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Abstract. The non linear Boltzmann equation is studied and differentiable solutions
are shown to exist if the initial datum is suitably chosen

1. Introduction

In the present paper we study the initial value problem for the
Boltzmann equation in the spatially homogeneous case and obtain
an existence and uniqueness theorem which is a generalization of [4]
when the extrinsic force is zero.

This space-independent problem has been much studied; for instance
in [9] and [1] Povzner and Bodmer obtain a similar result by completely
different methods. We note however that our methods are much more
simple; moreover Povzner does not investigate the differentiability
of the solution while Bodmer considers a somewhat less general equation.

2. Preliminaries

We begin with some basic definitions and results which will be used
in the rest of this paper.

Let X be a real Banach space and X* its dual; by || || we denote
the norm in X and by <x, x*> the value of x * e l * a t x e X .

With each xeX is associated the set δ||x|| = { x * e Γ , \\x + y\\
^ 11*11+ <y,x*y,VyeX}; the application X->2X\ x->d||x||, is called
the subdifferential of the norm.

Let f:DfcX-+X and consider the initial value problem

ί du

ΊΓ=f{u) ίe[0,T]. (1)

u(0) = u0

A continuous function u: [0, T]->X is called a solution of (1) if it is
differentiable in [0, T] and satisfies (1).



332 G. Di Blasio

We will use the following lemma (see [7])

Lemma 1. Let u belong to C^^T X)1; then \\u{ )\\ is differentiable
a.e. in [0, T] and we have

3. Properties of the Boltzmann Equation

We shall study the Boltzmann equation in the spatially homogeneous
case

The bilinear function («, v)->f(u, v) is defined as follows2

f(u,v) = f + {u,v)~f-(u,υ)
where

and
R3 0 0

E3 0 0

(usually the time dependence of u and v will not be written explicitly).
Here the variables ξ', ξ[ depend on ξ,ξί through

ί i = ί i - α ( α ( ί - ί i ) ) ,

where α = (cos#, sinθcosσ, sinθsinσ). For fixed α these formulae
represent a unitary transformation in the 6-space ξ,ξί so giving

d(ξ',ξ[)/d{ξ,ξι) = i. (3)

Equations (2) mean in particular that

B(θ, ξ,ξι): (0, π/2) xlR6 ->ΊR is a given measurable function non negative

a.e. such that B(θ,ξ,ξι) = B(θ,ξ1,ξ),

B(θ,ξ,ξ1) = B(θ,ξ',ξ\).

We recall that owing to (3), (4), and (5)/ satisfies the following equalities3

Sf(u,υ)dξ = O, $ξ2f(u,υ)dξ = 0 (6)
1 Cw(0, T: X) is the Banach space of the m-times continuously differentiable functions

II dm

M : [ 0 , Γ ] ^ Z equipped with the n o r m |||M||| = sup | | M ( 0 | | + ••• + sup —-—u(t) .
ίe[0,Γ] te[O,T] \\ dtm

2 Troughout this section by u and v we denote measurable functions.
3 For a more detailed description and proofs of the properties quoted in this section

see [2], [6].
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where u and υ are any functions such that f(u, v) exists. From now on we
assume that the following hypothesis is fulfilled

71/2 Biθiξtξi)
(H) sup ί ' , dθ = B0<+oo

An immediate consequence of (H) is the following lemma.

Lemma 2. We have

J |/(ιι, υ)\ dξS 7 ί (1 + ξ2) M ̂  J (1 + ξ2) \υ\ dξ ,

where γ = 8πB0.

We now want to establish some basic properties of / which will be
used in the following.

Lemma 3. Let u be non negative a.e. We have

j (1 + ξ2)2 f{u9 lήdξ^y ί (1 + ξ2)2 u dξ f (1 + ξ2) u dξ . (7)

Proof. Set F(θ9ξ9ξ1) = B(θ9ξ9ξ1) {ξ2 + ξ\): it follows from (4)
that B' satisfies (5), then (6) is verified

j ξ2 J ίu(ξ') u(ξ[) - u(ξ) uiξj] B'{θ9 ξ9 ξt) dθdσdξ.dξ = 0

(the limits of integration have been omitted for simplicity in notation)
and we have

f ξ4/(", u) dξ=-\ ξ2 J ξl[u(ξ') u(ξ[) - u(ξ) uiξM B(θ, ξ9 ξj dθdσdξ.dξ .

Now (6) implies

j(i + ξ2)2f(u,u)dξ=$ξ4f(u,u)dξ

= I ξ2 j ξ\{u{ξ) u(ξ1) - u{ξ) u{ξ\)-] B(θ, ξ, ξj

•dθdσdξ^ξ

= f (1 + ξ2) j (1 + ξ\) \_u(ξ) u{ξ,) - u(ξ>) u(ξ[)-]

,ξ1) dθdσdξ.dξ

and the conclusion follows from (H).

