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Abstract. We extend the axioms for Euclidean Green’s functions recently proposed
by Osterwalder and Schrader to Jaffe fields.

§ 1. Introduction

We extend in this paper results of Osterwalder and Schrader [11, 12]
on Euclidean Green’s (Schwinger) functions to Jaffe fields.

In the first part of their work Osterwalder and Schrader give a
precise distribution-theoretic definition of the Euclidean Green’s
functions and investigate properties of these Schwinger functions as a
consequence of the Wightman axioms (in the case of tempered fields).
In the second part of their work they give a system of axioms for the
Schwinger functions which allow the reconstruction of a unique
Wightman theory (for tempered fields).

On the other hand, Jaffe [8] extended the Wightman theory by
considering fields (in x-space) as certain classes of operator-valued
ultradistributions. Correspondingly, in p-space, Jaffe fields need not
be tempered.

We study in this paper Euclidean Green’s functions for Jaffe fields
and extend the results of Osterwalder and Schrader to these classes
of fields. Several alterations have to be made in the original proofs
of Osterwalder and Schrader. So, for example, some new techniques
are necessary in order to handle the stronger singularities of the Fourier-
Laplace transform of ultradistributions on the real axis. Also the con-
tractivity of the time-translation operator requires a different proof,
using the general form of linear continuous functionals over 9t (see
for instance [5]).

We shall use freely the notations of Osterwalder and Schrader [11, 12].
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§ 2. Mathematical Background

In this chapter we present a short summary of the necessary mathe-
matical background for Jaffe fields.

Definition. Let w be a real-valued function on [0, co) which satisfies
the following conditions: :

a) exp(w(x?))is a real entire function on R, i.e.

00
=Y aylxPr,  xl=)/xF -+

andap=1,a,,20(k=1,2,3,...) (regularity)
b) o(x+y) S ox)+o(y)

for all x, y € [0, c0) (subadditivity)

0 w(tZ)

© § 1+12

d) 2w(x) S w(Ax)+ C

dt<oo  (Carleman’s criterion)

for some constants A4, C, (nuclearity).

Every function satisfying a)—d) will be called a Jaffe indicatrix.

Remark. Condition d) is equivalent to saying (see [10]):

d) a; ' SCL sup {aiap-)) 7!

0sIl=zk

for some constants C, L (stability under ultradifferential operators). For
a proof see the Appendix.

To avoid trivial cases, we shall assume furthermore, without
mentioning it, that all Jaffe indicatrices occuring in this paper satisfy:

o(x?) z log(1 +[x[*)

1\ . . .
Example. Let a,,= (W) , o >2. The corresponding entire function

t2r

r=0 (r!)a

can easily be shown to be built up from a Jaffe indicatrix [i.e. satisfies
conditions a)—d)].

Now we are able to define our spaces of test functions:

Definition. Let @ be a Jaffe indicatrix. We denote by 9, (R") the
space of all functions ¢ € ¥°(R") for which

l@|&% = sup {e**1"™|D*o(p)}
pelR!

= exp(w(t?))

M8
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is finite for each multiindex o and each constant 1> 0. A natural topology
on M can be defined by means of the norms | - ||&.

Definition. Let o be a Jaffe indicatrix. We denote by %, the space
of Fourier transforms of functions in M,, €,=F(M,). A natural
topology on %, can be defined by means of the following norms:

o) = sup {e**PP|D*@(p))} .
pelR

The Fourier transform is a continuous isomorphism between M, and €,.
Definition. Let w be a Jaffe indicatrix. We denote by Z,,(K), K C R
compact, the space of all functions ¢ € ¥ with support in K for which

ol = 0= x) dx

is finite for each A > 0. Z,(K) is easily seen to be a Fréchet-space under the
topology given by the seminorms | - [{?~. Now define Z,,(IR") to be the

inductive limit of spaces Z,(K;), | ) K;=R' and K;CK;, . Then
j=1

2,(R") generalizes the Schwartz sjpace 2 of infinitely differentiable
functions with compact support.

