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Abstract. Let φ be a faithful normal semi-finite weight on a von Neumann algebra M.
Normal states on M almost majorised by this weight are defined. For this class of states
on M a theorem is proved. Using this result we define entropy of normal states on Jt
and we show that this entropy function generalises the entropy both of classical and of
quantum statistical mechanics.

1. Introduction

Let φ and ιp be two normal states on a von Neumann algebra Jί.
Suppose ψ is faithful. In Ref. [1] Dixmier introduces the notion of the
state φ being almost majorised by the state ip. He remarks that to any
state φ almost majorised by ψ corresponds a closable operator affiliated
with πy(Jί)\ where πφ is the ^representation of Jί associated with ψ
by the G.N.S.-construction.

We define when a normal state φ on Jί is almost majorised by a
faithful normal semi-finite weight ψ on Jί.

Using some results of Perdrizet [2], we show that with any state φ
almost majorised by the weight ψ can be associated in a unique way a
positive self-adjoint operator affiliated with πψ(Jί)'.

This result is used to define a generalised entropy function. The phase
space of a system in classical statistical mechanics is a measure space
M, v. The measure v gives the a priori probability of the points of M.
The macroscopic states of the system are described by positive normalised
measures μ on M which are absolutely continuous with respect to the
measure v. To each such measure μ corresponds a positive integrable
function / on M which satisfies J / dv = 1 and dμ = f dv. These functions
/ are called density functions and the entropy of the measure μ is given
by the expression

S(μ)=-J/ log/dv.

Let 3f be the Hubert space of wave functions of a quantum mechanical
system. In many cases the statistical states of the system are described
by the normal states on the space 36(2tf) of all bounded linear operators
on ffl. To each normal state ψ on OSffl) corresponds a unique density
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matrix on 2tf, i.e.: a positive trace class operator ρ on 2tf which satisfies
Trρ-1 and ιp(A) = ΊΐρA for all Ae &(tf\ The entropy S(ψ) of the
normal state ψ on $(ffl) is defined by:

S(ψ)= -Trρlogρ.

This entropy function is the quantum analogue of the classical entropy
function defined above. However it should be pointed out how restrictive
this quantum mechanical definition is. For classical systems we have
free choice of the a priori probability measure with respect to which
entropy is calculated. In the definition of entropy for quantum systems
the trace plays the role of the a priori probability measure and no choice
is made.

Let Jί be a von Neumann algebra with a faithful normal semi-
finite weight φ on it. In analogy with the density functions / on the
phase space M, v of a classical system and with the density matrices ρ
on the Hubert-space 3? of wave functions of a quantum system we call
density operators the positive self-adjoint operators Tassociated with the
normal states on Jί which are almost majorised by φ.

\iM is the VF*-algebra 5£™ (M, v) of all essentially bounded measurable
functions on the measure space M, v, a weight φ on Jt is defined by the
relation

φ(A*A) = J A* A dv for all A in M .

Then we may show that there is a one-to-one correspondence between
density functions on M, v and density operators affiliated with πφ(Jt)'.

If Jί equals the space &(#?} of all bounded linear operators on a
Hubert space ffl one weight φ on Jt is e.g. the trace. Then there is a
one-to-one correspondence between density matrices on ffl and density
operators affiliated with πφ(Jt}'.

In both cases Jt = JS?°°(M, v) and M = ̂ (^f) we express the entropy
S(μ) of a measure μ on M resp. the entropy S(ψ) of a normal state ψ on
^(^f) in terms of density operators and twice we find the same expression.
This justifies the general definition of entropy we introduce at the end
of Chapter 3.

We now give a short mathematical introduction (see [5]). A weight
on a C*-algebra jtf is a function φ : ̂  + -+ [0, +00] satisfying:

φ(A + B) = φ(A) + φ(B) for all A, B in j/+

φ(aA) = aφ(A) for all α ̂  0 and for all A

in s/+ (with the convention 0, oo = 0).

Define: ^ = {^ e ̂ |φμM) < + 00}.

Then $lφ is a left ideal in d.
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Theorem. With any weight φ on a C*-algebra $0 is associated a
Hilbert space J^φ and two mappings Aφ and πφ, where Λφ is linear from
9lφ into fflφ ana πφ is a ^-representation of jtf into 3β($C^ such that
(πφ(Λ) AφB, ΛφC) = φ(C*AB) for all A in $4 ana B, Cinyiφ.

A weight φ on a von Neumann algebra Jt is normal if for any increas-
ing net (4Jα in Jl* with l.u.b. A in Jί* we have φ(^) = l.u.b.φ(^α)
(see [6]).

Theorem. // φ is a faithful normal semi-finite weight on a von Neumann
algebra Jt then the set jtfφ = ϊl^nSFl* is a full left Hilbert algebra with Jί
as its left von Neumann algebra.

I'm indebted to Prof. H. Araki and Prof. A. Van Daele for simplifications in the proof
of Theorem 2.3.

