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Abstract. A new formalism is proposed for the investigation of algebraically special
metrics. Among its advantages are that the essential calculations are co-ordinate free and
the equations are gauge invariant. The derived equations are simple in form hence easy to
work with and the approach is rich in possibilities not explored by previous techniques.

This paper contains no new results but is an introduction to the technique and a
demonstration of its use. New results will be presented in further papers.

Introduction

In the past ten years, several techniques for the investigation of
Einstein's equations have appeared, notably those associated with the
names of Robinson [1], Bondi et al. [2], Newman and Penrose [3],
and Debever et al. [4]. Most of them share the following properties.

1) They are methods of reducing the Einstein equations to what
might be called a minimal set of differential equations (MDE) where,
with the exception of asymptotic properties, the analysis ends unless the
MDE is soluble.

2) They work very well when applied to algebraically special metrics,
but with the exception of the above mentioned asymptotic properties
are more or less impotent in the face of an algebraically general metric.

3) They represent a formidable notational barrier to the uninitiate.
In this paper, yet another method is proposed. Since it is designed

solely for algebraically special metrics it suffers a priori from defect
number two. Similarly defect number three may be said to apply,
although adherents of the Newman-Penrose (NP) formalism should find
the notation comprehensible on first reading. The advantages claimed for
the method are that not only is it an efficient method to arrive at the
MDE (possibly the most efficient), but also that its usefulness does not
end when these prove insoluble.

The system is an algebra of objects of good spin and boost weights
and differential operators which are modified versions of those of
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Geroch, Held, and Penrose (GHP) [5]. These operators are so chosen that
certain integration and differentiation processes may be performed
without recourse to a co-ordinate system. As a result, all calculations
are done in a co-ordinate free manner and the end result is a set of relations
between the variables which will include the effect of the differential
operators on these variables. Further calculations may then be possible
whether or not these relations are expressed in terms of co-ordinates.
This will be demonstrated in a further paper where an analysis of alge-
braically special metrics possessing Killing vectors will be carried out.
Despite the fact that the analysis necessarily involves working with
metrics containing unsolved M.D.E.'s, a co-ordinate free expression
for a general Killing vector will be obtained. Then, without the introduc-
tion of a co-ordinate system, several theorems concerning their properties
will be proved.

The efficiency stems partly from the gauge in variance of the formalism
(which simplifies the calculations), partly from the extreme simplicity
of the resulting relations, and partly from the greatly reduced number
of variables required. A co-ordinate system is introduced only if an
explicit statement of the metric or of the M.D.E. is required, and then
one has the additional advantage that since the solution is in a sense
known, the co-ordinate system may be built on the solution rather
than the converse.

In this system, unlike the other methods of analysis, the effect of
a derivative operator on an element of the algebra is not obtained by a
mechanical operation, and it may or may not be known. The object of the
calculations is to build up a table of these relations, and a complete
knowledge of the effect of the differential operators on the basic elements
of the algebra is in general equivalent to a solution. Elements missing from
the table lead to non-linearity in the M.D.E. In the case of Type D metrics,
it is possible to build up a complete table. More complicated metrics such
as those of the Robinson-Trautman type do not yield a complete table and
so result in non-linear M.D.E.'s.

The section that follows, as well as describing the technique, contains
a brief review of those aspects of the GHP paper which are applicable,
so that this paper is essentially self-contained.

In further sections the method is applied to some type D metrics
and a single metrical form for the six metrics referred to as Case II by
Kinnersley [6] is derived. New results obtained through the use of this
method will be presented in later papers1.

1 A geometrical description of this formalism in the language of fibre bundles is given
in the note (by Ehlers) following this paper.