Remark. Throughout this paper the Jaffe indicatrix leading to the
spaces M, and €, will be held fixed, so we shall denote them simply

by Mt and ¥.
An equivalent set of seminorms on Z,(K) can be given by

llgll; = sup {3}

For a proof see [1], Theorem 1.4.1. If exp(w(¢?)) is the entire function
of the preceding example, the corresponding test function spaces M
and % coincide with the projective limits of the spaces S,, 4, S¥**
respectively, introduced by Gelfand and Shilov [5].

Lemma 1. Let w be a Jaffe indicatrix. Then the topologies on I,
defined by the seminorms:
1.2 = sup {e**" D" (p)]}
p

il . = sup {e** P21 D*0 (p)]}
K@D a,2n=sup {**P(1 + 2" D*o (p)]}
KON a,1.n=sup {1 +[p)" ID*0 (p)]}
are equal.

Proof. The proof of Lemma 1 is an easy consequence of subadditi-
tivity, the nuclearity condition and w(|x|?) = log(1 + |x|?).

Remark. Lemma 1 obviously holds also for the seminorms’ counter-
parts in 6. The topology defined by & -3, ; . is the topology originally
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introduced on 9 by Jaffe [8]. So, infact, his test function spaces and
ours are the same, if w is a Jaffe indicatrix.

Lemma 2. Let o be a Jaffe indicatrix. A function ¢ € €* (R") belongs
to €, if and only if for each multiindex m and each constant h>0 there
is a constant C,,, , such that

sup (X" A5 ()[} = Couuh"/azyc. (1)
Proof. (See [9], Theorem 2). Let ¢ € €* and suppose that (1) holds.
Then
Nl = sup {e**IPPID*p(p))} = sup {ID*[e* PP o (p)]l}
pe pe

= 3 aptsup (IDpPO@IN S S, et [ A o).
k=0 pelR! k=0

Choose C = [ (1 +|x|*') " dx.
Then

ol SC 5 azedsup {1+ 1% ¥ oo}

Using (1) each term
(1 + |x]*') x* A o (x)|

can be majorized by Ah*/a,, where A is a constant depending only
on h. It follows:

loll <Ch S A4
k=0

which is finite, if we choose h<1~'. Hence ¢ € %.
Conversely, let ¢ € €. Then

sup (" 4*p(9l} <[ D" ¢ ()]l dp
@O (1412 3 1D0(p)dp.
Choose B, C in such a way, that (4k)™ < CB*. Then
5 axh™ sup (<" ()
<c kf ayh B* [ (1 + [pl?*) io ID*¢(p) dp

[ W) 3 Dy ap. @)

a=0
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Since, by hypothesis, ¢ € €, i.e. € M, the last integral is finite (see [5]
for integral norms on IN). Thus the terms of the infinite sum (2) are
uniformly bounded by a constant depending on h and m only. This
completes the proof.

We conclude this chapter with a fairly easy consequence of the
proof of Lemma 2 (see [9], Theorem 5):

Lemma 3. Let w be a Jaffe indicatrix. Then the seminorms on % :
s e}
@ /hm= Y. a2h™" sup sup {Ix’D*p(x)|}
k=0 (lei:glkxelR

are equivalent to the set of seminorms ||- |,.,.

§ 3. The Euclidean Green’s Functions for Jaffe Fields

We shall first state the Wightman-Jaffe axioms for the scalar neutral
field @(x). The expectation values

W, (x) =W, (x1, ..., x,) =(Q, o(x,) ... 9(x,) Q),
X= (X1, 000 X,), X; = (x?, x;)

are supposed to obey the following axioms.
Ultradistribution Property. For each n:

(W0) W,(x)eC'(R*); Wo=1.
Relativistic Covariance. For each n, W, is Poincaré invariant:
(w1)  B,(x)=W(dx +a)

for all (a, A) e B where Ax+a=(Ax, +a,..., Ax,+ a).
Positivity. For all finite sequences fy, f},... fy of test functions
foeC, f,e 6R*"); n=1,...,N:

(WZ) Z ﬂ:Bn-!-m(fn*><fm);0

where f,* x f,, is defined by
(faf X f) (x5 Y) = (%) fu(D)
SE@) = fFGp o X) = [ (e - X)) = F,).
Locality. Foreachnand k=1, ...,n—1:

(W3) W1, ey Xpoo Xt 15 weos X)) = (X1, ooy Xp 15 Xp» 205 X))

and

if (x, — x4 1)* <O.



