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Asymptotic Expansion of Feynman Amplitudes
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Abstract. Employing the technique of Mellin transforms to scalar convergent
Feynman amplitude in the Schwinger integral representation, we determine its asymptotic
expansion for large Euclidean momenta.

The determination of the coefficients of the expansion is effected via the use of generalized
Taylor operators.

I. Introduction

Early in 1960, Weinberg [1] presented the famous power counting
theorem to determine the asymptotic behaviour of a convergent scalar
Feynman amplitude. This theorem was later extended by Fink [2]
to further information on the logarithmic behaviour of the leading
power. Although, this theorem is believed to be also valid for divergent
graphs and is widely applied to obtain various properties of high energy
physics, no successful attempt was ever made to establish it in this
case. Moreover the studies of gauge fields have demonstrated that a
generalization of this theorem is necessary to study those physical
situations where some but not all masses are zero.

This communication is the first of a series of papers devoted to
these generalizations. Applying the properties of Mellin transforms [3]
on the Schwinger integral representation of Feynman amplitude, we
will establish the technique of determining the asymptotic expansion
of a scalar convergent graph and calculate its coefficients. The main
tool to perform the analytic continuation of Mellin transforms is a
generalization of the τ operators first introduced in Ref. [4] for the
purpose of renormalization. In subsequent papers, this method will be
generalized to divergent graphs and to the case where some masses
and some momenta become large.

* Supported in part by DFG.
** Attache de Recherche CNRS on leave of absence from SPT, CEN Saclay.
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The rest of this section is devoted to introduce to the reader the
Sch winger representation of Feynman amplitudes, and to emphasize
the pertinent properties required for subsequent discussion. In Section II,
we shall adapt the technique of Mellin transforms for our purpose,
while Section III will be divided into three parts - to discuss the mero-
morphic structure of Mellin transforms of Feynman graphs, to extract
the poles corresponding to the dominant behaviour for large momenta,
and to convert the information to the asymptotic expansion. Two
Appendices are reserved for discussion of some properties of τ operators.
A third Appendix is devoted to some technical details.

For a scalar Feynman graph G, which has Euclidean external
momenta pj lines, n vertices, L loops and incidence matrix ε^1, the
Feynman amplitude IG is defined by

pπLD'2IG(p,m) = $ Π dDka Π (kl + mlT1 Π
/ α = 1 α = 1 i = l

(I.I)

where D is the dimension of space with positive metric. The Schwinger
integral representation for IG is

I n- I

co I ~ Σ «αWα - Σ Pι{.d^l(a)]ijpj

!G(P,m)= ί HdΛae •=' e <•>" Pβ(*ΓD'2 (1.2)
0 α = l

Here PG(a) is a homogeneous polynomial of degree L in the α's and is
defined as follows. Let /={!, . . . ,/} and define χ to be the set of all
subsets y of / such that cutting the fth line for all i in £f reduces the
graph G to a single connected treegraph. Then PG(α) is defined to be

PG(*)= Σ ΓU (1-3)
^eχ ie^

The matrix [_dG

1((ή']ij is the ratio Ntj/PG of two polynomials where Ntj

is a homogeneous polynomial of degree L+i in the α's and is defined
as follows. Let J= {1, ..., n— 1}; for any subset T of J we define Ψτ

to be the set of all subsets Sf of /, such that cutting the ith line for all i
in Of reduces G to two connected tree-graphs, one with external momenta
Pp j G T, and the other with the rest of the external momenta. Then
Nij is defined by

Σ Π«. d 4)

To any subset £f of integers in /, we associate a subdiagram, that is a
set of lines and vertices. It is well-known that PG(α) and dG

1(a) have
1 eίβ = + 1 if the line a poί

the vertex ί, and 0 otherwise.
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the following properties:

1. pMjWpj^Q V α ^ O . (1.5)

2. PG(α)^0 V α ^ O , (1.6)

3. given a subdiagram 9* £ /,

) (L7)

if ̂  is an essential subdiagram

otherwise.

In (1.7), L(£f) is the number of loops of the subdiagram £f, and in (1.8)
an essential subdiagram is a subdiagram that alone conserves all the
external momenta of G. From the above properties it can be shown that
the integral in (1.2) is convergent if, for any 9* Q /, ω(^) < 0, where the
superficial degree of divergence ω(^) is defined as

and l(£f) is the number of lines in 9*.
The concepts of union, intersection and inclusion of subdiagrams

will be understood as those of sets of lines and vertices. Two subdiagrams
9*^ and 9*2 are disjoint if their intersection is empty. If two subdiagrams
are neither disjoint nor such that one is inside the other, they are said
to overlap. A forest is a set of nonoverlapping subdiagrams. Given two
subdiagrams £f and 9"(ζ9*\ the reduced diagram 9*19" is the diagram
obtained from 9* by shrinking 9" to a point. The functions PG(α) and
pdG

l(a)p, have a power expansion in the dilatation variables corre-
sponding to the subdiagrams of any forest, after all common factors
have been removed. Finally, let us close this section by quoting two
well-known important properties [5]. Given a subdiagram Sf, let us
dilate all αt 's, i e £f, by μ in the functions PG(ά) and pdG (a) p and obtain
PG(α, μ) and pdG

1(u,μ)p respectively. Defining PG(α, μ) by

), (1. 10)
we have

P^(α)PG^(α). (1.11)

If ̂  is an essential subdiagram, we define d'G(a, μ) by

pdG

 1 (α, μ) p = μpd'G(^ μ) p , (1. 12)

and we find

(1.13)
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II. Mellin Transform

To determine the asymptotic expansion of a function φ(λ) as λ
tends to infinity we use the technique of Mellin transforms [6]. Given a
function φ(λ\ which is finite in the region 0 ̂  λ < oo and which possesses
the asymptotic expansion

-CO <2max(ί>)

φ(λ)~ Σ Σ apqλ>Qnλγ, (II. 1)
P=Pmax 4 = 0

we define the Mellin transform M(x) in the interval 4
where A is an integer ^ pmax, to be

M(x)= dλλ-χ-\i-Tf)φ(λ). (112)
o

In this equation Γj4 is the Taylor operator defined by

(113)

To continue M(x) to the entire complex x-plane, we first split M(x)
into two pieces

with
M1(x) = Jdλr*-1(l-TΛ^) (Π.5a)

and
M2(x)= I d^-'-^l- Γ/)φ(A). (Π.5b)

The functions M^x) and M2(x) are analytic respectively in the region
Rex<^ + l and Rex>A Now, we continue M^x) to the region
Rex<yl4 n + l , where n is an integer ^ 1, by separating the integrand
into two parts

1 A+n ff)(i)(Γ\\ \

(Π.6)
ί=7+ι i! x-ι

Since n can be chosen arbitrarily large, equation (II.6) shows that the
analytic continuation M^x) of Mx(x) is analytic everywhere except
for simple poles at x = A+i, A + 2,.... Next, we continue M2(x). For
any integer m ̂  1, we define for the function φ(Λ) given in (II. 1) the analog
Wm of the "Taylor" operator at oo by

Pmax <Jmax(p)

Wφ(λ)= £ X αpμ
p(lnl)4. (Π.7)
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For Rex> A,

M2(x)=J

1 A ^W ! <IL8)

+ Σ Σ ^!77τW'
, p = Λ - m + l g = 0 V Λ F /

where

, / x ί^max(P) f°Γ P = Pmax /TT Λ\
g (n) ~ < (ll ")

I 0 ^Or P > Pmax '
and

[αp^ for ^ f φ O or p<0

for ^ = 0 and 0^p^pm a x (11.10)

for 9 = 0 and p ̂  Sup {0, pmax + 1} .

