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Abstract. We extend the axioms for Euclidean Green's functions recently proposed
by Osterwalder and Schrader to Jaffe fields.

§ 1. Introduction

We extend in this paper results of Osterwalder and Schrader [11,12]
on Euclidean Green's (Schwinger) functions to Jaffe fields.

In the first part of their work Osterwalder and Schrader give a
precise distribution-theoretic definition of the Euclidean Green's
functions and investigate properties of these Schwinger functions as a
consequence of the Wightman axioms (in the case of tempered fields).
In the second part of their work they give a system of axioms for the
Schwinger functions which allow the reconstruction of a unique
Wightman theory (for tempered fields).

On the other hand, Jaffe [8] extended the Wightman theory by
considering fields (in x-space) as certain classes of operator-valued
ultradistributions. Correspondingly, in p-space, Jaffe fields need not
be tempered.

We study in this paper Euclidean Green's functions for Jaffe fields
and extend the results of Osterwalder and Schrader to these classes
of fields. Several alterations have to be made in the original proofs
of Osterwalder and Schrader. So, for example, some new techniques
are necessary in order to handle the stronger singularities of the Fourier-
Laplace transform of ultradistributions on the real axis. Also the con-
tractivity of the time-translation operator requires a different proof,
using the general form of linear continuous functionals over 9M (see
for instance [5]).

We shall use freely the notations of Osterwalder and S chrader [11,12].
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§ 2. Mathematical Background

In this chapter we present a short summary of the necessary mathe-
matical background for Jaffe fields.

Definition. Let ω be a real-valued function on [0, oo) which satisfies
the following conditions:

a) exp(ω(x2)) is a real entire function on 1RM, i.e.

eωiχ2) = Σ «2
k=0

and ao= 1, a2k^0(k = 1,2, 3,...) (regularity)

b) ω(x + y)r^ ω(x) + ω(y)

for all x, y e [0, oo) (subadditivity)

0 0 ω ( ί 2 )

c) J Y at < oo (Carleman's criterion)

d) 2ω(x)^ω(^x)+C

for some constants A, C, (nuclearity).
Every function satisfying a)-d) will be called a Jaffe indicatrix.
Remark. Condition d) is equivalent to saying (see [10]):

d') aζ^Cϋί sup {α,**.

for some constants C, L (stability under ultradifferential operators). For
a proof see the Appendix.

To avoid trivial cases, we shall assume furthermore, without
mentioning it, that all Jaffe indicatrices occuring in this paper satisfy:

/ 1 \
Example. Let a2r

= —r I, α > 2 . The corresponding entire function

! o W = e x p ( ω ( ί 2 ) )

can easily be shown to be built up from a Jaffe indicatrix [i.e. satisfies
conditions a)-d)].

Now we are able to define our spaces of test functions:
Definition. Let ω be a Jaffe indicatrix. We denote by 90̂ (IR*) the

space of all functions φ e <^co(]Rι) for which

p
peIR1
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is finite for each multiindex α and each constant λ > 0. A natural topology
on SOΪ can be defined by means of the norms || | | ^ .

Definition. Let ω be a Jaffe indicatrix. We denote by c€ω the space
of Fourier transforms of functions in SDίlω, ̂ ω = ^(SDϊJ. A natural
topology on (€ω can be defined by means of the following norms:

The Fourier transform is a continuous isomorphism between 9Jϊω and # ω .
Definition. Let ω be a Jaffe indicatrix. We denote by 2JK), KC^1

compact, the space of all functions φ e ^°° with support in K for which

is finite for each λ > 0. 3>ω{K) is easily seen to be a Frechet-space under the
topology given by the seminorms || | | (/ω ). Now define ^(IR*) to be the

00

inductive limit of spaces S)ω{K^ (J Kj = JR! and KjCKj+i: Then
j

generalizes the Schwartz space ^ of infinitely differentiate
functions with compact support.

Remark. Throughout this paper the Jaffe indicatrix leading to the
spaces 9Jlω and (€ω will be held fixed, so we shall denote them simply
by m and #.