Algebraically Special Metrics. I 313

Section 2. The Formalism

The formalisms of GHP and of this paper deal solely with objects
which have good spin and boost weights, a concept defined as follows.
Consider a standard null tetrad Zα, na, ma where

lan
a=-mam

a=ί (2.1)

and all other scalar products vanish. A quantity η is said to have spin
and boost weights s and t respectively if, under the tetrad transformations

V (2.2a)

(2.2b)

(2.3)

(Note that η may be a tensor of any rank.)
Such quantities are referred to as being of type (/?, q), with

and

η transforms as

la^λΓ,

ma-

η-

rΐ

->eίθ

>λteί

m\

sθη.

(p, q) = (t + s, t — s). (2.4)

Of the original 12 NP spin coefficients, eight are found to be of
good weight. They are ρ, σ, K, τ and ρ'( — μ), σ'{ — λ), κ'{ — v), τ'( — π) where
the operation of' is equivalent to the symmetry transformation

la^n\ nf^ma. (2.5)

(Cf. Ref. [5] for details of this and other symmetry operators available
within the formalism.) The remaining four NP spin coefficients are
not quantities of good weight and so do not appear per se. Instead
in GHP they are combined with the directional derivatives of the tetrad,
also not objects of good weight, to form the operators P (Thorn), P\
ό (Edth), and 6' which are of good weight.

In the outlook adopted here, the information contained in the four
complex scalars α, β, y, ε will appear in two non-gauge invariant vectors
αα (real) and βa (imaginary) where, [cf. (3.3) for definition of Ω°]

. , ί /1 1 \ \ (Ψ2 Ψ2 W 1 ρ ρ

I \ β Q 2 \ Q Q ) Q Q n , v

(2.6a)

βa = mbVamh+ <Ω°ττ+ — I — — =r- |M f l - -^rτrna+ —τma. (2.6b)

Consider the differential operator

θa=Va-taa + sβa. (2.7)
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If η is of type (p, q\ it is easily shown that θaη is also of type (p, q). Therefore
θa is of type (0,0). The operators P, P\ ό, ό' are defined by

laφ' + τό + τόf) - ρmβ - ρmβ'. (2.8)

Since la,na,ma,ma are of types (1,1), ( - 1 , - 1 ) , (1,-1), and (-1,1)
respectively, it follows that the types of the operators are ί>:(l, 1),
£ ' : ( - ! , - l ) , ό : ( 0 , -2) , ό': (-2,0). Objects of good weight behave as

where the bar represents complex conjugation.
Equation (2.8) forms the connecting link between the tetrad

system used throughout the solution of the Einstein equations, and
the expression of that solution in a normal co-ordinate system. In
addition, together with the choice of gauge, it generates the vectors
aa and βa gratis — as will be seen in Section 5.

The Bianchi identities and those field equations of the NP formalism
which have good weight are easily rewritten in terms of P, P\ δ, and ό'.
The information contained in the remaining equations appears in the
commutator relations of the operators.

Section 3. The Empty Space Algebraically Special Case

Let the vector la of the tetrad be chosen to lie in the direction of a
degenerate principal null vector. Then by the Goldberg-Sachs theorem
cr = K = 0, and for empty space, Eq. (2.22) of Ref. [3] reduces to

PQ = Q

2 . (3.1)

Henceforth we assume ρ φ 0 and put

Ω° = ί/ρ-ί/ρ. (3.2)

Then since I> is both real and a derivation,

*J=-U ( 3 1 a )
and

ϊ>Ω°=0. (3.3)

A degree sign, °, will be used to mark any quantity annihilated by the
operator ί>, i.e. Pη° = 0.

The equations in which the operator P occurs together with (3.1)
enable most variables, and hence most equations of the problem to be
expressed as polynomials in ρ and ρ with degree marked coefficients.