2. Density Operators

Definition 2. L Let φ be a normal weight on a von Neumann algebra
Jί. A positive selfadjoint operator T affiliated with πφ(J()' is a density
operator with respect to φ if Aφ9lφ is a core of T* (i.e. the closure of the
restriction of T* to Aφyiφ again is T*) and if there exists a normal state
ψ on Jί such that ψ(B*A) = (T*AφA, T^AφB) for all A, B in Mφ.

The following definition generalises a definition of Dixmier ([1],
1,4, Exercise 8):

Definition 2.2. Let φ be a normal weight on a von Neumann algebra
Jί. A normal state ψ on Jί is almost majorised by φ if for any net (A^
of elements in Wφ such that φ (A* Aa) -»0, ψ ((AΛ - Aβ)^ (AΛ - Aβ)} -̂—> 0
implies ψ (A* Aa) -> 0.

The following theorem generalises Dixmier [1], 1,4, Exercise 8,
and Perdrizet [2], p. 45, Proposition 6.4:

Theorem 2.3. Let φ be a faithful normal semi-finite weight on a von
Neumann algebra Jί ana ψ a normal state on Ji. Then the following con-
ditions are equivalent:

a) ψ is almost majorised by φ.

b) There exists a vector 'ξ in J^φ such that ψ(A) = (πφ(A) ξ, ξ) for all
AεJΐ and for all such ξ the operator ρ'(ξ): AφA->πφ(A) ξ with domain
Aφ9lφ is dosable.

c) There exists a density operator T with respect to φ such that
ιp(B*A) = (T*ΛφA9 T-AφB) for all A, B in Mφ.

This density operator T is uniquely determined by the state Ψ.

Proof. a)=>b).
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The existence of a vector ξ in j^φ such that ψ(A) = (nφ(A) ξ, ξ) for all
A e M follows from [2], p. 44, Proposition 6.2.

Let (A^Λ be a net of elements in 9lφ such that ΛφA^Q and (πφ(^4α) ξ)α

is convergent. This means that φ(^*^α)->0 and that ιp((AΛ — Aβ)*
(AΛ-Aβ)) β^-K^O. Usinβ condition a) there follows that φ(,4*,4α)->0

or that πφ(AJξ->0. This shows that the operator ρ'(ξ) : ΛφA-+πφ(A) ξ is
closable.

b)=>c).
Let ξ e Jίfφ be such that <P(4) - (πφ(yl) ξ, ξ) for any AeJί.
By b) the operator ρ'(ξ) is closable.

_ Let T = ρ'(ξ)*~ρr(ξ). Let ^(ξHC/T* be the polar decomposition of
έ/OΓ). Then υ*ΌT*=T\ which implies

) = (T*ΛφA9T*ΛφB) for any X and £ in $Rφ.

For any AtJl and £e?lφ one has ρ'(ξ) πφ(A) ΛφB = πφ(A) ρ'(ξ) ΛφB.
Hence ρ'(ξ) πφ(A) D πφ(A) ρ'(ξ). This implies the operator ρ'(ξ) is affiliated
with πφ(Jίy ([1], I, § 3,^xercise 7 a). Hence T is affiliated with πφ(JΓf.

Since any core of ρ'(ζ) is a core of T% ̂ Iφ3lφ is a core of T1. We
conclude T is a density operator corresponding to the state Ψ.

c)=>a).
Let (AΛ)a be a net of elements in 91 φ for which φ(A*AJ-*Q and

β-^))ι^ι^O. ^Then ΛφAΛ-*Q and (T-ΛφAΛ\ con-
verges. Because the operator 7^ is closed T^ΛφAa converges to zero.
Hence φ(^*^α)^0.

Let S and T be density operators corresponding to the state Ψ.
Then for any Ae9lφ:

\\S-ΛφA\\2=Ψ(A*A)=\\T-ΛφA\\2.

Hence there exists a partical isometry U from the closed range of S^ onto
the closed range of T* such that for any A e 9lφ

Because A9l is a core of S* and of T^ one obtains US^^T* andφ φ

Now S* and Γ* both are positive selfadjoint operators. Because of
the uniqueness of the polar decomposition one has U = t and S* = T*.

Q.E.D.
This theorem characterises the states on the von Neumann algebra Jt

for which a density operator exists. It has been shown that not all normal
states on Jt are almost majorised by a given faithfull normal weight
φ ([2], p. 45, Remark 6.5, (1)).



A Generalised Entropy Function 1 79

Corollary 2.4. Let T be a density operator with respect to the normal
weight φ. There exists a unique vector ξ in J4?φ for which ρ'(ξ) is closable
and the closure π'(ξ) of ρf(ξ) equals T*.

Proof. Let Ψ be a normal state on Jί satisfying

Ψ(B*A) = (TίΛφA,TίΛφB) for all A,B in 9lφ.