An equivalent set of seminorms on @ω{K) can be given by

For a proof see [1], Theorem 1.4.1. If exp(ω(f2)) is the entire function
of the preceding example, the corresponding test function spaces SCR
and <€ coincide with the projective limits of the spaces Sa/2iA> Sa/2'Λ

respectively, introduced by Gelfand and Shilov [5].

Lemma 1. Let ω be a Jaffe indicatrix. Then the topologies on SOΪ,
defined by the seminorms:

λ,n = sup {eλ"W\ί + \p\2T |

A,n = sup {eω^2\i + \p\2γ |

are equal.

Proof. The proof of Lemma 1 is an easy consequence of subadditi-
tivity, the nuclearity condition and ω(|x|2) ^ log(l + |x|2).

Remark. Lemma 1 obviously holds also for the seminorms' counter-
parts in c€. The topology defined by C*^α,;ι,n i s ^ e topology originally
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introduced on 9JΪ by Jaffe [8]. So, infact, his test function spaces and
ours are the same, if ω is a Jaffe indicatrix.

Lemma 2. Let ω be a Jaffe indicatrix. A function φ e ^ 0R') belongs
to Ή, if and only if for each multiindex m and each constant h>0 there
is a constant Cmh such that

sup {\xmAkφ(x)\}^Cm,hh
k/a2k. (1)

xelR'

Proof. (See [9], Theorem 2). Let φ e ^ 0 0 and suppose that (1) holds.
Then

p { \ φ ( p ) \ } £ sup
pe]Rι peJR1

= f a2kλ
k

Sup{\D«Up\2kφ(p)l\}ί Σ a2kλ
k$\x«Akφ(x)\.

Then

ξ (ί + \x\2l)x«Akφ(x)\}.
k = 0

Using (1) each term

x\2l)>fAkφ(x)

can be majorized by Ahkjalk where A is a constant depending only
on h. It follows:

k=0

which is finite, if we choose h < λ . Hence φ e cβ.
Conversely, let φ e %>. Then

sup {\xmAkφ(x)\} ^ J \DmUp\2k Φ(p)]| dp

a=0

Choose B, C in such a way, that (4/c)|w| ^ CBfe. Then

00

Σ a2kh~k sup {\xmAkφ(x)\}
k=0 xe]Rι

oo m

(2)
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Since, by hypothesis, φsΉ, i.e. φ e 9JΪ, the last integral is finite (see [5]
for integral norms on 9JΪ). Thus the terms of the infinite sum (2) are
uniformly bounded by a constant depending on h and m only. This
completes the proof.

We conclude this chapter with a fairly easy consequence of the
proof of Lemma 2 (see [9], Theorem 5):

Lemma 3. Let ω be a Jaffe indicatrix. Then the seminorms on %>:

00

//φ//k,m= Σ a2kh~k sup sup {\xjD«φ(x)\}
Jc=O \j\=m xeW

\oc\ = 2k

are equivalent to the set of seminorms || | | α > λ .

§ 3. The Euclidean Green's Functions for Jaffe Fields

We shall first state the Wightman-Jaffe axioms for the scalar neutral
field φ(x). The expectation values

are supposed to obey the following axioms.
Ultradίstribution Property. For each n:

(WO) 2Bn(x)G^(IR4M); SBO=1.

Relativistic Covariance. For each n, 2Bn is Poincare invariant:

for all (a,Λ)e 3̂+ where AxΛ-a — (Axx +a, ...,Λxn + a).
Positivity. For all finite sequences./0,/l5 .../# of test functions

(W2) E^n + J
n,m

where /„* x fm is defined by

(/, χ/ j ( ϊ , J F)=
and

Locality. For each n and k— 1,..., n — 1:

(W3) Wβn(x1,...,xk,xk+ί,...,xn) = <ίBn(x1,...,xk+u

iϊ(xk-xk+1)
2<0.
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Cluster Property. F o r a n y s p a c e l i k e a a n d fc=l, . . . , w — 1 ,

lim 2Bn
A—• 0 0

Spectral Condition. Using the translation invariance of the 2Bn's,
we conclude that there exist ultradistributions Wn^ί e^'OR4*""1*) such
that

and £fc = x k + ! — xfc. Then:

(W5)

where Wn_ί(q) is the Fourier transform of Wn_1(ξ), V+ is the closed
forward light cone, and qkξk = qkξk — qkξk. From a given set of Wightman-
Jaffe ultradistributions satisfying (W0) — (W5) we can reconstruct
the Jaffe field φ(x), the physical Hubert space Jf, the vacuum vector Ω
and a unitary representation U(a,Λ) of Sβl in Jf7 by applying the
reconstruction theorem. Now standard methods in Axiomatic Quantum
Field theory show that Wn(ξ) are boundary values of functions Wn(ζ)
analytic in 2"+ = {ζ\ζ = ξ + i ^ e C 4 " , n e F+

M} (see [9] and [3]). P^(C)
can be analytically continued to the extended tube Zn

+tQXt= {ζ\Λζ eXn

+,
.ΛeL+(<£)}, where L+(<£) denotes the set of complex Lorentz transfor-
mations with detl. The functions £Bn(z) defined by Wβn(z)=Wn_ί(ζl
where ζk — zk+1 — zk are analytic in σ" x t = { z | z 6 Ϊ + e x t } and have as
boundary values the distributions %Bn(x). Finally, 2Bπ(z) can be analyti-
cally extended into the set σ^ x t > p e r m= {z|(zπ(1), ...,zπ ( π ))eσ^x t for some
permutation π}.

The set σ£x t > p e r m contains Sn ={z\zeC", Rez^ - 0, Imzfc = 0, zk + zγ

for all l ^ / c < l k n } .
Definition. Points in i n are called Euclidean points.
Definition. The restriction of the Wightman functions ΪBΠ(z) to gn

are called the n-point Euclidean Green's functions or Schwinger
functions for a Jaffe field.

We set, following Osterwalder and Schrader

σn(x) = σn(xu ..., xn) = 2BΠ((ΐxi, xx\ .., (ix°ni xn))

for x e Ωn = {x\xt Φ x} for all 1 ̂  / < j ^ n}.
From the invariance properties of the Wightman functions, we

derive invariance properties of the Schwinger functions under the
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inhomogeneous Euclidean group ι'S04 (and under permutations),
we write

= σ(x), ξk = xk+1-xk,xeΩ\

The Schwinger functions Sn_1(ξ) are real analytic. But they also define
ultradistributions in a certain sense which we make clear in Proposition I.

We now prove some results on Fourier-Laplace transform of ultra-
distributions which we need in this and in the next part of this work.

Theorem 1. Let ω be a Jaffe indicatrix, let Γ be an open convex
cone in ]Rι and let F be an analytic function in £ n = lR4/ +iΓ. Suppose
that for each compact subset KCΓ there exists a polynomial Pκ such that

Then F has a boundary value in <€' (in the weak topology of W) as η-*0,
η in a subcone of Γ, if and only if for each subcone Γ' C Γ, whose inter-
section with the unit sphere is relatively compact in Γ, and for each R>0
there exists a polynomial P and a constant a > 0 such that for all η e Γ\

\η\<R,

\F(ξ + iη)\£P(ξ)Λa(\η\)

where ^
Λa(ή = t J eaω{χ2)e'xtdx, ί > 0

o

is the one-sided Laplace transform of eaω(χ2) times t.

Proof See [3], Theorem 5.3, and [9], Theorem 19.
Remark. One can (see [9]) equivalently define:

Λ'a{i) = t £ a2k(2k)lakΓ2k=t] eω{aχ2)e-χtdx.
k = 0 0

Anyway, by Lemma 1 it is clear that this alternate definition does
not change the result of Theorem 1.