Since ρ will in general be complex, one is not entitled to equate
coefficients of like powers of ρ and ρ. However, given a polynomial
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equation with all coefficients degree marked, relations between these
coefficients may be extracted. The procedure is illustrated. Consider
the equation

A° + B° ρ + C°ρ + D° ρρ + E° ρ2 = 0 . (3.4)

Dividing (3.4) by ρ2ρ gives

Λ° (ρ^-' + B^ρρΓ' + σiρ^-'+D^ρy'+Fiρj-^O. (3.4a)

Operating on (3.4a) with P3 yields

Λ° = 0. (3.5a)

Substituting this result into (3.4a) and operating with ί>2,

£° + C° = 0. (3.5b)

Substituting (3.5a) and (3.5b) into (3.4)

B°(ρ-ρ) + D°ρρ + E°ρ2 = 0, (3.6)

and using (3.2) in the form

(3.2a)ρρ
(3.4) becomes

(Ω°Bo + Do) + E°ρ2 = 0. (3.7)

Dividing by ρ2ρ and operating with P gives

Ω°B° + Do + Eo = 0. (3.5c)

Finally substituting this into (3.7) and using (3.2a) once more,

£° = 0. (3.5d)

Therefore the results of Eq. (3.4) are

Λ° = B° + C° = Ω°B° + D° = E° = 0. (3.5)

Assuming then that one is faced with a polynomial equation, all of
whose coefficients are degree marked, the algorithm then is:

1. Equate the coefficients of the lowest power of ρ, ρ to 0.
2. Substitute the result back into the equation using (3.2a) if applicable.

This will raise the lowest power of the equation.
3. Repeat the process till the equation is fully analysed.
The properties of ό, P\ 6' essential to this paper are

[ϊ>, !>'] η° = [ί>, ό] η° = [ϊ>, ό'] η° = 0 . (3.6)

(Additional properties will be demonstrated in a further paper.)
By virtue of these relations, the fundamental equations, when re-

written using these operators, give rise to polynomial equations which
will admit of the analysis outlined above.



316 A. Held

It is important to note that the symmetry between la and rf has been
broken, and unlike the operators of GHP,

(δ) 'φδ' and (I>)'φ£\ (3.7)

However there remains

δ = δ' and P' = P'. (3.8)

It would appear that the equations should be more complex when
expressed in terms of these new operators but in fact, as seen below, this
is not necessarily the case, and when solving equations a considerable
saving of labour is effected. The equations of GHP written in terms of
the operators (2.8) are presented below.

Section 4

The Field equations, Bianchi Identities, and commutators adapted
to an algebraically special free space metric.

Field Equations

Pρ = ρ2 (4.1a)

I>τ = ρ(τ-τO (4.1b)

pκ> - p>τ> _ τότ' - τδ'τ' = i ( — - -^-) τ' + Ω°τττf + ρ'(τ - τ') (4.1c)
\ Q Q I

Pσf - ρόY = Q& - τ'2 + ρττf/ρ (4.1e)

I> ρ '_ρ6τ ' = ρ 'ρ-(τ ' + ρτ/ρ)τ'-<F2 (4.1 f)

6τ = Ω°τ2-σfρ/ρ (4.2a)

όρ = ρτ/ρ (4.2b)

ρό'ρ' - Q6& = -ρτρ'/ρ - ρτσ'/ρ + (ρ' - ρ') τ'

+ (ρ-ρ)κ>-Ψ3

+ ^)ττρU + ^)ρ
ρ ρ] \Q ρ I (4.3a)

- ρΩ°τκ;' + ρ/ 2 + o'a' - κ'τ'

I Ψ Ψ \ 11 3 \
P'σ' -f τδσ' + τδ'σ' - ρδV = -\ 3 —- - -^- σ' + — ττσ'

Q x Q ) \Q Ql

(4.3b)
/ Ψ Ψ \

P'ρ + τόρ + τδ'ρ - ρδ'τ = - i — - -^- ρ + ρρ'. (4.3c)
\ ρ ρ /
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where

where
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Bianchi Identities

P Ψ3 - ρδf Ψ2 = -3τfΨ2 + 2ρ Ψ3

PΨ4- ρδ'Ψ3 = 3σ'Ψ2 + ί2- i rτ- 4τ'j Ψ3

2 ^ 2

Q

+ τδ'Ψ2 -ρδΨ3 = 3ρ'Ψ2 - 2τ Ψ3

Commutators

Q ρ ρ

[ό, ό'] = - 4 - (Q' ~ Q1)
QQ

' + pΣ° -qΣ°
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(4.4a)

(4.4b)

(4.4c)

(4.5a)

(4.6a)

-τΨ4.