304 F. Constantinescu and W. Thalheimer

Cluster Property. For any space like a and k=1,...,n—1,
J_C:(xlﬁ"':xk)’,Y:(yl"'wyn—k):

W4y lim W, (x, y + 20) = B, B, ,(y)

Spectral Condition. Using the translation invariance of the W,’s,
we conclude that there exist ultradistributions W,_, € '(R*"~ V) such
that

iBn(z)—c):VVn—l( )9 §=(‘fl”"7£n—1)

and &, = x; 4+, — X;. Then:
(W5)  suppW,_ (@ C Vi '={glgeV,,i=1,...,n—1}

where W,_,(q) is the Fourier transform of W,_,(&), ¥, is the closed
forward light cone, and ¢, &, = ¢° £ — §,&,. From a given set of Wightman-
Jaffe ultradistributions satisfying (W0)— (W5) we can reconstruct
the Jaffe field ¢(x), the physical Hilbert space 5, the vacuum vector £
and a unitary representation U(a, A) of Pl in # by applying the
reconstruction theorem. Now standard methods in Axiomatic Quantum
Field theory show that W,(£) are boundary values of functions W,({)
analytic in T4 ={{|{=¢+ineC*", neV!} (see [9] and [3]). W,()
can be analytically continued to the extended tube T% = {{|4{eT},
Ae L, (€}, where L, (C) denotes the set of complex Lorentz transfor-
mations with det1. The functions ,(z) defined by W, (z)= W, _,({),
where {; =z, —z are analytic in o}, = {z]ze T} .} and have as
boundary values the distributions 2B,(x). Finally, 2B,(z) can be analyti-
cally extended into the set 6%, perm = {Z1(Zr(1)> -+ +» Zrn) € Texe fOr some
permutation 7}.

The set ooy, perm
forall i £k<1<n}.

Definition. Points in " are called Euclidean points.

Definition. The restriction of the Wightman functions 2,(z) to &”"
are called the n-point Euclidean Green’s functions or Schwinger
functions for a Jaffe field.

We set, following Osterwalder and Schrader

contains "= {z|zeC",Rez) =0,Imz, =0, z,+z,

O.O =QBO = 1
0,(X) = 0,(x1, ..., X,) = W, ((ix], &), ..., (ix7, X,,))
forxe Q"= {x|x;#+ x;forall 1 £i<j<n}.

From the invariance properties of the Wightman functions, we
derive invariance properties of the Schwinger functions under the
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inhomogeneous Euclidean group iSO, (and under permutations),
we write

Sy 1 (&) =W,_ (8,9, ..., (& 1, E,_))

=0(X), &=Xp41—XpXe".

The Schwinger functions S,_,(£) are real analytic. But they also define
ultradistributions in a certain sense which we make clear in Proposition I.

We now prove some results on Fourier-Laplace transform of ultra-
distributions which we need in this and in the next part of this work.

Theorem 1. Let @ be a Jaffe indicatrix, let I' be an open convex
cone in R' and let F be an analytic function in T,=1R*" +iI'. Suppose
that for each compact subset K C I there exists a polynomial Py such that

IF(E+in) = Px(&).

Then F has a boundary value in €' (in the weak topology of €') as n—0,
n in a subcone of I, if and only if for each subcone I''CI', whose inter-
section with the unit sphere is relatively compact in I, and for each R >0
there exists a polynomial P and a constant a>0 such that for all nel”,
In| <R,
[F(E+in)l = P(S) Au(Inl)
where o
At)=t [ e *dx, >0
0

is the one-sided Laplace transform of e*°*? times t.

Proof. See [3], Theorem 5.3, and [9], Theorem 19.
Remark. One can (see [9]) equivalently define:

A=t Y ay 2kl dt =1 [ e@e > dx.
k=0 0
Anyway, by Lemma i it is clear that this alternate definition does
not change the result of Theorem 1.

Theorem 2. Let w be a Jaffe indicatrix and let F be holomorphic
in the tube R +iI’, I an open convex cone in R'. Assume that for each
subcone I CTI', whose intersection with the unit sphere is relatively
compact in I', there is a constant C(I'") such that

[FE +in) = CIM) (1 + Au(nD)) (1 + 1€ + inl)"

for all neI" and for some constants a,n (which do not depend on I'').
Then F is the Fourier-Laplace transform of an ultradistribution fe I
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with support in the dual cone I'*

I*={yeR'|xy=0,V¥xel}.