Theorem 2. Let ω be a Jaffe indicatrix and let F be holomorphic
in the tube Ψ} + zT, Γ an open convex cone in IR*. Assume that for each
subcone Γ'CΓ, whose intersection with the unit sphere is relatively
compact in Γ, there is a constant C(F') such that

\F(ξ + iη)\ S C(Γ') (1 + Λa(\η\)) (1 + \ξ + W

for all ηeΓ' and for some constants a,n (which do not depend on Γ').
Then F is the Fourier-Laplace transform of an ultradistribution feW
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with support in the dual cone Γ*

Proof. From Theorem 1 it follows that the limit lim F(ξ + iη)
η-+0,ηeΓ'

exists in <€'. We denote this limits again by F. By Theorems 5.1 and 5.2
of [3] we know that F is the Fourier-Laplace transform of a generalized
function

We still have to prove the support property.
Let φ be a function in 2)ω. Then we get

(/, φ) = (e'l^-1 [_F(ξ + iη)-] (p), φ(p))

ί F(ξ + in) ί «-'" V > ( p ) dpdξ . (3)

Let p0 be a point in the complement of Γ*. Then there exists a unit
vector η0 e Γ with poηo < 0. Suppose that supp φ is contained in a ball B
around p0 such that BηQ < — δ < 0. Then by the Paley-Wiener theorem
for test functions and (3) we get an estimate of the form:

iη)\e-'ιωto + i'*2) sup
pesuρp<p

^ CΛa{\η\) sup {epη} f e " " ω ( « + i |Ί 2 )(l + |£ + ̂ | ) " ̂ ^ . ( 4 )

Let now Γ' be the subcone {η = λη01 λ > 0} of Γ and choose μ so big
that the integral in (4) exists. Then, finally,

Let now λ-+ao. Then Λa(λ) remains bounded and we see that (f,φ) = 0
for all φe&ω with suppφ in the ball B around p0 φΓ*. Thus we have
shown that / vanishes in at least one neighborhood of each point in the
complement of Γ*, therefore it vanishes globally outside Γ*. Since Q)ω

is dense in SD1 by Theorem 1.8.7 of [1], the Theorem is proved.
Now we introduce some notations. Let 1R+ denote the open half

intervals (0, ±oo) and Wl their closure. Let 9Ji(lR±) denote the space
of all functions /eSOΐ(IR) with suppf in IR+ equipped with the induced
topology. 9Jt(ΐR7) will be the set of all functions defined on ΪR7, ^°°
on 1R+ whose derivatives all have a continuous extension to R^ and are
of expω decrease at infinity. We introduce a topology on 9JΪ(R7) by the
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following system of seminorms

H L > + = sup{e

w>|D>(p)|}.
p>0

Then we have

Lemma 4. The space SDΪ(K7) is isomorphίc to the topological quotient
space 9W(IR)/SR(IR_).

Proof. The proof of this lemma is based on the Whitney extension
theorem in the form given by Hδrmander [7] and follows from [12]
by simply replacing the polynomial growth by a growth like exp(ω(p2)).

By Lemma 1 any element in $H(lR7) is the restriction to Wl of some
element in 9DΪ(IR) and a generalized function in SOΐ'fiR )̂ can be identified
with a generalized function in 9W'(IR) with support in 1R+ (see also [12]).

For φ G ̂ (1R+) we define

φ(p)= ] e-
— oo

Then

Lemma 5. The mapping φ^φ is continuous from ^(IR+) into
its range is dense in S0ΐ(ΪR7) and its kernel is zero.

For the proof of Lemma 5 we need some more lemmas.

Lemma 6. Suppose TeW(W^). Then

α5Ξm

where μa are measures with support in [0, oo) such that some non-negative
constant λ exists with

Proof. The proof of this lemma can be done along the lines of [14]
and [13] by using the general form of generalized functions in 9M [5].

Lemma 7. Lei φe«ΌR) and let D«φ{0) = 0, α = 0,1,2,.... Then
for all a>0

\Λa(\x\) φ(x)\ < oo ,

Proof. By Taylor's formula

Lemma 2 then yields:
\φ<2n\ξ)\^Chn/a2n
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and therefore
a2n(2n)\\φ(x)\ 1

{2h)n \x2\" = 2" '

Letting w->oo:

Proo/ of Lemma 5. The following inequality is valid

\\φLι, p
q>0

by Lemma 1, Lemma 3 and the formula

= l e-qxeω{λA)((-xf φ(x))dx \ {q^O} (5)

where A = -—^- and eω{Δ) is defined as a series in the Laplacian:
dx2

eω{Δ)=
Λ = 0

Up to now we have shown that φ e $R(R^) and that the mapping φ -• φ
is continuous, but the rest of Lemma 5 can be proved like in [12], taking
into account Lemma 6 and Lemma 7.