Lemma 4. If u and v are any functions non negative a.e. then4

\(ί+ξ2)\u-υ\dξ.

sgnw is the function defined as follows

r= l if u > o

sgn w s = — 1 if w<0

1=0 elsewhere
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Proof. We have

J (1 + ξ2) sgn(u - v) [/(«, u) - f(v, v)-] dξ

^ J (1 + ξ2) J Hξ,)-1,(^)1 [>(£) + υ(ξ)] B(θ9 ξ, ξx) dθdσdξ.dξ

- j (1 + ξ2) j M£) - v(ξ)\ [ i ^ ) + i Ki)] B(θ, & ί J dθdσdξ.dξ

+ j ( l + ξ2) j lιι(ί') - z;(OI M£Ί) + !>(&)] «(fl, ί, ί i ) dθdσdξ.dξ

+ f (1 + <f) j |tt(£i) - ϋ(ξi)| [tt(ξ') +1;({')] B(θ, ί, ξi) dθdσdξ.dξ

= 2J (1 + ξ2) [««) + ϋ(ί)] J WξJ - v^)\ B(θ, ξ, ξx) dθdσdξ^ξ ,

where we used (6). Thus the conclusion follows from (H).

For each ee[0,1] let fε be the bilinear function (u9v)->fε(u,v)

= fε

+ (w, v) - f~ (u, v), where

and

fe~ (u, v) = $S ίu(ξ

',) + u{ξ\) v(ζ'J]

j + u(ξx) v(ξί]
l

dθdσdξ,; 2 \ 2
s + si

hΆ-2 dθdσdξ,.
/ £ 2 + £2

By definition fo(u,v) = f(u,υ); moreover as Bε(θ,ξ,ξ1) = B(θ,ξ,ξ1)
(1 +ε]/ξ2 + ξly1 satisfies (5) we have that each fε verifies (6), (7), and (8).

The following lemma establishes further properties of fε.

Lemma 5. For each ε,ηe[0,1] the following inequalities hold:

ί !/.(«, u) - fη(u, u)\ dξ S 4y(J (1 + ξ2) \u\ dξ)2 \ε - η\

j (1 + ξ2) \ft(u, u) - /,(«, u)\ dξ S 4y|e - η\ J (1 + ξ2)2 \u\ dξ j (1 + ξ2) \u\ dξ .

Proof. We have

\\fε(u,u)-fη{u,u)\dξ

= j I j [«(£') u(ξ\) - u(ξ) uiξj] [Bε(θ, ξ,ξ,)- Bη(θ, ξ, ξj] dθdσdξ.l dξ

S J ί ί\u(ξ') u{ξ\)\ + \u(ξ) u{ξji] \Bε(θ, ξ, ξj- Bη(θ, ξ, ξt)\ dθdσdξ.dξ

dθdσdξ^ξ
(ί+ε]/ξΎTξϊ)(ί+ηγξ2 +

£\e-η\ 4πβo.ί \u(ξ)\ j |«(ξx)| (yΊTξ2 + ]/ΪTξϊ)2 dξ.dξ

Z\ε-η\ ί6πB0 j(1 + ξ2) \u(ξ)\ dξ\{i+ ξ2) |«(^)| dξ,,

where we used (6) and (H). The second inequality follows in the same way.
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We will be concerned with the following Cauchy problem

\du{ξ,t)

I u(ξ,O) =

and will prove that, under proper assumptions on the initial datum (I)
has a unique solution.

4. The Approaching Problem

Let us denote by Xr(r = 0,1,2) the Banach space of the measurable
functions u: IR3 -•IR such that

equipped with the norm || ||r and by X? its dual. By δ|| ||̂  we denote
the subdifferential of the norm in Xr (r = 0,1,2) and by < , X: Xr x X* -+ IR
the function (w,u*)-><u, w*>Γ = J(l +ξ2)r uu*dξ.

Let Q be the closed convex cone Q = {ueX0,w^Oa.e.}. For each
εe(0,1] we denote by fε the function fε:Q-+X0, u^>fε(u) = fε(u,u)
and by f0 the function f0 : QnXx -+X0, u^fo(u) = f(u, u).

We prove the lemma.

Lemma 6. LetueXr then sgnwe δ||M||Γ,(r = 0,1,2).

Proof. It is known that sgnueX* (see [5]); moreover for each
veXr we have \\u + v\\r = (u + v, sgn(w + U)) Γ ^<M + V, sgnu)r= \\u\\r

+ (v,sgnu)r.
The following lemmas follow from (H), (6) and Lemmas 3,4 and 5.