Proof. From Theorem 1 it follows that the limit {)im . F(¢+in)
n—=0,ne

exists in ’. We denote this limits again by F. By Theorems 5.1 and 5.2
of [3] we know that F is the Fourier-Laplace transform of a generalized
function f e M,

FE+im=FQQ=F[e ™ f(x)] ().

We still have to prove the support property.
Let ¢ be a function in Z,,. Then we get

(f; @)= (e""F ' [F(&+in)] (p), (p))

=(F&+in), 7 '[e’o(p)] ()

1
- (27[)1/2

Let p, be a point in the complement of I'*. Then there exists a unit
vector 9o € I’ with pyn, < 0. Suppose that supp ¢ is contained in a ball B
around p, such that By, < — 9 <0. Then by the Paley-Wiener theorem
for test functions and (3) we get an estimate of the form:

JF(E+in) fe e p(p) dpd¢ . )

I/, @I < C [ IF(E +in)| e #eUr D sup (o1 dg

pesuppo

< C Al sup (e} | e et g gy de. Y

Let now I be the subcone {n= Ayy|A>0} of I' and choose y so big
that the integral in (4) exists. Then, finally,

I(f, @l = C(IM) Ay () e

Let now A— 0. Then A4,(4) remains bounded and we see that (f,¢)=0
for all ¢ € &, with suppe in the ball B around p, ¢ I'*. Thus we have
shown that f vanishes in at least one neighborhood of each point in the
complement of I'*, therefore it vanishes globally outside I'*. Since 9,
is dense in MM by Theorem 1.8.7 of [1], the Theorem is proved.

Now we introduce some notations. Let R, denote the open half
intervals (0, - 00) and R their closure. Let M(IR,) denote the space
of all functions f e M(R) with suppf in R, equipped with the induced
topology. M(R,) will be the set of all functions defined on R, €~
on IR, whose derivatives all have a continuous extension to IR, and are
of expw decrease at infinity. We introduce a topology on I(IRY) by the
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following system of seminorms

@]l = sup {e* > D" (P} .
P>
Then we have
Lemma 4. The space (IR, ) is isomorphic to the topological quotient
space M(R)/IM(R ).

Proof. The proof of this lemma is based on the Whitney extension
theorem in the form given by Hormander [7] and follows from [12]
by simply replacing the polynomial growth by a growth like exp(w(p?)).

By Lemma 1 any element in 9(RR;) is the restriction to R, of some
element in M(R) and a generalized function in M'(R7) can be identified
with a generalized function in 9 (R) with support in IR, (see also [12]).

For ¢ € 4(R,) we define

¢(p)= | e " p(x)dxI R .
Then

Lemma 5. The mapping ¢ — @ is continuous from €(IR.) into M(R),
its range is dense in M(R,) and its kernel is zero.

For the proof of Lemma 5 we need some more lemmas.
Lemma 6. Suppose Te W' (R,). Then
T=} D,

asm

where i, are measures with support in [0, c0) such that some non-negative
constant 1 exists with

[ e (] <oo.

Proof. The proof of this lemma can be done along the lines of [14]
and [13] by using the general form of generalized functions in 9t [5].

Lemma7. Let ¢e%(R) and let D*¢(0)=0, a=0,1,2,.... Then
foralla>0
[A(0x) p(x) <o, xeR.

Proof. By Taylor’s formula

p)="1p"(E), 0=ésx.

Lemma 2 then yields: )
lp@ (&) = Ch'/ay,
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and therefore

a2,2n)! o (x)| 1
et LT < -
Qe = O
Letting n—o0:
S a,,(2n)!

o (x)] ’Z,O W = |p(x)| A5,(|x]) <00 .

Proof of Lemma5. The following inequality is valid
[0+ =sup {**“ID* G (@ < C//@/fu,,m,
by Lemma 1, Lemma 3 and the formula

M D*(g) = [ e e (— x)* p(x) dx | {g = 0} )

2
where 4= dd > and e®“ is defined as a series in the Laplacian:
x

00
w(4) _ k
D=3 g, A%,
k=0

Up to now we have shown that ¢ € M(IR,) and that the mapping ¢ — @
is continuous, but the rest of Lemma 5 can be proved like in [12], taking
into account Lemma 6 and Lemma 7.