The integral in (II.8) exists for Rex>,4 — m. Hence the analytic con-
tinuation M2(x) of M2(x) is analytic everywhere except for simple poles
at x = A9 A— 1, ...,Sup{pmax + 1,0}, and multiple poles at x = pmax>
Pmax— 15 .... Thus, the analytic continuation M(x) of M(x) is

M(x) = M1(x) + M2(x). (11.11)

The function M(x) is analytic everywhere in the complex x-plane

except for multiple poles at x = p m a x jPmax~ ^ •••> and simple poles at
x-Sup{pm a x+l,0},Sup{pm a x+l,0}+l,....

Let us define

.
which is analytic everywhere except for multiple poles at

•̂  Pmax ' Pmax •*• '

Since, from (II.6) and (II.8) we obtain

-oo qma*(p) α α\ oo ,0(Λ)(Y)\ \

AΪM= Σ Σ fχ

 Pg

pί+ι - Σ φ

n Γ χ + continuous part,
P=Pmax « = 0 (^-P) Λ = 0 n! ^-^

therefore, we find

for integer n^pm a x+l.
From the properties we have found for Mellin transform of functions

φ(λ) satisfying (II. 1), we now pose and solve the inverse problem to
determine when φ(λ) possesses an asymptotic expansion of the form (II. 1).
First let us remind ourselves of the following theorem on inverse Mellin
transform.
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Theorem. [6]. Let f(λ) be pίecewise smooth for λ > 0, and let
J^ dλλ~x~1 f(λ) be absolutely convergent for α < Rex < β. Then, if

co 4 σ + ico

g(x) = J dλλ~x~1f(λ)9 /(A)= ——r J λxg(x)dx

with α < σ < β.

Then, if there exists an integer A ̂  -1 such that (l — T*
fulfills the conditions of the theorem for A < Rex < A + 1,

(11.15)
Zπί σ-ioo

where M(x) is defined in (II.2) and A < σ <A + 1.
If moreover the analytic continuation M(x) of M(x) is found to be

analytic for Rex<^4 + l except for multiple poles at integer values of
x^A, and, if for Rex in any interval α<Rex<^4 + ε, |M(x)|—»0
uniformly in Rex faster than l lmxl" 1 " 5 when |Imx|-κx) (ε and <S>0),
then the contour of integration can be shifted towards the left to a value
of σ such that M(σ) exists. The residues of the poles between A + 1
and σ then generate an asymptotic expansion for φ(λ) of the form (II. 1).

IΠ. Feynman Amplitudes at Large Momenta

a) The Mellin Transform

Let us scale all external momenta p by λ in the integral (1.2) for
convergent scalar Feynman amplitudes in Euclidean space and obtain
the function φ(λ),

φ(λ)= Jdae-«m2P(aΓDI2 e~λ2pd~1(a}p. (III.l)
o

In Appendix C, we shall derive the following two estimates for the
positive function φ(λ)

(111.2)
^ const xμΓ + β for | A | > J V ,

φ (λ) ̂  const

where ε > 0 and

In (III.3), Sup runs over the superficial degree of divergence of all
essential subdiagrams. These two estimates allow us to define the
Mellin transform of φ(λ) as in (II.2) with A = — 1. Indeed, splitting the
integral into two parts

M(x)=$dλλ-χ-1φ(λ)+]dλλ-χ-1φ(λ), (III.4)
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and using (III.2), we see that the λ integral is absolutely convergent for
ω<Rex<0. Then, the theorem on Mellin transform in Section II
can be applied and the inverse Mellin transform is valid for the function
φ(λ) and for ω<σ<0. Replacing φ(λ) in (II.2) by its value in (IΠ.ί)
and interchanging the order of integration by Fubini-Tonelli theorem,
we obtain for the Mellin transform the integral representation

M(x)= 4-Γ (-- £) J d*e-Λm2P(uΓD/2[pd-l(u)p]x/2 . (ΠL5)
2 \ 2 / 0

Since pd~ί(a)p vanishes linearly with those α's belonging to an essential
subdiagram (1.8), every essential subdiagram y will cause the divergence
of the α-integral in (III.5) whenever Rex^ω(ί^), the superficial degree
of divergence of £f. Then, ω is the largest negative integer where M(x)
is singular. It will be shown in this paper that M(x) has a multiple pole
at x = ω and that shifting the integral contour across the pole at x = ω
in (11.15) will yield a leading behaviour for φ(λ) of the form

This is the famous power counting theorem due to Weinberg [1].
In (III.6), q is a nonnegative integer and ω has been defined in (III.3).
Let us remind ourselves of the rule to obtain essential subdiagrams;
they are the subdiagrams which alone conserve the external energy-
momentum flow.

Let us now show the meromorphic structure of M(x). For this
purpose, we decompose the domain of integration in (III.5) into sectors
[7] g as defined in Appendix C. Then,

In each sector

We define a sequence of nested subdiagrams

RJ={il9...9ij} (IΠ.9)

for 7=1,..., /. The set of all essential subdiagrams is denoted by S.
If Rj e $ all Rr e & for r ̂ 7; let Rk be the smallest essential subdiagram
among the Rj's. Performing the change of variables defined in (C.6)
and integrating over βh we obtain

_i~1 (III. 10)
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with

[ m?
l-l

j= 1

The functions Pg(β) and pΔg(β)p, defined in (C.8), are such that
Qg(m2, p, β, x) has a Taylor expansion in any subset of β's, convergent
in a neighborhood of these /Ps = 0.

We introduce in (III. 10) the identity

Q°(m\p,β,x}= £ Π τ# Π (l-T£)β*(m2,p,/?,x),
Sς{k,...,l-l}teS tφS

te{Jc,. ..,(-!}

where the q's are any set of nonnegative integers. Let us denote by

Qβ

(n}s(m2,p,{βt:tφS},x)

Using (III. 13) and (111.12) and integrating in (III. 10) over βt for teS
in the region Re x > ω, we obtain

Σ

where
(Kt)-1] Π A* Π d-7?/)

0 tφS tφS tφS
^^ssential te{k,. . .,/- 1}

βks(^A{A:ίίS},x). (III. 15)

The integral (III. 15) is shown in Appendix C to be analytic in x for
Rex> Sup (ω(Rt) — qt—i). Summing over all possible S in

tφS
Inessential, *Rl

(III. 14) shows that the only singularities of Mg(x) in the region
Rex> Sup (ω(Rt) — qt— 1) is a set of multiple poles at integer x;

R* essential,
Rf*Rl

each essential subdiagram Rl of the sector develops_single poles at
x = ω(Rl), ω(Rl) — 2,.... Since_the #/s are arbitrary, Mg(x) is a mero-
morphic function and so is M(x) by (III.7). Then, M(x) is analytic in
the entire complex plane except for simple poles at x = 0, 2, 4, ..., and
multiple poles at x = ω, ω — 2, ω — 4, ... for even dimension of space-
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time and at x = ω, ω— 1, ω —2,... for odd dimension of space-time.
It will be shown by extracting the residue of the pole at x = ω, that it is
not zero.