Lemma 7. We have
(i) if ueQnX1 then for each εe(0,1] fε(u)eXί and </ε(w), sgnw^^O,

(ii) if ueQnX2 then for each ε e (0,1] fε(u)e X2 and </ε(w), sgnw>2

NliNIL,
(iii) if u,veQnX2 then for each εe[0,1] fε(u)9 fε(v)eXί and

Lemma 8. For each ε, η e [0,1] we have

(i) \\fε(u)-fη(u)\\0^4γ\ε-η\\\u\\2

l9 VueQnXl9

(w)-/,(w)lli^4y|fi-ι/| \\u\\, \\u\\29 VueQnX2.

Lemma 9. For each u,veQnXί we have fo(u)9 fo(v) e Xo and
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Let us consider the initial value problem

ί du _ ε>0

(IJ \1Γ~UU) ί6[0,T].

In [4] we proved the following theorem5:

Theorem I. Assume that UOEQ. Then for each T>0 there exists
a unique u e C^O, T: X) solution of (Iε): moreover for each t E [0, T] we
haveu(t)EQ, \\u(t)\\0 = \\uo\\o.

The following theorem establishes further properties of the solution

of(Iε):

Theorem II. Let U0EQΠX2 and let uε be the solution of (Iε); for
each t E [0, T] we have :

Proof, (i) and (ii) are an immediate consequence of (i) and (ii) of
Lemma 7.

5. Existence of the Differentiate Solution

In this section we will investigate the existence of the solution of the
following Cauchy problem

ί
du _ r / x

dt~Mu)

 ί e [ o,τ] .

We begin with two lemmas.

Lemma 10. Let U0EQC\X2 and let uε be the solution of (Iε); then there
exists u E C(0, T: Xλ) such that lim uε = u in C(0, T;XX).

Proof It follows from Lemma 1 that for each ε, η E (0,1] and a.e.
t E [0, T] we have

d „ /x / M , / d d

\\uε(t) - uη(t)II! - ( — uε - — uψ sgn(uε - uη)^

Mη)-fη(uη\

where we used (iii) of Lemma 7 and Theorem II.

5 For a sketch of the proof see the appendix.
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By Lemma 8 we obtain

Set σEtη = 4γT\ε-η\ ||wo|li KII2 ^ M l Γ ; we have lim σε>/7 = 0 and by
GronwalΓs lemma ε'η^

The proof is complete.

Lemma 11. Let uε be the solution of (Iε) and u = \imuε the function

given in Lemma 10. Then lim fε(uε) = fo(u) in C(0, T;X0).

Proof We have u(ήe QnXx for each ί e [0, T] and:

(uε)-fo(u)\\o^ \\fε(uε)-fo(uε)\\o+ \\fo(uε)-fo(u)\\o

" u \ \ l •>

where we used (i) of Lemma 8, Theorem II and Lemma 9. The conclusion
follows from Lemma 10.

We can now prove the following theorem:

Theorem III. Assume that u0eQnX2: then for each T>0the problem
(Io) has a solution u e C^O, T; Xo). Moreover for each t e [0, T] we have
uίήeQ and:

^ * II /\ll II II II /\ll

Proof. Let uε be the solution of (Iε); by Lemmas 10 and 11 we have
lim uε = u in C(0, T;X0) and lim/ε(we) = /0(w) in C(0, T:X0): thus

lim 4 " - = lim/,(«,) = /0(κ). This implies u ε C 1 ^ , T, Xo) and - ^ = / o ( « )
ε->o αί ε->o αί

M o r e o v e r we h a v e u(0) = l im wε(0) = u0 a n d | |w(ί)| | x ^ l im H M ^ ί ) ! ! ^ | | M O | I I
ε^ O ε->0

T o p r o v e t h e s e c o n d e s t i m a t e we use F a t o u ' s l e m m a , ||wε(ί)ll2
^ β y | | « o l l i t | | M o | | 2 a n d iim uε = u in C(0, T:XX) t o c o n c l u d e | | w ( ί ) l l 2 ^ ^ " W o l l l ί

II II ε^°

Lemma 12. Let uo,voeQnX2: if u e C^O, T, Xo) (respectively
veCl(0, T:X0)) is a solution of problem (Io) with initial datum u0 (re-
spectively υ0) and u(t) e Q (v(ή e Q) for each t e [0, T], then

(i) Nί) | l i = K l l i 9 \\v{t)\\i = \\vo\\i,

(ii) \\u(t)\\2SeytMί\\u0\

(iii) ||w(ί) — ̂ (011 i ^ ll̂ o — ̂ oll 1

for each ί e [ 0 , Γ ] .
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Proof. It follows from (6) and Lemma 3 that (i) and (ii) of Lemma 7
are formally satisfied by f0 thus the assertions (i) and (ii) have the same
proofs of Theorem II.

