oo) - slim Sα(ί, ί0)
ί-* oo,ίo~* ~~ oo

where α is positive,

Sβ(ί, ί0) = exp(z#(0) ί) UΛ(t, ί0) exp(- iH(0) ί0)

and ί/α(ί, ί0) is a solution of the equation

. B U Λ ( t , t Q )

dt
= H(h(*t))Ua(t,t0)

with the initial condition C7α(ί0,ί0) = l (i.e. UΛ(t, ί0) is an evolution
operator for the timedependent Hamiltonian H(h(at))~]. Adiabatic
M011er matrices are defined as Sα(0, ± oo) = slim Sα(0, f).

f->± oo

The main result of the present paper is the proof of equalities
connecting the scattering matrix S and M011er matrices S+ with their
adiabatic analogs in axiomatic quantum field theory (this result can be
called an adiabatic theorem). Corresponding results in a Hamiltonian
approach [1] will be discussed briefly at the end of the paper. It is
important to note that in constructing the adiabatic S-matrix we need not
add counter-terms to the Hamiltonian H: thus the renormalization
of one-particle energy and field operators does not enter in this construe-
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tion (this is an essential distinction between our result and the usual
approach to the adiabatic hypothesis).

We list now the conditions of our main theorem. We shall proceed
from axioms of Haag-Araki type but will not require Lorentz-invariance
and microscopic locality. For simplicity we assume that there is only
one type of particle and that all energy operators H(g) in the family
considered have the same ground state (vacuum) Φ. The generalization
to several particle types is simple. On the other hand the discussion of
the case with vacuum polarization involves a more elaborate procedure
about which some remarks will be made at the end.

Specifically we shall suppose that a C*-algebra 21(0) of bounded
operators in a Hubert space 2tf is associated with every bounded open
region Θ in Euclidean space E3. We shall consider in the space ffl the
momentum operator P and the energy operator H(g) depending on a
parameter g, where O r g g S j 1. The operator e~iPxAeiPx will be denoted
by A(x) and the operator Qxp(ίH(g) ί)^(jc)exp( — ίH(g) t) by A ( x , t \ g ) .

Our axioms are the following:

1) If ΦιC<92,
then 8ϊ(^ι)C2l(02).

2) If A e 21(0), then A(x, t\g)ε 2I((0 + *),), where Θ + x denotes the
translate of (9 by the 3-vector x and (& + x\ is ^-neighbourhood of
(9 + x [i.e. ξ e (0 + x\ if and only if the distance ρ(ξ, Φ + x) ̂  |ί|].

The operator A(x,t\g) is infinitely often differentiate with respect
to g and continuous with respect to x,t,g: for every m

3) If

then

^0(01,02)*

where N is an arbitrary integer, ρ(Ol9Θ2) ^ the distance between (9l

and (92 (macroscopic locality in the sense of Araki).
4) Ground state Φ of the energy operator H(g) does not depend

on g and satisfies PΦ = H(g}Φ = Q.
5) There exists a vector distribution Φ(k\g) [one-particle state of

H(g}~] that continuously depends on g and satisfies the following
conditions:

a) H(g)Φ(k\g) = ω(k\g)Φ(k\g\ where ω(k\g) is a positive smooth
function of k, g and a strictly convex function of k:

b) PΦ(k\g) = kΦ(k\g\
c)
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d) for every fc0e£3, 0^^0^1 one can choose such an operator
A e 21(0), that

6) Every point (ω, k) belonging to multi-particle spectrum of
operators (H(g),P) [i.e. to spectrum of these operators in subspace
orthogonal to Φ and Φ(f\g)=$f(k)Φ(k\g)dk] satisfies ω>ω(k\g0) + ε
if fc, g are sufficiently near fc0, g0 (here ε > 0).