(4.6b)

(4 7a)

(4.7b)

(4.7c)

fr(i) - ΪS. - ^ - i ί ( i ) - ϋl). (4.9,
β / ^^ Q \ Q I Q I

The two remaining commutators are obtained by complex conjugation
of(4.7b)and(4.7d).

Section 5. A Class of Type D Solutions

In this section the Formalism is used to set up the equations associated
with a class of Type D metrics. Since the metric is of Type D, both la

and rf may be chosen to lie in the direction of degenerate principal null
vectors, so that

κ = σ = K' = σ' = ?Ό = Ψx = ^ 3 = ^ 4 = 0 . (5.1)
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The metric is then further restricted by requiring that

τ = ρρτ°, (5.2)

a class of solutions called Case II by Kinnersley [6].
In order to do the analysis, expressions for όρ, ό'ρ, and P'ρ are

required. Of these, the first and the third are readily available from
the equations of Section 4. To obtain the second, the expression

ίhδ'lΨ2 (5.3)

is calculated first by successive applications of the operators, then by use
of the appropriate commutator. Equating the two results in

o2

I>τ'-ρό'ρ=-4r-τ. (5.4)
Q

When considered in its natural order, this equation will yield the
factor ό'ρ.

The integration procedure is straightforward. Using assumption (5.2),
Eq. (4.1b) gives

τ ' = - ρ 2 τ ° , (5.5)
and Eq. (4.2b)

δρ = ρ V . (5.6)

Then substituting (5.5) into (5.4) yields

ό ' ρ = - ρ 2 τ ° . (5.7)

(5.6) and the complex conjugate of (5.7) give the useful result

6Ω° = 2τ°. (5.8)

From the Bianchi identity (4.4a)

ψ = ρ3ψ°. (5.9)

(Since there is no possibility of confusion, for the balance of the paper
the Subscript 2 will be dropped from Ψ2.)

Using these results Eq. (4.If) may be rewritten as

ί>4- = - 2 ρ 3 τ ° τ ° - ρ 2 ό τ o - 4 - ι F o (5.10)
Q Q

and integrated to give

ρ' = ρρ'° _ 1/2ρ2 ψ° - ρρ(ότ° + 1/2 Ψ°) - ρ2ρτ°τ° . (5.11)

The "thorn" integrations, which correspond to the D integrations of
the NP formalism, are now complete and all the variables have been
expanded as polynomials in ρ and ρ with degree marked coefficients.
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For the balance of this section only the equation numbers and new
results will be indicated. Equation (4.2c) is worked through in detail
in the appendix.

(4.2a) -*ότ° = 0 (5.12)

(4Λb)-+δ'Ψ° = 0 (5.13)

(4.6a)-+o^° = 0 (5.14)

(4.2c)->δ'ρ'°=0 (5.15)

&'τ° = 0 (5.16)

ότ° = - i/2Ωo(ρ'° + ρ'°) + ί/2(Ψ° - Ψ°) (5.17)

ρ'° = Γ (5.18)

(4.6aH&'<Fo = 0 (5.19)

(4.3a)-+P'ρ'° = 0 (5.20)

(4.3c)->5'ρ =ρ2ρ'°-l/2ρ2(ρΨo + ρΨo)-ρ3ρτoτ°). (5.21)

Finally, using this last equation and its complex conjugate,

£ 'β o = 0. (5.22)

This completes the integration. A complete table of the action of the
derivative operators on the variables ρ, Ω°, ρ/o, Ψ°, τ°, has now been
established. The remaining equations and the commutators merely
confirm the above.