Let now TeSPt'(lR) with suppTcW^.. It defines also a generalized
function in SPϊ'flR )̂, again denoted by T and for some constants C9cc,λ:

Now for x > 0 we define a real analytic function

Then

Lemma 8. S is an ultradίstribution in ̂ '(1R+).

Proof. The proof is an immediate consequence of Lemma 6, Lemma 7,
and formula (5) in the proof of Lemma 5.

Now we can state a basic theorem :

Theorem 3. Let The a generalized function in W(]R) with supp T C Wl.
Then for all

\S(φ)\ = T(φ) (6)

i + g C ' | φ | | β ^ (7)

for some constants C, α, λ depending on T only. Conversely, if S is an
ultradistribution in ^'(IR+), satisfying (7) for some C,oc,λ9 then there
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exists a unique generalized function Te9Jt'(IR) with support in W^., such
that (6) holds.

Proof. Follows from Lemmas 4-8. In what follows we shall need a
multivariable version of Theorem 3, which, due to the nuclear theorem
(see Appendix), is easy to prove. First we introduce some additional
notations:

We denote by IRf the set {£\ξ°k >0, /c- 1,..., n], by Π^" its closure
and for φ e ^(TR^) we define φ by

φ(p) = ί [

On 9JΪ(Kί") we introduce a set of norms

H « > λ > + = sup {eλ

peR4

+

n

which induce a set of seminorms on

and we immediately see that Lemma 4 holds with obvious modifications.
Analoguously, for Γe9W/(R4n),suppΓciR+π, we define S by

S(ξ) = [T(pl exp ^ - Σ^ (ξ°kP°k + iξkpή \{pE JRin}j .

Again, S defines an ultradistribution in ί?' (lR+n). As stated above, the
multivariable version of Theorem 3, with obvious, formulation, follows
by the nuclear theorem.

We introduce two more spaces of ultradistributions

%0(]R4η ={φe ^(IR4") | Da{x) = 0 for all α, if xt = xk for some i + k}

and

where

We can state now the following proposition which is an extension
of a result by Osterwalder and Schrader to Jaffe fields:

Proposition I, The Schwinger functions associated to a Wightman-
Jaffe theory have the following properties

Distribution Property. For each n ^ 1

(E0) σn(x)eT0QR4n), σo=ί.
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Sn defines an element in ^'(IR4") and is continuous with respect to some
norm || \\'Λtλ on ^(IR4").

Euclidean Covariance. For each n ^ 1 and all (α, R) e iSOA\

(El)

Positivity. For all finite sequences / 0 , / i , ...,/# of test functions

(E2)

where
Symmetry. For all permutations π

(E3) σn(x1 ?..., *„) = σn{xπ{1),..., xπ ( n )).

C/wster Property. For all n, m, / e <<ί(lR4"), gf e <<ί(IR4m), a = (0, α) e 1R4

(E4) lim σn+m{Gf* x gλa) = σB((P/ ) σwfe)
λ->oo

where 0 ^ is defined by gλjx) = g(x + Aα).
Conversely, Schwinger "functions" obeying (E0) —(E4) are the

Schwinger functions associated with a unique Wightman theory.

Proof. The proof follows from our discussion of the Fourier-
Laplace transform for ultradistributions and from arguments used by
Osterwalder and Schrader [11].

For practical use in Constructive Field Theory Osterwalder and
Schrader replaced condition (E0) by another condition (EC), which
reads in the framework of Jaffe fields:

(E0') There is a norm |j ||ά,A o n ^(1R+) and some L > 0 , such that
for all n and for all φk e ^(IR4.), k = 1,..., n,

n

\Sn(φ1xφ2X"-xφn)\^(nl)L f] M ^ .
fc=l

In the next section we are going to show that condition (E0r) together
with (El) — (E4) determine a unique Jaffe-Wightman theory.

§ 4. The Reconstruction of the Wightman Theory

Proposition II. Schwinger functions satisfying (E0')? (El)—(E4) de-
termine a unique Wightman theory (whose Schwinger functions they are).