7) If g(τ) is a smooth function, then the evolution operator £/(ί1? t0\g(τ))
corresponding to time-dependent Hamiltonian H(g(τ)) can be constructed
by means of multiplicative integral [i.e.

n

U ( t 1 , t 0 \ g ( τ ) ) = lim Y[ Qxp( — iH(g(τί)))Δτi

in the sense of norm limit].
We shall fix now a smooth even finite function h(τ) of real τ which

satisfies 0 ̂  h(τ) ^ 1 anywhere and h(τ) = 1 in some neighbourhood of the
point τ = 0. The radius of this neighbourhood will be denoted by δ
and the radius of the support of function h(τ) will be denoted by A [i.e.
h(τ) = 1 for |τ| ̂  δ and h(τ) = 0 for τ ^ A}.

The evolution operator corresponding to the time-dependent
Hamiltonian H(h(aτ)) will be denoted by Ua(t, ί0) [in other words
t/β(ί,ί0)=^ίolΛ(ατ))].

We shall consider the set 33 of the operators which can be represented
in the form

oo

A= Σ An (1)

where

for arbitrary k (here Gn is a sphere:

Under the conditions listed above one can by Haag-Ruelle methods
construct for each Hamiltonian H(g) the M011er matrices S+(g) as
operators mapping from an "asymptotic space" J^as into Jf7. The
asymptotic space J^as is defined as the space of the Fock representation
of the CCR, its vacuum vector is denoted by θ:

[_b(k\b(k')~] = lb+(klb+(k')~]=Q, \b(k\b+(k'}\ = δ(k-k}, b(k)θ=Q.

The scattering matrix S(g) is defined by the formula S(g) = S+(g)S_(g)
and acts in «#!.
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It is convenient to define the M011er matrices (for any fixed g) in the
following way. Let us call an operator B e 23 a "regular creation operator"
if it can be represented in the form

B = $σ(x,t)A(x,t)dxdt

where σe^1, .4e33 and if it satisfies the conditions £ + Φ=0, BΦ
is a one particle state [i.e. BΦ = Φ(/)]. Now S± are those isometric
operators from Jfas into ffl which for arbitrary regular creation operators
B(1\...B(n} and smooth, finite functions <p±(k\ ..., φn(k) satisfy the
equality

lim B^(φ1,t)...B^(φn,t) = S+b + (fίφ1)...b + (fnφn)θ. (2)
ί-> ± oo

Here

The functions φ and/i are given by the formulae:

φ\(x) = (2π)~ 3 { £Γ iω^t+ίkx

φi(k) dk ,

Following Haag-Ruelle considerations [3], [4] one can verify that
operators S+ exist and are defined uniquely by Eq. (2). (For details see [2].)

We can now state our main theorem.

Theorem. Under conditions l)-7) one can prove the equalities

S_ (1) - slim slim I7α(0, ί) S_ (0) WΛ(t) , (3)
α-*0 f-> - oo

S+ (1) = slim slim t/β(0, ί) S+ (0) WΛ(t) (4)
α^ O ί-> + oo

By means of adiabatic M011er matrices the Eqs. (3), (4) can be
represented in the form

S_ (1) = slim S«(0, - oo) S_ (0) exp(i | e,(k) b+(k) b(k) dk)

= slim Sβ(0, - QO) exp(i j ρβ(fc) α,+

n(fc) αin(Λ) dfe) ,

S+ (1) = sjim Sβ(0, + oo) exp( - i f ββ(fc) α0

+

ul(fc) αout(fc) dfc) ,

1 5̂  denotes as usual the space of smooth functions decreasing faster than any power
at infinity.
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where

ρβ(fc)= J (ω(ft|Mατ))-ω(fc|0))dτ= — J (ω(fc|λ(σ))-ω(ft|0))d(7

α in(fc) = S_ (0) b(k) SI 1 (0) , αout (ft) = S+ (0) ft(fc) 5; HO)

- in- and out-operators corresponding to the energy operator H(0).
In the proof of (3), (4) we shall use some lemmas. First, we introduce

in the set 93 a topology by means of the set of norms \\A\\ λ9 where \\A\\ λ

denotes the greatest lower bound of such C that the operator A can be
represented in the form (1) with \\An\\ ^Cn~λ.