The next step is to obtain expressions for the vectors αfl and βa.
This is done through judicious choice of gauge. Noting that

and that ρ'° is of type ( — 2, —2), (2.8) applied to ρ/0 becomes

(Pα + 2αα)ρ'° = 0. (5.23)

Since under the transformation (2.2a),

ρfO-+λ-2ρ/o (5.24)

choosing =λ= |ρ'°|^ sets

ρ/o = ± l . (5.25)

From (5.23) it follows that with this choice of gauge αα = 0.
It follows immediately that

VaΨ° = 0, (5.26)
so that

ι = constant. (5.27)
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If ρ'° = 0, αα = 0 is obtained by setting either ΨR or Ψl9 one of which
must be non-vanishing, equal to a constant.

Proceeding along similar lines for Ω° and ρ (in the case of ρ it is
convenient to work with 1/ρ+l/ρ since the imaginary part of 1/ρ
appears as Ω°),

VaΩ° = 2ρτ°ma-2ρτoma (5.28)
and

{ jj (5.29)
where

. (5.30)

Finally for τ°,

Qrτ)ma?τfna

ρρ2)-UQ2Ψo-Q2Ψ°)}τola.
 ( >

As τ° is of type ( - 3, - 1), under the transformation (2.2b)

τ°-+e-ίθτ°. (5.32)

Choosing θ such that τ° is real allows (5.31) to be separated into its real
and imaginary parts. The real part is

Vaτ° == -±ρ(Ω°ρ'° + ίΨΪ)ma + ±ρ(Ω°Q'° + iΨi)rna (5.33)

The vector βa, if desired, may be obtained from the imaginary part of
(5.31). The tetrad is now determined to within a two dimensional
reflection.

Finally (5.28) and (5.33) are combined as

i(ρ'°Ω° + iΨJ VaΩ° = - 2τ° Vaτ° (5.34)

and integrate to give

(Ω°ρfO + iΨj)2 =±4a2- 4ρ'°τ°2 (5.35)

where ± 4a2 is a constant of integration.
The "co-ordinate free integration" part of the procedure is now

complete. We have established a complete table of the action of the
operators on the basic variables ρ and τ°. It remains now to pick a co-
ordinate system and in it describe a properly normalized tetrad such that
Eqs. (5.28), (5.29) and the other derived relationships, all of which
have been expressed in a co-ordinate free manner, are satisfied. We know
from the work of Talbot [8] that for an empty space algebraically special
metric formally the tetrad must exist. He has given a prescription for
writing out a tetrad for the most general possible such metric in terms
of several unknown functions together with equations (the M.D.E.'s)
relating these functions (but no proof of the solubility of those equations).
Therefore his tetrad, with suitable simplifications, will suffice to describe
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a less general metric and will naturally satisfy the derived co-ordinate
free relations. However as was indicated in the introduction, one of the
advantages of the technique under discussion is that we can base our
co-ordinate system on a known solution. Therefore we will not use the
Talbot co-ordinate system but rather build one on the results of this
section.

For the construction of a co-ordinate system, the optimal situation
arises if the co-ordinate free integration procedure yields a complete
involutive table of the operators on three linearly independent complex
functions, all of which have p+±q. In this case, one of these functions
is set equal to a real (or imaginary) constant using the transformations (2.2).
This gives an expression for the vectors αfl and βa in terms of the tetrad
vectors and the other two functions [see statement following (5.33)].
The four co-ordinate functions are then chosen as the real and imaginary
parts of the remaining two functions. Equation (2.8) (which is an identity!)
is then applied to each of the co-ordinate functions. This yields the
tetrad components directly [cf. Eqs. (6.11) and (6.12)].