It is also shown in Appendix C that the integral in (III. 15) is poly-
nomially bounded when |Imx|-»oo, and that this boundedness is
uniform in Rex in any fixed interval. Then the presence of the Γ functions2

in Mg(x) insures that we may shift the integration contour towards the
left for the inverse Mellin transform (11.15). The asymptotic expansion
for φ(λ) is then of the form (Π.l).

It is certainly possible to extract the coefficients of all pole terms
from (III. 14) but the result is not obviously sector independent. However,
we will present in Section IΠb) an alternate determination of the
coefficients which has the advantage that it is not dependent of the
sector decomposition.

b) Leading Poles of F(x) = M(x)/Γ(-x)

In Section Ilia), we showed the pole structure of M(x) from the
property that the integrand in (III.5), apart from a common factor, has a
power series in the sector-dependent variables β. Here, we shall use the
fact that, for any forest of subdiagrams, the same property holds with
respect to the dilatation variables corresponding to the subdiagrams
of the forest. In the following, we shall present a method to analytically
continue F(x) to the band ω — Λ f < R e x < ω — N+i where N is any
positive integer, and we shall explicitly determine the coefficients of the
leading poles, that is, at x = ω. The main tool used to perform the
analytic continuation is the generalized Taylor operator as defined in
Appendix A. This is a generalization of the operators introduced in
Ref. [4] for the purpose of renormalization. We shall here merely
restate the definition. Given a function f(x) such that x~v/(x) (where v
may be complex) is infinitely differentiable at x = 0, then we define τ" as

τ"xf(x) = χ-λ-εTn + λ{xλ+εf(x)}, (III. 16)

where λ^—E'(v) is an integer, E'(v) is the smallest integer ^
and ε = E'(v)— v. As an application of (A. 11), let us define for any sub-
diagram £f

τ3'/(α) = [τ"ρ/(α)|α, = ρ2αι,vi^]ρ=1 . (111.17)

2 See Eq. (6) on p. 47 of Bateman, Higher transcendental functions, Vol. I, McGraw-
Hill (1953):

lim |Γ(x + rμ)|e?l%hL-* = j/2π
bl-oo

for x, y real.
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Let us now consider the quantity
)/2} , (ΠΠ8)

where the product runs over all subdiagrams £f of the graph G, including
G itself. Although the τ operators do not commute, it can be shown that
the complete product Π^e<?0 — V2^) *s independent of the order of
application upon the function between the brackets { }. For real integer
x the proof of this statement can be obtained via the formula for the
remainder of Taylor series, analogous to Refs. [4] and [8]. Such a
proof does not hold for other x. Fortunately enough it is proved in
Part b) of Appendix B that whatever is the order of application of the τ
operators in (III. 18) we obtain the forest formula

Π (-
yz&

where the sum runs over all nonempty forests of subdiagrams. From
property (A.4) it is easy to convince oneself that all τ operators give
zero for Rex>ω. For Rexrgω, only τ operators corresponding to
essential subgraphs will give non-zero results. If no α is equal to zero
the quantity (III. 18) or (III. 19) is band-wise analytic in the bands
ω — ΛΓ < Rex < ω — Λ Γ + 1 with possible discontinuities at the boundaries.

For a given positive integer AT, and for α Φ 0 we define the functions
g(Λ°(x, α) and /z(JV)(x, α), analytic in the entire x-plane, by the respective
conditions

, α) = e-™1 Π (1 - V2ίw) {[pd- » PY
/2 P(aΓD/2} , (IΠ.20)

G

Π (-fy2lιyί){[pd~1(Λ)pY/2P(ΛΓD'2}, (m 21)

for x in the band ω-ΛΓ<Rex^ω-ΛΓ+ 1. From (III. 18) and (III. 19)
we show that in this band, and hence everywhere by analyticity,

0(JV)(x, α) - /ι(ΛO(x, α) - e-«m2lpd- » pY/2P(aΓD/2 . (111.22)

Integrating over the da's for Rex > ω, we obtain
r1/ _ Λ Λ °o r-γ _ Λ Λ °o

F« = Tpπ ί d«^x' α) - τ?rΛ ί dah(N)( x> ̂  (IΠ 23)LL ( — X) o Zl ( — X) o

In Appendix C, it is shown in full detail that the integral J* dag(N\x, α)
exists for Rex > ω — N and is analytic in the same region.

Γ( — -) °°
The integral — — - - J dα/ϊ(]V)(x, α) in the region Rex>ω will give

21 ( — x) Q
the singularity structure of F(x) when analytically continued to the
domain Rex > ω — N.
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From the definition (111.21), we see that any forest containing a
nonessential subdiagram contributes nothing to h(N)(x, α). Replacing
the τ operators by Taylor operators T, we obtain

*) = e-*m2Σ Π (-Tg^-"*"-1)
*

where the sum runs over the forests of essential subdiagrams with
superficial degree of divergence ω(£f)^.ω — Λ Γ + 1 , and where zl^,
and Pp>, defined by

(ΠL25a)

P(α,ξ)= Π &2L(^ft-M, (ΠI.25b)

have power expansions in the ξ corresponding to subdiagrams of ̂
Since a forest of essential subdiagrams is necessarily a forest of nested
subdiagrams, in each of the forests of the sum (111.24) there exist a
minimal essential subdiagram contained in all others of the same forest.
We now regroup the forests 2F' into the classes of forests which have
the same minimal elements:

'$,%*$ ξy' (ΠI.26)

where the first sum runs over all essential subdiagrams £f and the
second sum over all forest J*> whose minimal element is £f. To obtain
the pole structure of h(N)(x, α) we operate Tξy on { }, and each term so
produced can be facto rized into two parts: an x-independent part which
is a function of the α's belonging to the reduced diagram (G/£f), and an
x-dependent part, which is a function of the α's belonging to ίf and which
can be integrated in the region Rex>ω to yield the poles of F(x). It is
beyond the scope of this paper to determine the coefficients of all the
poles of F(x) and we shall contend ourselves with the determination
of only those of the poles at x = ω.

The poles of F(x) at x = ω will be obtained from the function /z(1)(x, α).
The essential subdiagrams with superficial degree of divergence equal
to ω are said to be leading subdiagrams. Of course, only the leading
subdiagrams contribute to the forests in /z(1)(x, α):

* (111.27)

,(χ,ξ)pY/2P^&ξΓD/2}\ξ=ί.
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On applying the Taylor operator T£ for the leading subdiagram 5 ,̂
we obtain by virtue of (1. 11) and (1.13)

[pd^(*) pY/2 PA*ΓDI2 PG/AK, ξΓD/2 (IΠ.28)

This factorisation allows us to separate every term in /z(1)(x, α) into two
factors: one depending on ̂  and the other one depending on the reduced
diagram G/£f. Thus,

Π (-τϊ®*Ί"){PGiy(*ΓD1^
'4^ (πι.29)

where we have reintroduced the τ operators for the reduced subdiagrams
Sf'ISe. Since, for a subdiagram &>' e Jv> Sffy is a subdiagram in Gfίf
with superficial degree of divergence ω(ίf'/£f} — 0, we may express the
sum over J*> as a sum over forests of logarithmically divergent sub-
diagrams of Gjϊf :

H-Σ,-Σ<— α ι m ?Σ Π (-v^'^^ω-^2

We may enlarge the sum over ̂  in (111.30) to cover all forests of
since the contribution from any convergent diagram is zero. Then,
by applying the forest formula (part b of Appendix B) we obtain :

(111.31)
. e - ' [ p ( a ) p ] x i V ( a ) - D / 2 .