Let T be a space of the piecewise continuous functions of 4 variables
decreasing faster than any power, with topology defined by the set of
norms

Lemma 1. If A, Be 33, λ, μ are complex numbers, 0 ̂  g £Ξ 1, (x, t) e E4,
φeT, g(τ) is a smooth function with values in [0; 1], then operators
A ( x 9 t \ g ) 9 § φ ( x 9 t ) A ( x 9 t \ g ) d x d t are infinitely differ entiable in 33 with
respect to g and operators

βm

λA + μB, AB9 A\ -j—A(x9t\g)9

d
j φ(x, t) A(x, t\g) dxdt , U(tl9 t0\g(τ)) AU(tθ9 1, \g(τ))

belong to 93 and are continuous with respect to A, B, φ, g, λ, μ in the topology
of 93 (in particular, this means that 33 can be considered as a topological
*-algebra). For arbitrary N one can choose such a function σN(A,B)
continuously depending on A, 5e33 that the following inequality holds:

A(x) [7(t0, ί t \g(τ)\B}\\

in the case g(τ) = g we obtain that

\ \ l A ( x 9 t \ g ) 9 B ] \ \ £ σ N ( A 9 B ) ί^fC (6)
i + \x\

The proof of this lemma can be easily obtained from conditions
1), 2), 3), and 7).

Lemma 2. One can find such real function λ(k\g) that for every
A e 33 the function (elλ(k\9)Φ(k\g),AΦy is smooth. For arbitrary smooth
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finite function f(k \ g) one can choose a family of regular creation operators
B which is smooth (infinitely often differentiable with respect to g in the
topology of 93J and satisfies

Bf

gΦ = lf(k\g}eiλ(k\9}Φ(k\g)dk.

Let Ag, A'g be two smooth families of operators, A* Φ = 0. By means
of inequality (6) one can prove that

<3m C

where
ρ(x\g) = (A'g(x) Φ, AgΦy = <[4j, A'g(x]] Φ, Φ> ,

m and N are arbitrary integers. One can conclude from this estimate
that the function J elkxρ(x\g) άx is smooth.

Let us consider the set F of functions having the form <Φ(fc|0), BgΦy
where Bg is a smooth family of regular creation operators. If ^(/c |0) e F,
r 2 (fc |^)eF then the function

is smooth. Furthermore, for every & 0eF 3, 05Ξ0 0 5Ξ1 we can take a
smooth family of regular creation operators Ba

g'
A = Jα(ί, x \ g ) A ( x , t\g)

dxdt, where A is the operator satisfying the condition 5d), aί(t,x\g)
is the Fourier transform of α(ω, k\g), the function α(ω, k\g) vanishes for
(ω, k) belonging to the multi-particle spectrum of H(g), P and for (ω, k)
in the half-space ω^O, α(ω(fc0|00), fc0|00)Φθ. The function r 0 ( k \ g )
corresponding to this family does not vanish for k = k0, g = g0. These
two remarks are sufficient to prove the existence of such real function
λ(k\g) that for arbitrary r(k\g)eF the function Q\p(iλ(k\g))r(k\g) is
smooth (the proof is given in the appendix to [2] it is based on the
topology of fibre boundles). The function λ(k\g) satisfies the conditions
of the lemma.

It is easily seen that from the smooth family of regular creation
operators Bf

g satisfying Bf

gΦ = J eiλ(k\g) f ( k \ g ) Φ(k\g)dk one can con-
struct the family Bf

g

φ satisfying Bf

g

φΦ = J e ί λ ( k l 9 } f ( k \ g ) φ ( k \ g ) Φ(k\g)dk
by means of the formula :

With the help of this observations one can construct the operators
Bf

g from the operators B^A if the function f ( k \ g ) has sufficiently small
support. Arbitrary smooth finite function f ( k \ g ) can be represented
as a sum of smooth functions with small supports; using this repre-
sentation one can construct the operators B^ for this function.
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Further we shall replace without change of the notation the vector-
valued distribution Φ(k\g) by exp(ίλ(k\g})Φ(k\g) [this distribution
satisfies the conditions 5a)-5d) and consequently can be considered
as one-particle state].