Concerning (iii) we have for a.e. t e [0, T ] :

dt " υ"1'

where we used Lemma 1 and (iii) of Lemma 7.
Now

thus the conclusion follows from (i), (ii) and GronwalΓs lemma.
As a consequence of Lemma 12 we get the following result:

TheoremIV. Let u0eQnX2, then for each T > 0 the problem (Io)
has a unique solution.

Combining Theorems III and IV we obtain an existence and
uniqueness theorem for problem (I).

Theorem V. Assume that uQ satisfies the following hypothesis

^0 a.e., j ( l + ί 2

Then for each T > 0 there exists a unique u: [0, T\-+I}(R3)9 u{t9ξ)^O
a.e. ξeW? for each te [0, T], solution of problem (I). Moreover we have

J (1 + ξ2)2 u(t,ξ) dξ^ J (1 + ξ2)2 uo(ξ) dξ eytm + «2)«orf«Vί 6 [0, Γ] .

Appendix

For the completeness of our work we shall give an outline of the
proof of Theorem I. This result is obtained in a more general case in [4]
and requires the results of [7]. Two lemmas precede the main arguments.

Lemma 13. Set Qr = {ue Q, \\u\\0 ^ r } ; for each εe(0,1] there exists
Nε(r) such that

Wfε(u)-fM\o^Nε(r)\\u-v\\o, Vu,veQr. (9)

Proof. The estimate (9) is an immediate consequence of assumption
(H) of Section 3.

Lemma 14. For each r > 0 there exists n(ε, r) such that the following
equation

nu - fε(u) = v9 e e (0,1] , v e Qr

has a unique solution ue Qr for each n^n(ε, r).
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Proof. Set
V

UΛ =
n

V

Uu

It is easy to see that uk e Qr and that for n ̂  n(ε, r) there exists
lim uk = uG Qr. As/ε is locally lipschitz continuous the conclusion follows.

k-+oo

By Lemma 14 we can define the "local resolvent" function in the
following way:

it is not difficult to see that

(i) ll#Q>,/>llo^Nlo,

(ii) \\RQJnJε)nu-RQJnJε)nv\\0S ^ _ ^ ( r ) - l l ^ l l o

for each u,veQr and n ̂  max {n(ε, r), Nε(r)}.
For each fixed r > 0 and any integer n ̂  n(ε, r) we define the Yosida's

approximation function

fin = nRQnM fe)n~n = feRQnM> fε) n '

From the local lipschitz continuity of fε for each r > 0 we have

(in) lira f;>n(u) = fε(u)

uniformly in Qr.
Now consider the integral equation

(IJ un(t) = uo+ J fε[n(un) (s) ds, te [0, T], u0 e Qr.
o

The following lemma holds:

Lemma 15. For each u0 e Qr and n > max {n(ε, r), Nε(r)} there exists
a solution un(t) of problem (IM) such that ||wπ(ί)||0 ^ ||w01|0 for each t e [0, T].

Proof. Set y=C(0,Γ;*o), « = {"e Y,u(t)eβMo for ίe[0 ? T]}
and consider the function τn: K -• 7 defined by

ί

K M ) (0 = exp(- nt) u0 + n J exp(-rc(ί - s)) RQnr(n,fε) nu(s) ds .
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Using (i) and (ii) it is not difficult to see that τn(K) C K and that for
T=T0 sufficiently small (depending on r and n) τn is a contraction
which maps K into itself. Consequently there is a function uneK such
that τnun = un and it is easy to see that un satisfies (Iπ). Moreover as we
have | |M W (T 0 ) | | 0 ^ ||wo|lo we can consider the same problem (IM) with the
initial point u0 replaced by un(T0) and this allows us to extend to the
interval [0,2T0] the solution of (ln) with initial point u0. Iterating this
argument we extend the solution of (Iπ) to [0, T] with T arbitrarily
given; obviously we have ||wn(ί)llo ^ ||MOIIO f° r t e Ά T~\.

From (ii) and GronwalΓs lemma it follows that there exists UEK
such that lim w = u in Y: thus, using (iii), we obtain:

n—* oo

(I) u(t) = uo + jft{u)(s)ds, te[0,Γ];εe(0,l].
6

Finally the uniqueness of the solution of problem (I) and its differ-
entiability are a straightforward consequence of the local lipschitz
continuity of fε.

The author thanks Profs. G. Da Prato and G. Gallavotti for stimulating discussions.
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