Let now TeMM'(R) with supp TCIR,. It defines also a generalized
function in 9M'(R7), again denoted by T and for some constants C, «, 4:

ITNNEC] flags+=c|f]
Now for x >0 we define a real analytic function

S()=(T(p),e ") Mpz20}).

’
a,A

Then
Lemma 8. S is an ultradistribution in €' (R ).

Proof. The proofis an immediate consequence of Lemma 6, Lemma 7,
and formula (5) in the proof of Lemma 5.
Now we can state a basic theorem:

Theorem 3. Let T be a generalized function in ' (R) withsupp T CIR;.
Then for all ¢ e €(R,):

IS(@) = T(¢) 6)
IS@I=Clo),=Clo)us+ =Cl@]wn @

for some constants C,a, A depending on T only. Conversely, if S is an
ultradistribution in €'(R.), satisfying (7) for some C,a, A, then there
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exists a unique generalized function Te W' (R) with support in R, such
that (6) holds.

Proof. Follows from Lemmas 4—8. In what follows we shall need a
multivariable version of Theorem 3, which, due to the nuclear theorem
(see Appendix), is easy to prove. First we introduce some additional

notations:
We denote by IR%" the set {£|E>0,k=1,...,n}, by R{" its closure
and for ¢ € €(IR%") we define ¢ by

= fexp (—k‘;l Préy+ iif’kfk)) P& dETRY".
On M(R%") we introduce a set of norms
|@lla.z,+ = sup {e**IID"0(p)}
peR%r

which induce a set of seminorms on €(R%"):

lollin= 1.+

and we immediately see that Lemma 4 holds with obvious modifications.
Analoguously, for T e ' (R*"), supp T CIR%", we define S by

S©=(mu4 z@m+@mﬁ@dwﬂ

Again, S defines an ultradistribution in €' (R%"). As stated above, the
multivariable version of Theorem 3, with obvious formulation, follows
by the nuclear theorem.

We introduce two more spaces of ultradistributions

G o(R*) = {p € €(R*")| D*(x) = 0 for all a, if x; = x, for some i = k}

and
F(RLY") = {p € (R*")|suppep CIRE"}

where
RY' = {x]0<x{<--<x%}.

We can state now the following proposition which is an extension
of a result by Osterwalder and Schrader to Jaffe fields:

Proposition I, The Schwinger functions associated to a Wightman-
Jaffe theory have the following properties

Distribution Property. For each n= 1
(EO) O-n(E) € (66(IR4") ’ Go= L.
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S, defines an element in %'(IR*") and is continuous with respect to some
norm ||-|[; ; on €(IR}").
Euclidean Covariance. For each n = 1 and all (g, R)€iSO0,:

(E1) 0,(x)=0,(Rx+a).

Positivity. For all finite sequences f, fi,...,fy of test functions
fue ERE),
(Ez) Z 6n+m((9fn*_><fm)go

where 0 f,(x) = £,(3x).
Symmetry. For all permutations n

(E3) CulX 15 ooy X)) = 0, (Xr (1) s X)) -
Cluster Property. For all n,m, f € 4(R%"), g €(R*"), a= (0, @) e R*
(E 4) }an}) Un+m((9f* X g;la) = O'n((Of*) O-m(g)

where g, , is defined by g,,(x) = g(x + Aa).
Conversely, Schwinger “functions” obeying (E0)— (E4) are the
Schwinger functions associated with a unique Wightman theory.

Proof. The proof follows from our discussion of the Fourier-
Laplace transform for ultradistributions and from arguments used by
Osterwalder and Schrader [11].

For practical use in Constructive Field Theory Osterwalder and
Schrader replaced condition (EQ) by another condition (E0’), which
reads in the framework of Jaffe fields:

(E0") There is a norm ﬂ 2.2 on €(R%) and some L>0, such that
for all n and for all o, e ¥(R%), k=1,...,n,

1,600 03 x> N 00 TT ouls-

In the next section we are going to show that condition (E0’) together
with (E1) — (E4) determine a unique Jaffe-Wightman theory.