We shall also suppose that

/Φ(k\g\^-Φ(k'\g]J = 0

[one can easily see that this equality is fulfilled by the corresponding
choice of the function λ(k\gj].

Lemma 3. // h(τ) = 0 for τ ̂  αί0 (i.e. ί0 ̂  then

0))( Σ *jξs
V/ = o

+ α s + 1/? s + 1(α,/,Mo),

where ξj(f \ σ) is defined by recurrence from equations

=(H(h(σ))-ω(P\h(σ)))ξj(f\σ),

ξ 0 ( f \ σ ) = Φ(f\h(σ)),

ζ j ( f \ σ o ) = ® for j^ 1»"Ό^ — A ,
and

\\ηs+l(a,f,t,t0)\\£C,

where C does not depend on t,t0,a but depends on f and s (here f and f
are smooth finite functions).

For the proof we shall note that the vector Ψ(t)= UΛ(t, ί0) Φ(/|0)
satisfies the equation

dΨ
i—=H(h(xt))Ψ(t).

By the change of the variable σ = at this equation can be represented
in the form

i*^Γ=H(h(σ))Ψ(σ). (7)
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We shall choose the solution of the Eq. (7) in the form

The function η s + ΐ ( f , o t \ σ) satisfies the equation

ι + ι >

with initial condition ff s + 1(/, α|σ 0) = 0; from this equation and the

inequality2 —-
\dξ(f\σ)

^ const one can readily obtain an estimate
dσ

Taking into account that ηs(f, α |σ) = ξ s ( f \ σ ) + cιηs+]_(f, α|σ) we see
that ||^(/,α|σ)||^const.

This proves the lemma.

Lemma 4. For every smooth finite function f one can find an operator
D{ s e 93 which is infinitely often differ entiable with respect to σ in the
topology of 23 and satisfies ξ s ( f \ σ ) = D{ίSΦ (here 5 = 0,1,2, . . . ,
— oo<σ<oo).

For s = 0 one can take D{ 0 = B{(σ} where Bf

θ are operators constructed
in Lemma 2. For 5 > 0 we shall construct the operators D{ s by recurrence.
First consider a vector ζs(f\σ) which is defined by the equations

= (H(h(σ]] _ ω(p ! Mσ))) ς(/ ! σ) 9
do

This vector can be represented in the form

ζ,(f I σ) = γ(H(h(σ)), P \ h(σ)} dξs~ (8)

where y(ω, fc|g) vanishes for ω = ω(fc|gι) and is equal to i(ω — ω(k\g))'1

if fcesupp/ and (ω, fc) belongs to the spectrum of operators (H(g\P]
but ω Φω(fc|#). The function y(ω, fc|gf) can be chosen smooth (infinitely
often differentiable with respect to all variables) and vanishing for
\k\ ̂  const. By means of the Eq. (8) one can write that

where γ ( t , x \ g ) is the Fourier transform of y(ω, k\g\ E{ s_ ί = —-
' dσ s_ l.

2 This inequality follows from Lemma 4.
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Applying Lemma 1 one can state that the operator

belongs to the algebra 23 and is infinitely often differentiable with
respect to σ.

To complete the proof it is sufficient to note that

where the function λσtS(k) is defined by the equations

λσtS(k) = 0 for σ^-A.

This permits us to choose the operator Df

σ s as

Π/ _ pf , Ώλσ,sf
Uσ,S — Γσ,s~r Dh(σ) '

(One can prove that the function Aσ >s(fc) is smooth and consequently
the operator Df

σ s is infinitely often differentiable with respect to σ.)
For σ^—A we obtain Df

ρs = DίΔ s. For σe[ — (5, (5] one can prove by
recurrence that

dξJJ\S)_ r , f M = 0 Ff _ 0

 δλ 'W -o & =B}: f
Ί — v ? S s V J l u ^ u ? J σ,s — u' Λ — u > ^-'σ.s -L'l

Lemma 5. // f(k\ φ(k) are smooth finite functions, then the vector

Γ(t) = U.(t, ί0) 5. (0) Wς(

where t0 ̂  -- , can be represented in the form

= Qt>,Φ+R,(t)

where

/ = o
) = (2π)- 3 1 φ' 'ίft) β'**ίίΛ , (9)

(ί>α(fc I ί)),

Indeed, it is easily seen that

Γ(ί)=t/a(Mo)Φ(./φίo'Ί()).