Let us define

Γ / _ 2L"j °o

(x, α) , (111.32),
(— X) o

and

QG = J rfαe-™2 Π (1 - V2ίw) PG(α)"D/2 , (ΠI.33)
0 SfgG

where we have displayed explicitly the dependence of g(1) on the diagram
G. The function QG is nothing but the renormalized amplitude for the
Feynman graph G at external momenta equal to zero [4]. Then,

FG(χ) = yG(χ)+ Σ QG/Mχ) (πι.34)
leading^

Since we are going to use the function F(x) recurrently, we have indicated
its dependence on the diagram G by writing FG(x). In Eq. (111.34), ρG/G
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is meant to be one. This equation is trivial if the entire graph is leading,
since in that case yG(x) = ρG/#> = 0 for ίf Φ G.

The singularities of FG(x) at x ~ ω are now present in the functions
Fy(x\ To extract the pole from F^(x) at x = ω, we change all integration
variables α in the integral representation of F#,(x\ into μa (μ > 0),

•(<*)p]x/2P<r(<*Γ ' , (111.35)
o

and we differentiate by μ on both sides. On setting μ= 1, we obtain

F ' ( x ) = 2 V ro?F~ (x), (111.36)
x — ω £Γy

where ίf{ is the diagram obtained from y by inserting a 2-leg vertex
(analogous to mass insertion) on the line L Substituting (111.36) into
(111.34), we obtain the following recurrent relation

FG(x) = yG(x) + — — Σ Qw Σ "tf^.M - (IΠ.37)
X~ ω leading^ ie^

Some of the functions F^.(x) are still singular at x = ω. Such singularities
are due to leading subdiagrams of £f which do not contain the line /.
We use exactly the same technique to extract the poles of />t(x) and
thus (111.37) can be applied recurrently. The recurrence stops when the
functions Fmι(x) so obtained are not singular anymore at x = ω, that
is when m is a minimal leading subdiagram. In that case Fm.(x) = ymί(x).
The solution of the recurrence is

k

K/K ' ' ' fa- i/^J^W > (IIL38)

where the sum runs over all forests (£fl9 ...,&$ of nested leading sub-
diagrams ίf^y>2~}- ~}yk, and where we define

ΐV(x)= Σmfy^x), (111.39)
16^

β^= Σ *?<?*, απ.4θ)
ie^

Note that in the case where G is leading, (111.38) simplifies into

2k

FG(*}= Σ 77~~7^^/^2 . .- β^-^W*) » (ΠI.41)
(G=^ι ..... ̂ k) IΛ — ωj

where the sum is as above except that all forests must now contain
G = &Ί. The functions γG(x) and y^k(x) are analytic in the region
Rex>ω-l . Hence, (111.38) and (111.41) display the poles of FG(x)
at χ — ω.
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c) The Asymptotic Expansion

The analytic continuation of the function M(x) in (III.5) in the region
Rex>ω— 1 is Γ( — x)F(x), where the pole structure of F(x) at x = ω
is given by (111.38). To obtain the asymptotic expansion of φ(λ\ we first
substitute (III. 38) and M(x) = Γ(—x) F(x) into the equation of inverse
Mellin transform (11.15):

4 σ + too

φ(λ)=- — J dxλxΓ(-x)

-"

where ω < σ < 0. It is shown in part c) of Appendix C that JJ dxg(1}(x, α)
is analytic for Rex>ω— 1 and is polynomially bounded in |Imx| as
|Imx|— >oo, and that this boundedness is uniform in Rex in any fixed
interval of Rex > ω - 1. So, taking into account the property 2 of Γ(- x/2)
as |Imx|-»oo, we may integrate term by term in (111.42) and shift the
contour of integration parallelly across the pole at x = ω. Then we obtain

4 σ + ioo

φ(λ) = φas(λ) + — J dxλ*Γ(-X){}, (111.43)
^^-^ σ-ioo

where ω — 1 < σ < ω, { } is the same as that in (111.42), and where

qmax(ω)

(ΠL44)

In (111.44), ω, defined in (III.3), is the Weinberg power, gmax(ω) = (number
of elements in the largest set of nested leading subdiagrams) - 1, and

k>q (111.45)
Jk-q-l

where the sum runs over all forests (£fl9 ...,&$ of k (>q)nested leading
subdiagrams &Ί D ̂ 2 D - o ί?k.

To justify that φas(λ) are the leading terms of the asymptotic expansion,
note that the absolute value of the integral in (111.43) is bounded from
above by

const x λσ (σ < ώ).
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Let us remind the reader the following recipe to obtain the coefficients
ρ, ρ, and the function y :

1. ρ^ is the renormalized Feynman amplitude for ̂  at zero external
momenta; ίfjy is the reduced diagram obtained from y by shrinking
y to a point; ρG/G is one by definition, while ρG/^ is zero if G is leading;

2. ρ> is the sum of renormalized Feynman amplitudes over graphs
obtained from £f by making a mass insertion;

Π (1 -

where the ^s are obtained from 5̂  by making a mass insertion on
the ith line.

IV. Conclusion

In Section IΠc), we have obtained an asymptotic expansion for
any scalar convergent Feynman amplitude with all coefficients of the
leading power determined for all logarithms. Weinberg's theorem [1]
has been obtained at the very early stage of this paper, and later the
leading logarithmic behaviour, as already given by Fink [2], has been
recovered. It must be pointed out that our treatment does not distinguish
the case where some partial sum of external momenta vanishes; in this
case the essential subdiagrams may be disconnected, and this may
result in a larger value of ω. Using the homogeneity equation, we also
find, of course, that, in the limit all masses tending to zero, a convergent
scalar Feynman amplitude exists only if the entire graph is the only
leading subdiagram.

Our method using the Mellin transform [6] and the combinatorics
of the τ operators [4] actually allows all coefficients of the asymptotic
expansion to be determined. The main feature of the coefficients so
obtained is a factorization property inside the forests of essential sub-
diagrams.

Although the result of Section ΠIc) is not directly applicable to
Lagrangian field theory (except in 2 dimensions where all scalar graphs
without derivative couplings are convergent), this paper provides the
basic ingredients which will be used in a following paper (Part II) to
extend our results to divergent graphs. Later on, the results will be
further generalized to the case where only some masses and some
external momenta tend to infinity; application to physical situations
will then be pointed out.

Acknowledgements. We wish to express our gratitude to Professor B. Schroer and
to the Institut fur Theoretische Physik for their kind hospitality. We also would like to
thank the referee for his constructive suggestions.
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Appendix A

Generalized Taylor Operators

The generalized Taylor operators have been defined and extensively
employed in Ref. [4]. Here we want to further generalize the definition
over a class of functions /(x) which behaves like xv at x = 0 (where v
is not necessarily an integer).

Definition. Given a function f(x) such that x~ vf(x) is C00 in [0, a > 0,)
we define the generalized Taylor operator τ" on /(x) as

τnf(x) = χ-λ~εTn+λ{xλ+εf(x)}, (A.I)

where λ^.—Ef(v) is an integer, E'(v) is the smallest integer ^
and ε = E'(v)— v. In (A.I), n is an integer and T is the usual Taylor
operator.

The above definition is /l-independent. The purpose of introducing ε
is to remove the cut of /(x) at x = 0.

