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Abstract. Using fixed point theorems for local contractions in Banach spaces, an
existence and uniqueness proof for the Hartree-Fock time-dependent problem is given in
the case of a finite Fermi system interacting via a bounded two-body potential. The
existence proof for the "strong" solution of the evolution problem is obtained under
suitable conditions on the initial state.

1. Introduction

In general, starting from a quasi-free (or generalized-free) state ρ
of a finite or infinite Fermi system at the time t = £0, the natural evolution
of the system gives rise to a state ρt which does not remain quasi-free for
£>ί0, and trustworthy methods of successive approximations for
solving the evolution problem except in trivial cases are not known. An
approximate procedure for solving this problem is provided by the
time-dependent Hartree-Fock theory, first obtained by Dirac [1] and
afterwards generalized by Bogoliubov [2] and Valatin [3]. These
equations can be obtained by considering the evolution of the one-
particle density matrix T and assuming that ρt remains quasi-free in a
given time interval. Perturbative solutions of such equations for super-
conducting systems have been studied by Di Castro and Young [4].

In spite of the simplicity of the approach, the equation of motion
for the one-particle density matrix T is non-linear so that the existence
problem is not easy even in the most simple physical cases. Written in
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matrix form the equation in the gauge-invariant case is of the type (see
e.g. Ref. [5]):

where A is the kinetic energy operator and U is the self-consistent
potential which is a linear function of T. U is the difference of two terms :
U = UD — UEX, where UD denotes the "local" part and UEX the exchange
part. Neglecting the spin coordinates, which are completely unessential
for our purposes, and denoting by q the space coordinate, by φ a one-
particle wave-function, by v(q, qf) the two-body potential, and by T(q, qf)
the "matrix element" of T in the coordinate representation, we have:

(UDφ) (q) = [f v(q, q') T(q', q') d* q'~\ φ(q) (1.2)

(UEXφ)(q) = -$v(q,qf)T(q,q')φ(q')d*q'. (1.3)

Of course, Eq. (1.1) has to be solved with the given initiaLcondition
n= 0=τ0.

We give here an existence and uniqueness proof for the solution of
Eq. (1.1), assuming that the total number of particles is finite
(N= J T(q, q)d3q< + σo) and the two-particle potential v(q,q') is
bounded: sup \v(q, q')\ < + oo.

2. Notations and Hypotheses

We denote by:
E a Hubert space with inner product <-,->;
j£? (E) the set of all bounded linear operators defined in E, equipped

with the norm topology || ||.
&Ί(E)c3f(E) the set of trace-class operators, equipped with the

usual norm || || i = Tr \ - \.
), =£?(£)) the Banach space of all linear continuous mappings

)9 equipped with the usual norm ||| ||| topology.

H(E)={T, T

C (0, τ H! (£)) = {/ / : [0, τ] -> H, (£), / continuous}

where τ>0; C is a real Banach space equipped with the norm

Let τelR + , TQeH^(E\ A:DA(ζE)-*E a self-adjoint operator,
), JS?(£)) such that:

(2.1)
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We consider the following problem: find a function T( ) e C(0, τ;
such that:

_ (22)

T(OHT0.

Definition 2.1. A function TeC(0, τ; ̂ (JB)) is called a mίW solution
of the problem (2.2) if the following equality holds:

T(t)x = e~ίtA T0e
itAx + i e-'(ί~sM[T(s), B(T(s))]_ e'(ί-sMx ds (2.3)

for every x e E.

Definition 2. 2. A function TeC(0, τ H^E)) is called a classical
solution of problem (2.2) if the following conditions are satisfied:

i) T( ) is continuously differentiable on the interval [0, τ];
ii) VxeD^, Vίe[0,τ], we have T(t)xeDA and

It is easy to show that if A is a bounded operator defined on E the mild
solution is also a classical solution.

3. Preliminary Results

Definition 3.1. For every Te H^E) we define a mapping φτ'.DA

x DA ->C by the following relation:

, V(x, y) 6 D^ x D^ . (3.1)

If φτ is continuous on DA x D^ with respect to the product topology,
we denote by the same symbol the unique extension to ExE of φτ.