42 A. S. Schwarz

Combining the assertions of Lemmas 3 and 4 we see that the vector
Γ(t) can be written in the form

) = exp(irβ(P|ί)-ίrβ(P|ί0)) Σ
\ j = o

To complete the proof one must use the fact that D{^to>α can be replaced
by

(for 7 = 0 this fact is established in the proof of Lemma 2, for j > 0 it
follows from the analysis of the proof of Lemma 4).

From Lemma 5 and the equality UΛ(t', ί) l/α(f, ί0) = UΛ(tr, ί0)
 one can

deduce that
Φ = Qt.tSΦ+R8(t'9t) (10)

where \\Rs(t', t)\\ ^Cαs+1, the constant C depends on /and φ.

Lemma 6. Let φ(k) be α smooth finite function. Then

(12)

Here φί>α(jc) is defined by formula (9), N is an arbitrary integer, ε > 0,
C does not depend on jc, ί, and α, V*(φ) denotes the set of points which
can be represented in the form — gradrα(fc|f), where kesuppφ.

The estimate (13) follows easily from the well-known equality

{ e-ίσ(k)φ(k) dk = J e'iσ(k\LNφ) (k) dk,

where L is an operator defined by the formula

The proof of the inequality (11) is similar to that of the inequality (7)
in [2]. The estimate (12) follows from the inequalities (11) and (13).

Lemma?. Let φi(k),φ2(k) be two finite functions with disjoint
supports. Then there exists such c>0 that the distance between the sets
V*(φ<ι) and V^(φ2} is not less than c\t\ (here V*(φ?) is the set of points
having the form —gradrα(fc|ί) where fcesuppφj.
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Using the strict convexity of the function ω(k\g) one can say that
d2ω (k\g)^ λdk2 where k runs over a bounded set, λ is positive and does
not depend on k and g (the second differential is taken with respect to k).
Therefore

d2rx(k\t)^λ\t\dk2

i.e. the second derivative of the function ra(k\t) in arbitrary direction
is not less than λ\t\. In particular, we can assume that

1 " 2 v(σ) = rβ(fc2+σ«|ί)I . . , .
\K1 — K2\

and conclude that v"(σ)^.λ\t\. It is evident now that

fc! | ί) - gradrα(/c2 1 *)| ̂  \v'(\k, - k2\) - v'(

This completes the proof.

Lemma 8. // f ι ( k ) , f 2 ( k ) 9 φ ί ( k ) , φ 2 ( k ) are smooth finite functions
and functions φ±(k) and φ2(k) have disjoint supports, then

+ τ, ί) ρ&> £/β(ί, ί + τ) , Q<2

+>β> J || £ -

w/zere

C rfoβs ?τoί depend on ί, τ, ρ, αnJ α, ΛΓ is απ arbitrary integer, \ρ\ ̂  |τ|.

The proof is based on Lemmas 6, 7 and the estimate (5).

Lemma 9. Let φ±(k\ ...,φn(k) be smooth finite functions, having
disjoint supports, fl (k), ...,/„ (k)-smooth finite functions, and t^t0,
ί0^ -^ t< -aoί~ε, a>Q,ε>Q,s^^n+ 1. T/ι^n the vector

Ψn(t)=Ua(t, ί0)5_(0) ̂ α(ί0)fe+(/ι^ι) .- b + (fnφn)θ

can be represented in the form

Ψn(t} = Q(^ Q(">

sΦ + π(t) (14)
where

| |π(t)| |^C|£-ί 0 |α 2,

C does not depend on t, t0 and α.