Let us mention the following properties :

1. τ"/(x)~x« at x~0 with R e g ^ w , (A.2)

2. (ί-τn)f(x)~xq at x~0 with R e g > n , (A.3)

3. τ"/(x) = 0 if n-E'(v)<0. (A.4)

By using the formula for the remainder of the Taylor expansion, we have

ξ λ + * f ( x ξ ) } . (A.5)

The ε in (A. 5) is essential to ensure the existence of the integral. In this
equation, λ ̂  Sup ( — F(v), —n).

The generalization of the definition of τ to functions of several
variables is straightforward but in general the τ operators do not commute.
We observe the properties.

for *~°> ^ + 0 and x (A.6)

2. (l-τ^)(i-τ^)/(x,j;)~x'! for x~0, y φ O and

(A.7)
but nothing can be said on the behaviour at y ~ 0, x φ 0.

3....(l-τ*)...τ?,.../ = 0 i fn '^ f i i . (A.8)

Corollary

...(l-τ*).../ = (l-τ*)...(l-τϊ ().../ if njgn, (A.9)

. . . τ . . . / = . . τ . . . τ ! : . . . / if ri^n (A.10)
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where ... means a sequence of τ operators. The integral representation
for the remainder of the Taylor expansion is not always generalizable
to functions of several variables. Indeed in (1 — τy) (1 — τj/, εy is generally
different for each term in (1 — τ x ) f .

Finally let us define the τ operators relative to a family of variables.
Given a function of several variables /({*}, {y}\ where {x} and {y}
are families of variables, we define

Appendix B

1. Nested Forest Formula

A forest formula has been introduced in Ref. [4] for the purpose
of renormalization. Here we present a similar formula for forests of
nested elements only, and relaxing the requirement of a special type of
ordering, as in Ref. [4], in the product Π(l — τ). We extend the proof
to a larger class of functions, on which this product acts. These functions
Z(α) have Taylor expansions in the dilatation variables corresponding
to the subdiagrams of any forest of nested elements, after all common
factors, which may be non integer and complex powers of these variables,
have been removed. This nested forest formula can be precisely stated
as follows. Given any ordering, 5 ,̂ 5̂ 2 ... of all the 2l- 1 subdiagrams
of a diagram G (consisting of / lines), then

Σ Π (-V2'^)]Z(α), (B.I)
tf 9>eJf ' \

where the sum runs over all non-empty forests Λf of nested subdiagrams
of G.

The proof is by recurence. Consider

,,_, (B.2)

= Π (1 - V2l(W) [1 + Σ Π (- V2'^)] Z(α) ,

where Sm-l is the set of all forests of nested elements built from the
subdiagrams in Wm_1 = {<?19 ...,5^n_1}. For m = 2, it is trivially true,
while, for w = 2z, it reduces to (B.I). If we assume it to be valid for
m = n — 1, then it is valid for m = n provided that

Π (-V2ί^)Z(α) = 0, (B.3)



18 M. C. Bergere and Yuk-Ming P. Lam

where $'n-± is the set of all forests of nested elements built from the
subdiagrams ^1,...,^_1 with at least one element either disjoint or
overlapping with yn. Hence, the nested forest formula is proved by
establishing (B.3).

Given a set of elements Tj C C Tr, we define an extended set of
elements

To = 0 C T 1 C - C Γ r c T r + 1 = G / , (B.4)

where 0 is the empty subgraph and G' is any graph containing the entire
graph G. These two elements are introduced for matter of convenience.
We define for 7} C Tt φ 0

T7). (B.5)

Then it follows

a) Tj£co(Ti9Tj)CTl9 (B.6)

b) ω(Ti9 7})= Γ^u^= 7}u<^, (E.I)

c) ω(Ti9 Tj)= T^T^n = TjnSen 9 (B.8)

We define a maximal nest ^ with respect to ̂  to be a nest
T0 = 0 C T 1 C C T r c T r + 1 = G/ such that for any 7^Φ0 in ,̂

ω(Ti,Ti_l)=Tί or Tt.L. (B.10)

Let us map ^ into the oriented positive real line by mapping each 7]
to the integer ί. If ω(Ti,Ti_1)=Tί, we asign to the interval between
z — 1 and i an arrow pointing into z, and if ω(7], 7^_1)= 7^_ l 9 an arrow
pointing into i— i. Then we can partition the nest ^ into three nests
respectively ffl, 3f, 3$. 2tf is the set of T's represented by those integers
such that two arrows point into it; Jfis the set of T's represented by those
integers such that no arrow point into it; and 36 is the rest of the elements
having only one arrow pointing into it. Then, between two consecutive
T'seJC there is one and only one element TejΓ, and between two
consecutive T'seJΓ, there is one and only one element TeJ^ Jf is
never empty since G' e ̂  and JΓ contains at least two elements. Indeed,
if G is the only element of ̂  then ω(7J, 7J_!)= Tt_v for all z>0, which
implies 7]n^ = 0 for all i, in contradiction with the fact that Tr^S^n

for a maximal nest .̂ Since Jf has one more element than J^ jf7 is
also never empty. If 0 and G' are the only elements of J^ then 2tf =
and y is a nest containing ̂  conversely, if ̂  belongs to the nest
then JT - {0, G'} and ̂  =
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Given two elements 7} C Tt then ω (7], 7}) = 7] if all the arrows between
j and i point towards z, and ω(7], 7}) = 7} if all the arrows between j
and i point towards / The converse is also true. Given two elements
7} C 7] so that in between them, only one element Rising and none in Jf,
then ω(7], 7}) - £.

Given a nest y^ we define Ω(ΛO to be the set consisting of elements
of the form ω(Ti9 TJ.J for Tt and Ti.1 in </Γ (7J nonminimal). If 0 is a
maximal nest, then by definition

(B.ll)

We define the corresponding minimal nest yK~ corresponding to ̂  to be

Then, it is clear that the Ω operation on ^"reconstruct Jίf (Q(Jf ~) D Jf )
and

It is straightforward to show that no subnest of Jf~ satisfy (B.I 3).
Any nest Jf' such that J\f~ ' QJf' ' £<& also reconstruct $C by the Ω
operation on Jf' and

Conversely, any nest Ji' satisfying (B.14) also satisfies Λ"
From the properties mentioned between (B.10) and (B.ll), it follows
that

.̂ (B.I 5)

For any set Jf e <^,-ι given in (B.3) we add the elements 0 and G',
and we determine by (B.I 4) its maximal nest ^ which we decompose
into jf, ̂ , and J^ Since ̂  φ Λf, then ̂  does not belong to ̂ , otherwise
yK~ and yΓ should form a nest with ̂  which contradicts (B.3). Let us
partition the set of forest Jfeδ'n-^ into groups which have the same 0,
and consequently the same Jf and ffl satisfying (B.I 5). The sum on the
left hand side of (B.3) restricted to each group can now be written

2ff (i-v^'M-v^) Π

where Wn^.ί is the set {̂ 1? ...,£^z_1}. Let us remind the reader that,
because of the property of the function Z(α), all operators τ to the right
of τ<^ in (B.I 6) commute. By virtue of (A.9), we can complete the product
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over 2ff. We obtain

2ff d-v^H-v,?'™) Π (-
i = n+l y<=Λ --{&,G'} ,-g ,„.

l '

We now prove that the expression (B.I 7) is zero for every group
of forest as described above. Let us study the property of