Variations on this theme arise if one or more of the functions has
p=±q. Then either additional functions are required or a method must
be found to generate additional co-ordinate surfaces. In the case of the
metric under consideration we have three basic functions ρ, τ°, and ρ/o.
These are not optimal as ρ'° has p = q and the imaginary part of ρ and τ°
are not linearly independent. We have used ρ/o to establish αfl = 0,
and the phase freedom of τ° to establish βa. There remains only ρ, which
can supply but two co-ordinate surfaces. Therefore we must choose a
further two co-ordinate surfaces and develop the attendant tetrad
components. This is done in the next section.

Complications arise if the table of differential operations is not
complete. In this case an unknown function may be substituted for the
missing element (s) and the procedure carried on as before. The missing
element (s) is then calculated directly from the final form of the tetrad,
giving rise to a non-linear M.D.E. for the substituted function. Compli-
cations may also arise if the smallest involutive system of the operators
involves more than three variables. The basic procedure is the same as
for the missing element case and the results are again M.D.E.'s.

Section 6. The Development of a Tetrad

The co-ordinate system used is that of Ref. [7]. With this choice,
la and la take the forms

1" = (0,0,0,1) (6.1)

la = (x\ 1,0,0) (6.2)
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where x4 is an affine parameter and x3 may be any real function which
obeys [7]

W 3 , C ] = 0. (6.3)

Let the affine parameter be chosen as follows. Set

Then from (5.33)
Var=TL

(6.4)

(6.5)

Since nflδα = 0, la is affinely paramatrized and transvecting (6.5) with la

shows that r is indeed an affine parameter.
Using the results of Section V it can be shown that

so that x3 may be defined by

x3 = iΩ°.

With these choices ρ has the simple form

ρ=- r + i-

The remaining co-ordinate freedom is [7]

Therefore

iδ3

a = 2ρ τ°ma- 2ρτ°ma .

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

It is now a reasonably simple matter to construct the tetrad. The
values of I3, Z4, n3, n4, m3, m4, nl9 n2, n3, n4 may be read directly from
(6.11) and (6.12). Taking into account the orthogonality relations one
obtains

rcα = ( - 7 V , - T , 0,1)

na = (n\i-nίx3,0,T)

(6.13)

(6.14)

a = \ρm2

1
x — > g " * 2 > * ^ Λ o , 0

2 ^ τ o

!Λ = (m1, —x3mx, —2iρτ°,0)

plus the equation
1 +ρm1 =ρm1 +ρm1 = .

(6.15)

(6.16)

(6.17)
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Transvecting the relation

with

gives

and

manb and mamb

3
Y 3

— Λ

Q

m2 = τ",

and m1 is reduced to the form

m1 = ρ
4τc iv

323

(6.18)

(6.19)

(6.20)

(6.21)

where v is an as yet undetermined function.
Since the co-ordinate system itself contains the freedom (6.10),

it is not surprising that the tetrad components are not uniquely defined.
This ambiguity is removed by applying the commutators to x1.

[P,&]x1->v = v°

[P',6]x1^v = v°{

[ό\6] x 1 -+v = ~ + F(χ3) •

(6.22a)

(6.22b)

(6.22c)

The function F(x3) is then absorbed using the remaining co-ordinate
freedom (6.10) and the final form of the tetrad is

= (0,0,0,1)
γ 3

2τ°x1

4τ° x3

Jβ = (x3,1,0,0)

na=(-τx\ -τ,o, i;
2

- 3 , - 2 i ρ τ ° ? 0

na = \ρτ°

where

ρρx3

2τ°x1

(x 3 ) 2
4 τ o ? ;

τ o 2 =
4ρ'°

^Γ + *Ί + α2

r — τ°2

ί ? ' ° = ± l ,

and α2, fjj, Ψj are arbitrary real constants.