Without loss of generality one can assume that t and ί0 are integers,
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We shall give an inductive proof of the Eq. (14). From (10) we conclude
that

= U Λ ( t + l , t ) Ψ Λ ( t )

The mistake made by the using of the Eq. (10) can be written in the
form

where ||<Rs(t+ 1, ί)ll = Cαs+1 and every seminorm of Q®s in 93 is less than
C(l+ |ί|3/2) [the last fact follows from the inequality (12)]. Using these
observations and the inequalities \t\ ̂  |ί0| = £ , s ̂ f n + 1 one can prove
that we made a mistake not exceeding const α2. Furthermore, with the
help of Lemma 8 one can see that

Ψn(t+i)κUΛ(t+l9t)&y...Qr-»UΛ(t9t

To study the mistake one must apply besides Lemma 8 the inequality
ί> — αα~ ε and the estimate for Q^s given above. We obtain that the
mistake is less than const. αN, where N is an arbitrary integer. Then
we use the Eq. (10) and conclude that

Ψn(t + 1) * UΛ(t + 1, ί) Q{.V . . . β<7 2) U.(t, t + i) Qfl ! >sβ<rι!> Φ .

Using several times the Eq. (10) and Lemma 8 we obtain that

~ nW /)(«-!) /)(!) φ

By each of transformations we make a mistake not exceeding const α2.
The number of the induction's steps is equal to t — t0\: hence, the summary
mistake is less than const. \t — ί0| α

2. Lemma 9 is proved. . .
To complete the proof of our theorem we must take t= -- , ί 0 = --

in the statement of Lemma 9 (here δ is such a number that ft(τ) = 1
on [ — (5; δ]). Then we can assert that

) = (2π)~ 3 J e~ iω(kl 1)ί+ ifc

DϊόJ = Bf >''9 (15)

y.w « Π (ί Φί w ί Σ ̂ ^ j w
i = l \ \ j=0

[the mistake in (15) is less than const α].
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From the definition of the M011er matrix S+ and from the Eq. (15)
we see that

lim lim Ua(0,τ)S-(
α->0 τ-> - oo

(16)

lim Π ί #(*) Σ «?B*» * ''<(x, t\i)dxφ
' 00 V / = o

To deduce the statement of the theorem from (16) it is sufficient to
remember that when \imAnx = Ax for a dense set of vectors jc and the
norms of operators An form a bounded set, one can assert that A = slim An.
(We proved our theorem for the operator S_ the proof for the operator
S+ is completely analogous).

Consider some generalization of the theorem proved above. We
remark firstly that at the cost of the slight strengthening of the condition 7)
one can weaken the requirement on the function h(τ) [it is sufficient
to assume that h(τ) is an even continuous function which vanishes fast
at infinity and satisfies Λ(0) = l.]. Furthermore, in the formulation of
our main theorem one can consider immediately a topological algebra 93
with properties listed in Lemma 1 in the place of family of algebras
21(0) satisfying conditions l)-3). The theorem remains correct because
the proof uses these properties and conditions 4)-7) only.

In this form the theorem can be easily extended to the case when
the scattering theory is defined by the operators H(g\ P and a family 23
of unbounded operators. One of possible extensions is the following.
We suppose, as previously, that a momentum operator P and a family
of energy operators H(g) act in Hubert space ffl . Let D be a dense linear
subset of 2tf which is invariant with respect to operators eiPx and
U ( t 1 , t 0 \ g ( τ ) ) and contains the common ground state Φ of operators
H(g). We consider a complete locally convex topological *-algebra 93
which consists of operators acting in D (i.e. 33 is assumed to be a complete
locally convex topological vector space of operators such that multi-
plication of operators and involution A^A+ are continuous in 93).
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A slight modification of our proof of Eqs. (3), (4) permits us to assert that
these equalities remain correct for M011er matrices, corresponding to
operators H(g\ P and algebra 93, if the conditions l)-3) are replaced by
the following ones :