Π (-V?'(5">) Π (l-τ«.2"«'>)Z(α). (B.18)
.?"eJf-{0,G'} R'εJe

The nest obtained by if' e Jf-G' and K'eJf can be written by (B.I 5)

Note that in the above nest, if ̂  = 0, then #; = ̂  π 5 ,̂ and, if 5̂ ' φ 0,
then 5^0^ = 0; on the other hand Rm = ̂ ^>^n. The number of
lines of the nested subgraphs in (B.19) satisfy the topological relation

m m

Σ /(*;)- Σ /G?r)=/(^»). (B.20)
i = l ί = l

Let us dilate the α's in Z(α) in the following fashion: If the line a e &*„,
then αα-χj2αfl; if aεR'h αfl-> ρ?αfl and if αe^r, αα-*σfαα. If ^1

/=:0
the dilated Z function does not depend on σ l 5 but for sake of simplicity
we keep the variable σί in what follows. Now, if a does not belong to ίfn

*a^*a Π *2ί?2 (B.21)
ί,αe5^'

If a belongs to 5̂ ,, let ίf{ be the minimal element of Jf containing α,
then it is easy to see that

m

«β->ααΠ*fa2 '2e?-ι. (B-22)
7=1

Hence, under this dilatation operation

Z^Z'(σρi9σjρj) (B.23)

with 1 ̂ i^m and i^j^m. Since Z' can be expanded in a common
Taylor expansion in ρf and σi (but not a priori in σ) once common
powers of ρf and σf have been extracted, we find

Z' = Π WJ Π W -w Σ (^ft)ei (̂  ρ/' C{aι6) , (B.24)
7=1 i = 1 α; + bi ̂  0
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where μ7 is the power extracted for the variable σ7 and v^ the power
extracted for the variable ρ f; these powers may be complex numbers.
Note that in the sum, the power a{ is not bounded from below and a
priori preclude a common Taylor series with σ. Also μί=bί=Q if
'̂ = 0.

From the discriminating properties of (A.2) and (A.3) generalized
to a set of commuting τ operators, and applying the τ operators of
(B.I 8) on (B.24), we reduce the sum over only those 0's and fo's satisfying

for i<j<m,
(B.25)

for

From (B.25) and (B.20), we find

m m m

(B.26)
J = l J = l j = l

m

Consequently, Σ α,- is now bounded from below and (B.I 8) has a
j=ι

Taylor series in σ apart from a possible complex power. The effect of the
τ operators, relative to elements of &— {0} in (B.17) can only increase
the minimum power of σ. It is clear now, that the application of vn

2/(t^n)

makes (B.I 7) vanish. This completes the proof of the nested forest formula
(B.I). The left hand side of (B.I) is then independent of the ordering.

2. The Forest Formula

We shall generalize the nested forest formula for those functions
Z(α) which have Taylor series in the dilatation variables corresponding
to the subdiagrams of some forests in addition to the forests of nested
elements, after all common factors have been removed.

Let us note that any forest which is not a nest has some disjoint
elements. Given a forest, a set of disjoint elements of this forest is said
to be maximal if any element of the forest that does not contain all of them,
is contained in one of them. If no such set exists, then the forest is a
forest of nested elements. We group all forests which are not a nest
into pairs of the form

^ rest} and {^u u^,^, ...,^,rest}, (B.27)

where {^...,^n} is the maximal disjoint set of elements and where
of course ^u u^ does not belong to the rest of the forest. Either
Z(α) has a Taylor series property with respect to both forests of the pair
or with respect to none. If Z(α) has a Taylor series property, the τ's
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relative to the elements of these forests commute and we can form the sum

(B.28)

which vanishes by virtue of (A.2) and (A.3). Summing over all such
pairs of forests and adding the result to the nested forest formula (B.I),
we obtain

π Z(α), (B.29)

where the sum runs over all forests which have the Taylor series property.
Then, again, the left hand side of (B.29) is independent of the ordering.

If Z(α) = D/2 , the sum runs over all possible forests. If

Z(α) = D/2 , the sum also runs over all possible forests in the

case of non-exceptional momenta. Otherwise, forests containing non-
essential elements whose union is essential are not included in the sum.
However, in the case of convergent Feynman graph, any τ operator

relative to a nonessential element annihilates Z(ά)= D/2 .

Consequently, in the case of convergent Feynman graph, the sum in
(B.29) runs over all forests even for exceptional momenta.

3. Theorem

Theorem. // Z(α) has Taylor expansions in the dilatation variables
corresponding to the subdiagrams of any forest of nested elements,
after all common factors have been removed, then

a) Y[ ( — iy2l(^)Z(a) has the same property for any nest Jf, and
<

b) f ! + Σ Π (-V2 / (^)lZ= Π (ί-τϊ2l(*})Z has a Taylor series
[ ^ yetf \ ycG ~

with respect to any nest R1, ...,Rm after common factors have been
removed and the real part of the common power of the dilatation variable
corresponding to Rl is > —2l(Rl).

Proof. This proof is a direct generalization of Part 1.
Let us consider a set of nested elements R1, ...,Rm. For any nest

T0 = 0 C 7i C C Tr C Tr+ ί = G', where 0 and G' are definined in (B.4),
we define the ωl operation relative to one Rl as

ω'(7}, Tk)= Tku(#'n7}H 7}n(£'uTfc), (B.30)

where j runs from 1 to r+ 1 and k from 0 to j— 1. We note that
ωp(Tj, Tk) ς ωq(Tj9 Th] if Rp C Rq.



Asymptotics of Feynman Amplitudes 23

A nest 0 of elements T0 = 0cT1c •- C Trc Tr+ί = G' is said to be
maximal in regards to R1, ...,Rm if ωj(Th 7J_i) belongs to ^ for all j
and all 7^Φ0, T^e^. Then ωj'(7;, T^J is either 7^ or 7J. There
exists for each z = 1, . . ., r + 1 a number p(z') such that 0 ̂  p(z) ̂  m and

ωi(Ti,Ti_1)=Ti_l for j^p(i)
(b.Jlj

;_!)= 7J for j>p(ί).

Let us map ^ into the oriented positive real line by mapping each Tt

to the integer i. To the interval [z — 1, z], we associate p(z) arrows pointing
towards Ti_l and m — p(i) arrows pointing towards 7J. Each arrow
corresponds to an αy operation and points towards the image of this
operation. We define Jf to be the set consisting oϊG' ( = Tr+ί\ of Tt if
p(i)>p(i+ 1), and of 0(=T0) if at least one arrow points away from it.

Similarly, we define Jf as the set of T's in ̂  such that p(f) < p(ί + 1),
and $ as the set of the remaining elements in .̂ The elements 0 and G7

are never in Jf . We define J f ~ as

^"-jΓu^-^-J^. (B.32)

If Ωj(jV~) is the set of elements obtained by performing the α^
operation upon two consecutive elements of Λ^~ and if

m

= [J Ωj(Λ^~) then Ji~ is the minimal nest such that
7=1

=». (B.33)

Every nest yΓ7 such that yΓ~ C ̂ ' C ̂  satisfies

<S, (B.34)

and is obtained by adding to N~ some elements of ffl .
If ^ is maximal in regards to the Ω operation (Ω($) C *8\ it is clear

that ̂  is also maximal for all Ωl operation separately. Thus, we can as in
Part 1 define respectively Jf l and Jf l relative to the element #l.