Definition 3.2. Let a be the linear mapping defined by

Da = {T; Te H^E), φτ is continuous with
respect to the product topology of E x E} (3.2)

<α(T)x, y> = φτ(x, y) V Te Dfl, V(x, y) e £ x E .

It is easy to show that Te Dfl, x e D^ implies Txe DA and the following
equality holds

(3.3)

(see Ref. [8]).
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Lemma 3.3. Let a have the same meaning as before; then the spectrum
σ(a) C ilR and

(λ-aΓl(T)x = \ e-λte-ίtATeitAxdt,
b (3.4)

V λ e C , Reλ>0, V xeE, TeH^E).

Proof. A detailed proof of relation (3.4) can be found in Ref. [8].
The statement σ(α) C zlR then follows easily.

Proposition 3.4. a is the infinitesimal generator of a contraction semi-
group in H1(E) and the following relation holds:

eta(T) = e-itATeitA, MTeH^E). (3.5)

Proof. Since eltA is unitary, we have

The semigroup property can be checked in a trivial way, so that we
have only to prove that :

lim+e~ίtATeίtA = T VTeH^E). (3.7)

Since the set of finite rank operators is dense in ̂ i (E] in the trace-
norm topology || H i , we can restrict ourselves to prove Eq. (3.7) for an
arbitrary projection operator of rank one.

Let T be defined by

V x e E , \\y\\ = l.

We have:

(e'itA TeίtA - T)x = <χ, e-
itAyye'itAy- <

The two-dimensional subspace generated by y and e~ltAy is invariant
with respect to the operator e~itA TeitA — T; so the eigenvalue problem
is easily solved and one finds for the non-vanishing eigenvalues of

It follows that

Hence the semigroup defined by (3.7) is strongly continuous. By Lem-
ma 3.3 a is the infinitesimal generator of this semigroup.

Let
f^fi) (3.8)
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then γ : H± (E) -> H^ (E) is a continuous mapping and

\\y(T)\\^2\\\B\\\ (\\T\\,)2. (3.9)

Proposition 3.5. The following statements are true:
i) γ is locally lipschitzian on H^ (E).

ii) 7 is differ entiable and

iii) The following inequality holds

!!!, VTeH^E), V α e I R + . (3.10)

Proo/. i) Let ||T||1? HSH^r, r>0; then

T]- - IB(T)9 5]_ +

ii) can be directly verified.
iii) Let α > 0, Te H^(E\ and

T-αy(T) = S. (3.11)

Denoting by {AJ the set of the eigenvalues of T and by {u^ a corre-
sponding set of orthonormal eigenvectors, we can write :

Tx= £ λ^u^. (3.12)
i = l

Defining:

σ(T)x= ΣsignCAK^^Wi (3.13)
ί = l

00

|T|x= ΣlΛKx.w,)^ (3.14)
ί=l

since

Γr[y(Γ) σ(T)] - Γr[σ(Γ) y(T)] = 0 (3.15)

it follows that:

g i Tr(|Sσ(T) + σ(T)S|) ̂  \\σ(T)\\ \\S\\ 1 = \\S\\ ,

which proves (3.10).
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4. The Existence Theorem

Let X be a real Banach space (with norm || ||x), C (0, τ X) the Banach
space of the continuous mappings [0, τ]-*X equipped with the norm
|| || =Sup{|| (ί)||x , ίe[0,τ]}, M the infinitesimal generator of a con-
traction semigroup t-+etM in X. f:X-+X a locally lipschitzian
mapping1 such that:

\ \ x \ \ x £ \ \ x - * f ( x ) \ \ x Vα^O, xe*. (4.1)

We consider the following integral equation:

u(t) = etMu0 + f e(ί-s)M/[>(s)] ds (4.2)
b

where u0 is a given element in X and u eC(0, τ; X).
Then the following theorem holds: (for the proof see Refs. [6, 7, 1 1]).

Theorem 4.1. There exists a unique solution of the problem (4.2).
This solution depends continuously upon the initial condition. Furthermore,
if u0 e DM and is differ entiable in X, then u is differ entiable in [0, τ],
u(t) e DM V t e [0, τ] and we have

Applying Theorem 4.1 to our case, we obtain:

Theorem 4.2. VT 0 e H^E) there exists a unique mild solution T(-) of
Eq. (2.2). Furthermore, if the mapping

(x, y)-> <T0x, Ayy + {Ax, To);> V(x, j>) e D^ x D^

is continuous with respect to the product topology of ExE, then T( )
is a classical solution which depends continuously upon the initial condition.