(6.23 a)

(6.23b)

(6.23 c)

(6.24a)

(6.24b)

(6.24c)

(6.25)

(6.26)

(6.27)
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If ρ'° = 0, Ψj =j= 0, the metrical form remains the same.
Equation (5.38) simplifies to

~-VaΩ° = 2τ°Vaτ° (6.28)

and τ° is given by

Finally if ρ/o = Ψx = 0, ΨR is set equal to one by choice of gauge and
Eq. (5.35) indicates that

τ° = constant. (6.30)

The metric gab is defined by

gab = 2l{anb) - 2miamb). (6.31)

The co-ordinate x2 does not appear in the metric, therefore the
the vector d/dx2 is a Killing vector. From Ref. [6] we know that these
metrics possess a second Killing vector. A derivation of an alternative
co-ordinate system which displays the existence of the second Killing
vector directly has been carried out by Stewart and Walker [9].

Conclusions

The technique of GHP has been adapted to the problem of alge-
braically special metrics. It was shown that when applied to a class of
Type D metrics it resulted in equations of an exceptionally simple form.
Through the use of the auxilliary vectors αα and βa equations relating the
tetrad system and all co-ordinate systems were constructed. This enabled
a co-ordinate system to be chosen which took maximum advantage
of the known solution. Having done this, the tetrad was then easily
calculated.

The metric derived reproduces the six case II solutions of Kinnersley.
It was shown to have four arbitrary constants, one of which (ρ/o) had been
set equal to + 1 by appropriate choice of gauge. The space is influenced
by the change of sign of two of these, ΨR and ΨB only to the extent
apparent in the metric. However, the signs of ρ/o and ±a2 extend deeper
and determine the underlying topology as well as the obvious local
change in the metric. This effect is reflected in the allowable range of the
co-ordinate x3 and is best demonstrated by performing the co-ordinate
transformation

y3 = l/4ρ'°x3 + l/2ΨI (7.1)
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and substituting into Eq. (6.25). This then appears as

τ°2 = ρ'°(yψ±a2, (7.2)

with the three different topologies being determined by

I. ρ'° = + 1 , + α 2 - > - o o < / < + o o (7.3)

II. ρ'°= + i, - α 2 - > - o o < j / ^ - α , α ^ j / < + o o (7.4)

III. ρ'°=-l, +a2-+-aSyύa. (7.5)

A detailed discussion of the physics of this class of metric is found in
Ref. [6].
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Appendix

In this appendix the integration of Eq. (4.2c) is demonstrated in
detail.

The equation may be rewritten as

δ'ρ' = ρτ°(ρ'-2ρ'). (A-l)

Using (5.11), operating through with ό' and using the commutator
[&', δ], where required yields

ρό'ρ'° + ρρ(Ω°P'τ° - 3ρ'°τ° + ρ'°τ°) + ρ 2ρ'°τ°

+ ρ3τ° Ψ° + ρ2ρτ°(ότ° + 1/2 Ψ° - ό'τ°) - ρρ2(ότ° + 1/2 Ψ°)

+ 2 ρ ρ 3 τ ° τ o 2 - ρ 2 ρ 2 τ ° τ o 2 (A-2)

= ρ2(τ°ρ/o) - 2ρ ρρ/oτ° + ρ 2ρτo(-ό'τ° - 1/2 Ψ° + 2ότ° + Ψ°)

+ ρ 3 ^ ψo _ i/2 ρρ2τ°Ψ° + 2ρ3ρτ°τ°2 - ρ 2ρ 2τ oτ° 2 .

The lowest powers of ρ are equated to give

ό'ρ/o = 0. (A-3)

Proceeding to the power '2' the situation is more complicated. Equating
the coefficients of ρ2, ρρ, and ρ2 yields

£'τ° = 0 (A-4)
and the terms

ρ2ρί2°τ°ρ/0 + ρρ2Ω°τ°ρ/o (A-5)

to be added to the R.H.S. Including these terms in the '3' equation gives

Oτ° = - 1/2 β°(ρ/o + ρ'°) + ί/2(Ψ° - Ψ°) (A-6)
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and a 'carry' of

l /2ρ 2 ρ 2 τ o Ω o 2 (ρ ' ° - r ) . (A-7)

From the revised '4' equation it follows that

Q'° = Q'° (A-8)

The '5' equation is satisfied identically.
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