Then, by construction

(B.35)v 7

ί=l

Although JΓ and 3ff are disjoint, the jf ' s may overlap among them-
selves for different i, and so do the Jf 's.

In the nested forest formula, we group all forests of nested elements
with the same $. Then, they have the same J1, Jf, 2tf, Jf ί?s, and J>P's.
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We denote the elements of jf '* by {&[, 5 ,̂ . . . ̂ \. = G'} and the elements
of «#"' by {Hj,... ,#;,_!} where

Hj = if] u (5̂ + j n #') . (B.36)

With this notation, several ίfj may represent the same subgraph, and
so do Hj, but of course no subgraph can be a £fj and a Hj. By hypothesis
Z(α) has a simultaneous Taylor expansion property in regards to the
elements of <&. This Taylor expansion property will be used later after
performing dilatations in regards to the elements of ,̂ JΓ, and ffl. Any
subgraph which has several names (^ or Hj) will have its variables
dilated by several factors, one for each name. To be precise, let a be a
line in the graph G; if a belongs to £SE 0&, αα-> αfl(λs)

2 for every pair
{ίj} such that a is in 5^l,aa->aa(^)2; for every pair {ij} such that a
is in Hj, αfl->αα(χ})2; if aeR\ αfl->αα(/?)2 We also dilate in that scheme
the empty element 0 because 0 may be £f{ for some z; however in that
case, the dilated function Z remains σ{ independent. We do not need to
dilate the element G' and we might set σl

rι=i.
If the line aφR1 for all i but a e ̂  for j < η, then a e Hj and αfl is

dilated by

«„->«„ Π W)2 (B.37)

If α e Λ1 and α φ Rl ~ 1, let ̂  be the minimal element in Jf which contains α,
then a e ¥f and a e Hf for ̂  2y,j< rk. For any fc such that i^k^m,
we can determine a number J(&*,k), 1 ̂  J(^, k)^rk— 1, such that
^j(ytk) i§ tne largest element in Jf k but not equal to 5 .̂ Then α is also in
Hj(p,k> Obviously, a is also in Rj for j^l Then no other R, ̂  and H
elements contain α, except G'.

Hence

«.->«« Π Kxί)2 Π 08*X5(^^2 , (B.38)
fc=l,...,m fc = i

so that

Z~.Z'(σ)χ),^Us), (B.39)

where k runs from 1 to m, and; from 1 to rk— 1.
By hypothesis Z has a simultaneous Taylor expansion in the

dilatation variables of the elements of ,̂ J^ and jf, after the common
powers have been extracted, and, consequently, Z' has the same property
in regards to the variables λs, σ] and χj. Let (λ^ , (σ})v^ and (βγί be the
common powers which we extract from Z' to obtain a Taylor expansion.
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Then,
m ri — 1 m ri — 1

Π Π W'Π Π W'~vj

ί = l j ' = 1 ' 1 J = 1 (B.40)
~

• Σ Σ Λ)d sΠ Π W^a}
αj = 0 ds = 0 ί = 1 j = 1

where v^ — a{ = 0 if &*[ = 0, and where we have used only the Taylor
property in regards to the elements of £% and Jf] To use the Taylor
property in regards to the elements of J^ we have to take into account
the variable χ] grouped in (σj χj )α* in the above equation. Let us define

Λίd.α^Jΰ) by
m rt — 1

4d,α>W = Π Π (F)&*^(l?)&, '(B-41)
i = l j = l

then /l{M}(β
l'χ}) has a Taylor expansion in /P'χj. Equation (B.40) is now

m PJ — 1 m KJ — 1

z' = ΠW s Π Π (^ 4)vi.Π Π (^4)rt"v;

,= 1 J = 1 i = l , = l

oo oo m f i — 1 / _i \ «j v

• Σ Σ (tf Π Π hf .̂.,W
α/. = 0 ds = 0 i = ι j=ι \ P /

It is then clear that a priori we do not have in addition a common
Taylor expansion with the variable /Γs.

Any forest of nested elements Jί belongs to a group characterized
by a maximal nest ^ and it can be decomposed into ^Γ~( = J'uJf)
and Jf^gJf). It is certainly possible to duplicate the τ operators for
the graphs with several names in Jf or for the graphs with several names
in Jf ' so that to each variable σ} or χ} corresponds a τ operator, and so

Π (-

Substituting Z' from (B.42) into this equation, and applying the τσ's,
we obtain zero if — 2l(£fj) — E'(vy)<0 for any (/,/); otherwise we obtain
an expression similar to (B.42) except that the sum over α* is bounded
from above by

α}^-2/(^/)-E'(v}). (B.44)

Hence, the proof of part a) of the theorem is now completed.
If we sum over all forests of nested elements which belong to the

same group characterized by a maximal nest ,̂ we obtain an expression
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of the form

Σ Π(-ι
jVe Group SfejV

Π (-v2'^;>) Π
' (i,J}

ίί j e

(B.45)

Λ = f f = / = l

π /t fv ^ i f π
I J, (/^ } i ii

mj ^0 mj ̂  0

Σ Σ Π(^) J = 1

ι = l

(R46)

j = 1 ,mj < 0

where
E'04), (B.47)

and where -2/(^i)-^'(Vj)^0 for all (/,j), otherwise (B.45) is zero
for that group. The integral in (B.46) exists in a neighbourhood of the
/fs = 0 and has a common Taylor expansion in the jβ's. The real part
of the common power of βl so obtained is larger or equal to

l). (B.48)
j=ι

Using (B.44), (B.47) and the topological relation

" ' for i = 1, . . , m , (B.49)
7=1

the real part of the common power of βl is found to be strictly larger
than — 2l(Rl). The second part of the theorem is then proved.

Appendix C

a) Two Estimates about the Function φ(λ)

Given the convergent scalar Feynman amplitude φ(λ) where all
external momentum are scaled by λ,

φ(λ)= dae-am2e-λ2pd~i(«}pP(uΓDI2, (C.I)
o

a trivial bound is obtained since

φ(λ)^φ(Q). (C.2)

On the other hand, let us decompose the domain of integration in (C.I)
into sectors [7]. Given a permutation g = (il9..., i/) of the integers
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1, . . . ,/ , we define a sector dependent on g to be

^{αlO^α^α^g ^}. (C.3)
Then,

Σφg(λ). (C.4)

In each sector Jg, we define a sequence of nested subdiagrams

f . #={iι,..,i,}, (C5)
for ;=1, . . . ,/.

Let us introduce the change of variables

xi=βjβj+ί

2...β2

l (C.6)

for j= 1, ...,/. The domain of integration in β is now

0 < β, < oo
(C.7)

Qίβj^i, j<l,
I

and the Jacobian of the transformation is 2l Y\ ft2*"1. In this change
i = l

of variables, the Symanzik functions become

pd-^p^UβfpΔWp
i=k (C.8)

where Rk,...,Rl are essential subdiagrams. The functions Pg(β) and
p A g ( β ) p are strictly positive in the domain of integration and are βl

independent.
Then,

Z - 1

oo 1 l-ί I -β? W ί2 + £ βϊ...β?-ιmif

° 2 / 2

ί = 1 ' = 1 (C.9)

•e " ^lPΔ9(β}P Pg(βΓDI2

After the βt integration, we have

I-1 / - I lω(Λ')/2

j=ι J t = f c
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Γ )2

In (C.10), the bracket [ ] is larger or equal to m^2 1 + r ]\ βfpAg(β)p
and we also have *- mtl i = k

+- —T Π β2pAg(β)p\ < (—\9 ε Π βωβ+>
mk i = k \ \mj t=\

where
ω = Sup ω(Rl) and 0 < ε < l .