Proof. It is enough to apply Theorem 4. 1 with f = γ,M = a,X = Hl(E]
and use Propositions 3.4, 3.5.

Proposition 4.3. // T( ) is a mild solution of problem (2.2) then for
any te [0, τ] there exists a self -adjoint operator K(t) such that

) = e-iK(t}T0e
iK(t}. (4.4)

Proof. Let T0 e Da and T( ) be the classical solution of problem (2.2).
We put Q(t) = B(T(t)), ίe[0,τ]; Q is a Lipschitz continuous mapping
[0, τ] ->//(£). It is easy to see that for the linear problem

U(tQ) = UQ

1 By locally lipschitzian we mean that for any r > 0, u e X, v e X,
3Nr > 0 such that \\f(u) - f(v)\\x ^ Nr \\u -v\\x.



Time-dependent Hartree-Fock Problem 189

there exists a unitary Green function U(t,s). It follows [8] that the
problem

S(0) = TO

has a unique classical solution given by

S(ί)=ϊ/(ί,0)Γ0E7(-ί,0). (4.7)

Furthermore T( ) is obviously a solution of (4.6), so that, from the
uniqueness of the solution, we have S = T.

For any £e[0, τ] let K(t) be the self-adjoint operator such that
U(-t,Q) = eiK(t}; Eq. (4.4) then follows.

If T^eH^E) we can prove (4.7) by a straightforward argument of
density, since Da is dense in Hv (E).

5. The Hartree-Fock Time-dependent Problem

We now give sufficient conditions in order that Eq. (1.1) be solvable
by the methods of Section 4.

Let E = ̂ 2(R3) be the one-particle Hubert space. We assume that
the two-particle potential v(q, q')

ι;:lR3xlR3-+lR (5.1)

is a real bounded measurable function verifying the conditions:

v(q, q') = v(qf, q)

\υ(q,q')\^V, V«,« 'elR 3 . (5.2)

Let [φk] be a complete orthonormal system in E. We write the one-
particle density matrix in the form

T(q,q')=
fc=l

The positivity condition for the gauge-invariant quasi-free state
defined by T implies [9,10]

0£λk£ί. (5.4)

Since we consider only systems with finite total number of particles,
we have

Σ4«χ). (5.5)
k=ί
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T(q,q') determines an operator TeH^E) such that

k = l

Of course

00

II T"> II X""1 0 C T>/ \ J^> ίC *Ί\

M ι l ι = L, *-k= I T(q,q)dq. (5.7)
fc=l IR3

We define

D ί \ U fJ7\ v H(Ί?\ Ώ ( \ V ίI7\ v U/Ί7\-O^^ j . Jrij ^JDj —•> n \£L), ^£^v' / "i w/ •" w/

by the equalities

BD(T)φ=UDφ, BEX(T)φ=UEXφ VφeE (5.8)

where t/D and UEX are given by (1.2), (1.3) respectively.

It is easy to see that BD is bounded and

\\\BD\\\£V. (5.9)

Since

\\Bΐx(T)\\£( ί.f \v(q,q')T(q,q')\2d3qd3q'Y
\ m \ ^ τr^ \ I

1 (5.10)

also PM||| ̂  7, so that B(T) = BD(T) + BEX(T) satisfies the hypotheses
of Section 2. Hence the existence theorem applies and Proposition 4.3
guarantees that T(t\ t e ]0, τ] satisfies the positivity condition (5.4) if T0

satisfies (5.4). Hence T(t) defines a quasi-free state. Furthermore the
state remains pure if it is initially pure (T0

2 = T0).

The existence of the strong solution is guaranteed by the following
condition on the initial state

RτgDA. (5.11)

This condition is physically reasonable in the greatest majority of the
applications, where A is either the kinetic energy operator, or the kinetic
energy plus a central field. If (5.11) holds, A T0 is bounded so that Eq. (3.3)
holds.
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