§ 4. The Reconstruction of the Wightman Theory

Proposition II. Schwinger functions satisfying (EQ0'), (E1)— (E4) de-
termine a unique Wightman theory (whose Schwinger functions they are).

Let #. be the vector space of sequences f=(fo,f},...), where
fo€C, f,e 6(RE"), for 1 <n<N, and f,=0 for n> N for some finite N.
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Let
<f’g>= Zon+m((9fn*xgm); faﬂ€£<~

This defines a semi-definite inner product and the completion of
C )N, N={fIfeb |[f||)=<[.f>=0} defines a Hilbert space #
(the physical Hilbert space). Let @ be the natural injection of € . into J#.

We obtain
(@), 2@)=<f.9>, [fge¥-.

We set Q=®((1,0,...). If f has only one non-vanishing component
f=f,e€(RE"), we write formally

O(f)=0,(f)= | B,(x) f(x) d*"x

where @,(x) is a vector-valued ultradistribution in €(R%"). We also
define
Pr(x, §)=,(x) where & =x, 17 Xk
Thus ¥£ is a vector valued ultradistribution in €’(IR%") and by positivity
(PE(x, &), PE(X', &) = Spamo1(— &, —9x+x, )
we define '
VE(x,£019) = Wri(x, ) g(%, §) dx d §

Suim—1(E% X0+ X0, E0(gh)) = (PE(X®, £°g), PE(X', £'°| h)

where g e €(R3"), he #(R3™). Let €, = {z|Rez>0} and C* =(C,)~
Now following Osterwalder and Schrader the proof of Proposition 11
follows immediately from Theorem 2 and

Theorem 4. For fixed ge%(R3"), he ¥(R3™), the distributions
S, +m—1(EC gh) are restrictions to the product of positive real half axis
of functions S,.,,_,((°|gh), analytic in C"*™ ', There exist vector-
valued functions ¥r(z° (°|g) analytic in C?, such that

Spem—1(£% 20 +2/°, 00 gh) = ((PE(z°, L°|g), WE(Z'0,{°| h)).
Furthermore S, ,,_ 1({°|gh) satisfies for *e €% ™~ 1:

Suem1E1gmI= g @I (1 +1E°D° 1+ Ay (min Re LS| (3)

for some norms ||-|*© in € and some constants a,b,c depending on
n+m—1.
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Proof. The proof of the corresponding theorem for tempered fields
[11] has three parts: A — constructing the Hamiltonian, B — the analytic
continuations and C — estimating S,({).

The proof of A in our case is based on the following

Lemma 9. Let feI, o e M. Then fo is a (Schwartz) distribution
with rapid decrease (i.e. form O.).

Proof. We use the general form of generalized functions in 9 (see
for instance [5]), the general form of distributions in @, (see for instance
[13]) and the identity

Opva= ¥ 020w (7)< (2)-(%)
o i i i i,
where y,, p, are ¥*-functions.

From Lemma 9, using the convolution theorem for ultradistributions
(see for instance [3]), follows that for fe ¥, p ¥, f*¢ is a rapidly
increasing function (i.e. in 0},). However, this gives exactly the Oster-
walder-Schrader polynomial bound [12], p.17, which assures the
contractivity of the time-translations 7;,t=0 and hence the fact that
T,=e '™ where H is a selfadjoint operator. H will be the Hamiltonian.
Now, returning to the proof of Theorem 4, observe that the analyticity
of the Schwinger functions in the time variables can be proved as in [11]
(see also [14] where similar results were independently proved). Indeed,
first the analytic regularity is valid in the framework of ultradistributions
satisfying the Cauchy-Riemann equations (see for instance [1]).

On the other hand the edge of the wedge theorem and the Malgrange-
Zerner theorem are valid for ultradistributions, too. Following “dis-
tributional” proofs in [14] and [4] we see that we need only the following
results which hold for ultradistributions (see also [9]).

Let G be an open set in R". Then we define Z,,(G) as in § 2. Let Z,,(G)
the dual of Z,(G). The following properties hold

a) 2.(G)x2,(G)CE®
where * means convolution and ¢ is the class of all infinetely differ-
entiable functions

b) 2,(G) is dense in Z(G) (see [1]),

¢) 2,(G) is nuclear (see Appendix).

This was Part B of the Osterwalder-Schrader proof.