Let ^ < be the vector space of sequences/ = (/ 0 ,/ l 5 . . .), where
/o e<C,fne %QR<n), for 1 ̂  n ^ N, and /„ = 0 for n > N for some finite N.
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Let

</, 9> = Σ 0, + mWfn* X dm) \
n,m

This defines a semi-definite inner product and the completion of
%</jV9Λ

r={f\je%<9\[f\\2 = <J,jy = 0} defines a Hubert space JP
(the physical Hubert space). Let Φ be the natural injection of ̂ < into Jf.
We obtain

We set Ω = Φ(( 1,0,...)). If/ has only one non-vanishing component
f = fne^{Έt:nl we write formally

where ΦM(x) is a vector-valued ultradistribution in ^(IR<"). We also
define

Ψ?{xl9ξ) = Φn(x) where ξk =

Thus Ψ^ is a vector valued ultradistribution in ^'(IR+M) and by positivity

(!P1f(x,i))?
r

li(x',I')) = SB +»-i(-|l,.-Sx + x',i')
we define

where ^ e «ΌR3n), Λ e ^(lR3 w). Let <C+ - {z|Rez > 0} and <Ck

+ = (C+)k.
Now following Osterwalder and Schrader the proof of Proposition II

follows immediately from Theorem 2 and

Theorem 4. For fixed ge^QR3"), h e ^(IR3m), the distributions
Sn+m-i(ζ°>gh) a r e restrictions to the product of positive real half axis
of functions Sn+m_1(ζ°\gh\ analytic in (C++m~1. There exist vector-
valued functions Ψ^(z°,ζ°\g) analytic in (C+, such that

s . ^ K ^ + Λ i ' 0 ! ^

Furthermore Sn+m_γ{ζ°\gh) satisfies for ζ° e € ^ + m " ι :

(8)

for some norms \-ψβ) in Ή and some constants a,b,c depending on

n + m— 1.
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Proof. The proof of the corresponding theorem for tempered fields
[11] has three parts: A - constructing the Hamiltonian, B - the analytic
continuations and C - estimating Sk(ζ).

The proof of A in our case is based on the following

Lemma 9. LetfeW, φeSOΪ. Then fφ is a (Schwartz) distribution
with rapid decrease (i.e. form Θ'c).

Proof. We use the general form of generalized functions in W (see
for instance [5]), the general form of distributions in &c (see for instance
[13]) and the identity

Φ " v i ) v a = Σ ( - l
ί = 0

where ψί9 ψ2 are ^°°-functions.
From Lemma 9, using the convolution theorem for ultradistributions

(see for instance [3]), follows that for / e #', φ e Ή, f * φ is a rapidly
increasing function (i.e. in Θ'M). However, this gives exactly the Oster-
walder-Schrader polynomial bound [12], p. 17, which assures the
contractivity of the time-translations Tut^0 and hence the fact that
Tt = e~tH, where H is a selfadjoint operator. H will be the Hamiltonian.
Now, returning to the proof of Theorem 4, observe that the analyticity
of the Schwinger functions in the time variables can be proved as in [11]
(see also [14] where similar results were independently proved). Indeed,
first the analytic regularity is valid in the framework of ultradistributions
satisfying the Cauchy-Riemann equations (see for instance [1]).

On the other hand the edge of the wedge theorem and the Malgrange-
Zerner theorem are valid for ultradistributions, too. Following "dis-
tributional" proofs in [14] and [4] we see that we need only the following
results which hold for ultradistributions (see also [9]).

Let G be an open set in 1R". Then we define ΘJG) as in § 2. Let 2'JG)
the dual of 3>ω(G). The following properties hold

a) &ω(G)*@ωifi)Z<e°>
where * means convolution and ̂ °° is the class of all infinetely differ-
entiable functions

b) 9ω{G) is dense in 2{G) (see [1]),
c) @ω(G) is nuclear (see Appendix).

This was Part B of the Osterwalder-Schrader proof.
Concerning PartC, let us neglect (as in [11]) the space variables.