Consequently

π WAA-1"0-1] Π
0 i = l

The integral in (C.12) is convergent.
Using (C.4), we obtain the estimate

φ(λ) < const x λω+ε for λ large enough , (C.I 3)

where ω = sup ωg = sup
0 ^essential

y) Convergence and Estimate of the Integral (III. 15) when |Imx|-> oo

We consider the integral given in (III. 15)

tβr(Rt)-^ π β* π (1 (C14)

0 tφS teS tφS
^essential ί ε { f c , . . . / - l }

Then, using the remainder formula for the Taylor expansion, we have

tφS
ίe{k,. . . ,/-!}

(C.15)

= Π ^t+1ί Π
Rf essential Rf essential

where the <2$}>5 function is the βfπ}>s function with the j8,'s for tφS,
but Rt essential, dilated by ξt.
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Now from (III. 11) and (III. 13) we see that any number of derivatives
of Q9(m2, p, β, x) in regards to any subset of /Γs is a finite sum of terms
of the form

Polyn (x) Polyn (β's) C(β, x) (C. 16)

where Polyn means a polynomial,

l-l Ί-[χ-ω(Rl)]/2-Vί

C(β,x) = m, 2

ίC 1

f inite

Π /?f"+

tφS
essential

0 tφS

1 Γ (\ F \*
qt+1 ί Π L/* ^'

o tφs [ 4t
R* essential

and vί9 v2, v^ are non negative integers depending on the number of
derivatives which has been performed. The terms C(β, x) are continous
in the β's for β^O. Consequently, the ξ integral in (C.I 5) is analytic
for all x and continous for the jS's in the domain of integration.

(C18)

.\Polyn(ξtβt9βt)\C(ξtβt9βt,Rex).

Ifn} S(m2,p,x) is analytic in x for Rex> Sup [co(Rί) — qt—i'] and
ί£S

Rl essential

is polynomially bounded in |Imx| when |Imx|~>oo. For any finite
interval in Rex inside the region of analyticity of /^(w2,/?, x), the
boundedness is uniform in Rex.

00

c) Properties of the Integral j dα#(N)(x, α)
o

In the region ω-7V<Rex^ω- N+ 1, the function g(N)(x, α) of
(111.20) may be expressed as

Σ Π (-1
(C.19)

For a given sector (C.3), and its sequence of nested subdiagrams .R's in
(C.5), we gather all forests of nested elements into groups according
to the K's as in Appendix B.

Let
(C.20)
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Then, adopting the same dilatation scheme of Appendix B, we find that
the common powers ηs, μl

j9 and v} in (B.42) are now given by

(C.21)
x - DL(BS) if Bs is essential

— DL(BS) if Bs is non-essential

if &Ί is essential

if Sf is non-essential and φ 0 (C.22)

if se] = 0
if H] is essential

lO

ίx —

l-DL(Hj) if HJ is non-essential.
(C.23)

Because g(N\x,α) is defined in the band ω — N < Re x :g ω — Λf + 1
we have

E'(x) = ω - Λ Γ + l . (C.24)

Then in a way analogous to (B.46), the partial contribution to the right
hand side of (C.I9) from such a group of forests can be written in a
given sector

Z - l

>• Σ βj2...βι-ι2mt}

i = 1

ω(Bs)-ω + N-l ω(Bs)

Σ Σ
ds = 0 ds - 0

Bs essential β snonessential

Σ Π βraj Π (c.25)
m) ̂  0

•ί Π m]\

where

t _ fω(//j) - ω + N - 1 if Hj is essential

ω(HJ) if Hj is not essential ,
(C.26)

and where we have performed the change of variables (C.6). If there
exists a nonempty ̂  such that ω(^) — ω + N — 1 < 0 for ̂  essential
or ω(^)<0 for ίfj nonessential, then the corresponding group of
forests contributes nothing to (C.I9).

The same remark holds for the elements of ̂ . The expression (C.25)
may now be analytically continued to the region

Re oω- N (C.21)
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(the variable x in (C.25) appears in some μj, v}, and in /L^?α}). Indeed from
the definition of Λ and (C.20) the function Λy^fflξty is nothing but

d Y

fcήj (C.28)
ίΓ nλίl sri/Ri RΪ£i /?^ n~l*/2 Ώ'ίl ^ I & & £i βi\~D/2\' ILP^iΛ? Gj/p , p ζj, p J pj ' r̂ (Λs, σyp , p ζ j 9 p ) h = σ = o >

where the functions pJp and F are similar to the functions in (C.8),
and are strictly positive and βl independent.

Any derivatives of Λ{d,fl}(/^£j, βl) in regards to /?ξj is of the same
form as ^^(/P'ξj, j8f), that is a finite sum of terms of the form

Polyn(x) Polyn(^j, βl) €(?$, β\ x), (C.29)
where

COSΈj, β\ x) = tpA(βlξi, βl) Pγ^ F t f ξ t j , β*)-w-<» , (C.30)

Polyn means a polynomial, and where v1 and v2 are nonnegative integers.
Note that the '̂'s coming from σί

j/βi are cancelled by (βl)alj and σj = 0.
The function C is analytic for all x and continuous in βl and £*• in the
region of integration.

Substituting (C.28) into (C.25), using (C.29) and integrating over the
sector I/., we have for each sector and for each group of forests

f dα«Γ«»2 Σ Π (-
f g J^eGroup ^eJ^

Σ Σ Σ Σ Σ

(C.31)

ί/s

 = 0 ds — 0 fl i = = 0 fli —0 finite
Bs essential βs nonessential ^l essential 5̂  l nonessential

IPolyn 08*3, j^lCdS'&lS, Rex).

0 i = l

•ί Π
o {/,Λ

In (C.31) the integer p"s are

Pl = 2i - i + ΓΣ Re(μj - vj) - ' j' α} + ' j' (mj + 1). (C.32)

From (C.22), (C.23), and (C.26), we have

κ — ω + N—i — 2l(Hj)}+ Σ [-~2/(fίj)]
HjC Γ^

_ ι _ 2 / ^ - y _' (C33)
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where Tl is the smallest element of JPu.jP defined in Appendix B,
to be essential. Using the topological identity (B.47)

{Rex-ω + N-1}- £ {Rex-ω + ΛΓ- 1} . (C.34)

From (B.36), ^/ C Hj. Then if T belongs to jf', the brackets {} cancel
each other and since rt ^2, pt §: 0. On the other hand, if Tl belongs to
J^\ there is one more essential Hj than there are essential ί/Ί and

p'^Rex-ω + A Γ - l . (C.35)

For RQx>ω — N,pi> —1.
In view of the continuity property of C(/Jl£},/?, Rex) the integrals

over ξj in (C.31) exist and are bounded for all βl in the domain of the
remaining integrations, whose convergence is then insured by the bound
pi > -1 for Rex > ω- N.

Summing (C.31) over all groups of forests of nested elements and
then over all sectors, we conclude that the integral $$ dag(N)(x, α) exists
for Rex>ω — N and is polynomially bounded in |Imx| as |Imx|->oo.
Furthermore this boundedness is uniform in Rex in the interval
ω — JV + ε:gRex^ί>, where ε is any positive number and δ any number.
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