Concerning Part C, let us neglect (as in [11]) the space variables.
From (E0’) and Lemma 7 we conclude that there are integers o, f3, 7,
and J such that for £, >0,k=1,2,...,n

ISu(C1s ooy El < ()" l——[1 (A+&) [+ 458
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The arguments of Osterwalder [11] go through and we get the following
estimates for S,({):

1,0 = Cut + LD [1 + Aé(§ min gkﬂ [1 + (% min 5k)— 1}213,,.

From the definition of A it follows now that (8) is valid for some constants
a, b, ¢. This completes the proof of Theorem 4.

§ 5. Conclusions and Remarks

We have shown that the results of Osterwalder and Schrader on
Euclidean Green’s functions [11] can be extended to Jaffe fields. Here
we formulated Jaffe fields in terms of ultradistributions. We remark
that in the proof of Theorem 4, Part C, the following product has been
found to characterize the singularities of the analytic functions S,({):

oo e

The first factor comes from the part [ [i=; || /i|® of the bound in (E0’)
and the second factor from the term (n!)* of this bound. Since the product
of two A-functions is again a A-function (see for instance [3]) it is likely
that in the framework of ultradistributions the growth (n!)- can be
relaxed. This remark seems to agree with the remark in [6] that the
original Osterwalder-Schrader theorems in [12] could be valid in the
frame of hyper-functions (see also [2]). Nevertheless, the bound (n!)*
seems to be good enough for the present status of Constructive Quantum
Field Theory (see for instance [11]).

Appendix. Nuclearity of Z,,, M, and €.

Let @ be a Jaffe indicatrix, exp(w(x?))=Za,,/x|**. Define: Z¢
(K CR" compact) to be the set of all infinitely differentiable functions ¢
with compact support in K such that

SUHI:" {[4*p(x)I} = C,h*ay,
for all h>0. Let
IR = lim ind 2.
UK;j=R" K;CKj+1 J
Then
Lemma. The spaces 2*(R") and 9 ,(R") are equal
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Proof.

sup {* ()]} < sup {e°*|G(&)]}  (nuclearity)
ZeR® geR"

- :; a,, A sup {2 (62}

¢elRn
w &)
= Z aZkikflAk(p(x)l dx
k=0

e o)
éc Z azkikch‘—
k=0 ary

which is finite if we choose h suitably. Hence ¢ € &,,. Conversely, let
@€Y, Then

sup {14 ()} = [ 6P+ (D) ¢
Therefore

kg.oo a2kh_kSUp{|Akq)(x)I} é kg.oo aZkh_kj 'é'Zk kb(f)l dé
= [ Zay h*IEP*|p(&)] dé (10)
2
= fexp (o[- ot dc.

Since ¢ € 9,,,, this last integral is finite, so the terms in the infinite sum (10)
are uniformly bounded, which completes the proof.
Let us now consider the function

Q(x*)= sup {logx**a,,}
p

on IR", called the associated function to the sequence {a,} (see [10]).
Comparing the Paley-Wiener theorems for test functions ([1], p. 365
and [10], p. 82), we find that even 2, is equal to &, [with the help of
the nuclearity Condition d)], so by Theorem 1.3.18 of [1]:

oxX)<a+bQ(x)
Q(x)=c+dw(x)
loghb +logd
log2
2"QAx) <’ +2"o(x) S "+ dw(A"x) < ¢+ bdQ(A"x)

which yields, choosing n= +1

or
2Q(x) S c+ Q(A"X)
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which is just the nuclearity Condition d). Using a theorem of Komatsu
[10], we find that Q satisfies d) if and only if:

0sis

a'sCr¥ ( sup a,ak_,)_l
k

for some constants C and L. This immediately gives:
ag = CLlia ! (11)
and with (11) and Theorem 8 of [16], we have proved:

Theorem. Let w be a Jaffe indicatrix. Then the spaces M, €, are
nuclear.

The nuclearity of 9,, is proved in [10], Theorem 2.6.

Remark. Condition (11) (stability under differential operators),
which is sufficient for nuclearity, is much weaker than Condition d’).
However, since d) and d') are equivalent, and d) is such a convenient
inequality to deal with, while (11) is hard to express in terms of w, we
preferred, for simplicity’s sake, the more restrictive one.
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