From (EO') and Lemma 7 we conclude that there are integers a,β,y,
and δ such that for ξk>0, k= 1, 2,..., n

\sn{ξlt ...,ξn)\^K)β" Π
i=X



Euclidean Green's Functions for Jaffe Fields 313

The arguments of Osterwalder [11] go through and we get the following
estimates for Sn(ζ)\

From the definition of A it follows now that (8) is valid for some constants
a, b, c. This completes the proof of Theorem 4.

§ 5. Conclusions and Remarks

We have shown that the results of Osterwalder and Schrader on
Euclidean Green's functions [11] can be extended to Jaffe fields. Here
we formulated Jaffe fields in terms of ultradistributions. We remark
that in the proof of Theorem 4, Part C, the following product has been
found to characterize the singularities of the analytic functions Sn(ζ):

ί+ΛΛnήnξ^

The first factor comes from the part Y\n

k=1 H / J ^ of the bound in (EO')
and the second factor from the term (nl)L of this bound. Since the product
of two ^[-functions is again a Λ-function (see for instance [3]) it is likely
that in the framework of ultradistributions the growth (n\)L can be
relaxed. This remark seems to agree with the remark in [6] that the
original Osterwalder-Schrader theorems in [12] could be valid in the
frame of hyper-functions (see also [2]). Nevertheless, the bound (nl)L

seems to be good enough for the present status of Constructive Quantum
Field Theory (see for instance [11]).

Appendix. Nuclearity of ^ ω , 9Wω, and <&ω.

Let ω be a Jaffe indicatrix, exp(ω(x2)) = Σa2k\x\2k. Define: @%k)

(K C1R" compact) to be the set of all infinitely differentiable functions φ
with compact support in K such that

sup{\Akφ(x)\}^Chh
k/a2k

xeR"

for all h>0. Let

Sf^(Rn)= lim ind Θ^.
uX/ = IR" KjCKj+ι

 J

Then

Lemma. The spaces # f lk)(IR") and 9ω{W) are equal
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Proof

sup {eλ'ωiξ2)\φ(ξ)\} ^ sup {eω{λξ2)\φ(ξ)\} (nuclearity)

= £ a2kλ
k sup {\ξ\2k\φ(ξ)\}

k=0 ξeJϋn

(9)

I Σ a2kλ
kl\Δ"φ(x)\dx

- hk

k=0 a2k

which is finite if we choose h suitably. Hence ψE<3ω. Conversely, let
φe@ω. Then

sup {\Akφ(x)\}^l\ξ\2k\φ(ξ)\dξ.
xelRP

Therefore

£ a2kh~k sup {\Akφ(x)\}S £ «2^" k f |ξ|2

fc=0 /c=0

Since φ e Q)ω, this last integral is finite, so the terms in the infinite sum (10)
are uniformly bounded, which completes the proof.

Let us now consider the function

H sup p

on ΪRn, called the associated function to the sequence {ak} (see [10]).
Comparing the Paley-Wiener theorems for test functions ([1], p. 365
and [10], p. 82), we find that even $)ω is equal to S)Ω [with the help of
the nuclearity Condition d)], so by Theorem 1.3.18 of [1]:

ω(x) ^a + b Ω(x)

u u u u ^ log/? + logJ
which yields, choosing n ̂  — h 1

log 2

2nΩ(x) ^c' + 2ndω(x) ^ c" + dω(Anx) Sc + bdΩ(Anx)

or
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which is just the nuclearity Condition d). Using a theorem of Komatsu
[10], we find that Ω satisfies d) if and only if:

sup

for some constants C and L. This immediately gives:

i 1 (11)

and with (11) and Theorem 8 of [16], we have proved:

Theorem. Let ω he a Jaffe ίndίcatrix. Then the spaces 9Jϊω, c€ω are
nuclear.

The nuclearity of 2)ω is proved in [10], Theorem 2.6.
Remark. Condition (11) (stability under differential operators),

which is sufficient for nuclearity, is much weaker than Condition d')
However, since d) and d') are equivalent, and d) is such a convenient
inequality to deal with, while (11) is hard to express in terms of ω, we
preferred, for simplicity's sake, the more restrictive one.
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