a) One can find such a seminorm p(A) in 93 that \(AΦ, Φy\^p(A)
(i.e. the function A^>(AΦ, Φ> is continuous);

b) for every A e 33, 0 ̂  g rg 1 and smooth function g(τ) the operators
U ( t ί 9 t Q \ g ( τ ) ) A ( x ) U ( t 0 , t 1 \ g ( τ ) ) belong to 93. If F is a compact subset
of 93, p — a seminorm in 93, one can find such a seminorm q in 33 and such
an integer that

p(U(tl9 f 0 1 flf(τ)) A(x) I7(ί0, ̂  |ff(τ)) g (1 + ̂  - ί0l f c + W*) «(Λ)

for ,4eF. In particular, ^4(jc, ί|0)e S; we assume that A ( x , t \ g ) is a
continuous function of jc, ί, g and a smooth function of g in the topology
of 93. If ^4 runs over a compact set F C 93

(here p is arbitrary seminorm in 33, m is arbitrary integer, the seminorm q
in 33 and the integer k depend on p, F, and m).

0

(Here A, B run over a compact set F C 93, p is an arbitrary seminorm
in S, N is an arbitrary integer. The seminorm q depends on p, F, and JV.)

In conclusion we shall give some comments on the relationship
between the scattering matrix and its adiabatic analog in the Hamiltonian
approach.

Let H be a translationally invariant Hamiltonian of the form
H = HO + F, where

H0 = J β(fc) a + (k) α(fc) dk ,

r= Σ ί *Uftι> .., ̂ Hi, .., U α+ίfcj ... α+(fcj
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a + (k\ a(k) satisfy CCR. We assume that Vm^n belong to the space ̂
and e(fc) is a strictly convex smooth function which satisfies e(kί + fc2)
< ε(&1)+ ε(fc2) and has all derivatives increasing slower than some power.
The Hamiltonian H — H0 + V is considered as a formal expression.

Firstly, we consider the case Vmt0 = 0 (i.e. the case of Hamiltonian
without vacuum polarization). We shall use perturbation theory,
considering Fas a perturbation. In our case we do not obtain divergences
by calculation of eiHt: in other words one can say that the expression
( 1 7) determines in the frames of perturbation theory a self-adjoint operator
in Fock space. Let us consider the operator H0+gV depending on
parameter g together with momentum operator P = J ka+(k)a(k)dk
and algebra 93 of operators

where fm>n e £f , the sum in (18) is finite. 23 can be provided with a topology
of inductive limit: 93 = indlim 23,., where 93r is the space of operators
having the form (15) with m + n ̂  r in the topology induced by that of&*.
The operators H(g) = H0 +gV, P and algebra 93 satisfy the conditions
of validity of Eqs. (3), (4) in each order of perturbation theory. Unfortu-
nately, this observation is not sufficient to assert that Eqs. (3)-(4) hold
in each order of perturbation theory. However the analysis of the proof
shows that for these equalities can be proved in the frames of perturbation
theory after some partial summation of perturbation series.

In the general case Hamiltonian of the form (17) defines an operator
in the Fock space only after volume cut-off. In this case we can not
construct objects satisfying conditions of the theorem proved above
even in the frames of perturbation theory. However there exists a
modification of our proof which leads to the equality

S = slim slim ίΩWΩSΩWΩ^ . (19)
+ 0 Ω

Here 8% is the adiabatic S-matrix corresponding to the family of
operators HΩ + g VΩ, operators HΩ and VΩ are obtained from H0 and V
by means of periodic volume cut-off, WΩ is a trivial phase factor (i.e. a
unitary operator of the form exp(^(C + Σrka£ak))). Operators HQ, VΩ,
WΩ, SΩ act in the Fock space FΩ corresponding to the finite volume Ω
and iβ denote the natural imbedding of the space FΩ into the Fock space
corresponding to infinite volume. The proof of the Eq. (19) is also based
on the perturbation theory and uses partial summation of perturbation
series. The first heuristic proof of the Eq. (19) was given in [1]. Methods
of the present paper permit to formulate (19) as a rigorous result.
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