From the proof of foregoing theorem follows there exists a ζ e 3?φ such
that ρ'(0 has a polar decomposition of the form ρ'(0 = UT*. Now one

Hence: ρ'(ξ) = T^ with ξ=U*ζ.
Suppose ξί and ξ2 e JΊ?φ satisfy π'(ξ^ = π'(ξ2).
Then ρf(ξι) = Qf(ζ2) which implies ξγ = ξ2.

3. Entropy

Let M, v be a localisable measure space ([3]). Then the predual of
the W*-algebra j2f°°(M, v) of all essentially bounded measurable func-
tions on M, v is the space jSf 1(M, v) of all integrable functions ([4], p. 45,
1.18). Hence there is a one-to-one correspondence between the positive
normalised measures μ on M absolutely continuous with respect to v
and the normal states ψμ on Jδf °°(M, v). The measure v defines a weight
φ on <£ °°(M, v) which is faithful, normal and semi-finite.

If T is a density operator with respect to φ and ξ is the unique vector
in 3tfφ for which T = πr(ξ)2 then we introduce following notation:

<log Tyτ= lim ((log TFλ) ξ, ξ) whenever this limit converges. The Fλ
λ-» oo

are determined by:
+ 00 λ

T= J λ dEλ is the spectral decomposition of T and Fλ = J d£A.
o I/A

Proposition 3.1. Let μbea positive normalised measure on the localisable
measure space M, v. Suppose μ is absolutely continuous with respect to v.
Then the normal state ψμ on JS?°°(M, v) is almost majorised by the weight φ.
Let Tμ be the unique density operator associated with ψμ. Then the entropy
S(μ) is defined if and only if (log TμyTμ exists and in that case:

Proof. Identify J^°°(M, v) with its representation πφ(^f°°(M, v)).

Let / be the positive integrable function for which dμ = f dv. Denote
by AΓλ, for λ ̂  0, the set

Then the sets Nλ are measurable and the characteristic functions
Eλ = χ(Nλ) are projections in JS?°°(M, v).
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The (Eλ)λ form a spectral family, i.e. they satisfy:
a) Eλ^Eμiϊλ<μ,

b) Eλ = s-lim Eu for all λ ̂  0,
μ-*λ,μ>λ

c) 1= s-lim Eλ.
λ-» + oo

Let T be the selfadjoint operator defined by this family:

+ 00

Γ= f ld£Λ.
0

For any A and £ in 9lφ one has :

(TEλΛφA,ΛφB) = lλ'd(Eλ.ΛφA,AφB)

o

= φ(B*fEλA)

= (fEλΛφA,ΛφB).

Hence T£A = fEλ for all A ̂  0.
For all ,4 in 9Ϊ,,:

2

which tends to zero if A, μ-» + oo.
Hence ΛφA is in the domain of 7^ and for all A, B in 9ϊφ :

Therefore T is the unique density operator Tμ with respect to φ associated
with the state tpμ.

We now have:

S(μ)=-j7k>g/dv

= -<logTμ>TH. Q.E.D.

Let M, v and M', v' be two localisable measure spaces. Suppose there is a
*-isomorphism γ between the W*-algebras JS?°°(M, v) and jSf°°(M', v')
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which carries the weight φ on J2?°°(M, v) defined by the measure v into
the weight φ' on jS?00(M',v/) defined by v'. For any normal state ψf on
JS?°°(M',v') the entropy S(ψ') with respect to V equals the entropy
S(ψ'°γ) of the state ιp'°γ on °̂°(M, v) with respect to v. This means
that the entropy S is invariant under this kind of isomorphisms of
measure spaces (called strong isomorphisms in [3]).

Consider now a Hubert space jff. A faithful normal semifinite weight
φ on the space βtffl) of all bounded linear operators on 2tf is defined by:
φ(A*A) = ΊτA*A for all A e &(&}.

Proposition 3.2. Let φ be the trace on gβ(2tf\ Any normal state ψ on
3β(2tf} is almost majorίsed by φ. Let Tψ be the density operator associated
with ψ. The entropy S(φ) of the state ψ is finite if and only if
exists and in that case :

Proof. Let ρ be the density matrix on ffl for which ψ(A) = ΎrρA for
all A e &(&). Because

\\ΛφAβ*\\2 = ΎτρA*A ^ ΊτA*A = \\ΛφA\\2 ,

the mapping ΛφA-*ΛφAρ^ defines a bounded operator ft. This operator
h is positive, belongs to πφ(3l(tfP )}' and satisfies for any A and B in 9lφ:

ψ(B*A) = (hΛφA,hΛφB).

Hence h2 is the density operator Tψ associated with ψ and Λφρ^ is the
unique vector ξ in jtfφ for which Tψ = π'(ξ)2.

Let ρ = ΣλnGn be the spectral decomposition of ρ. Define bounded
operators En by : EnAφA = AφAGn for all A e 9lφ. The operators En are
mutually-orthogonal projections in uφ(β(^f ))' with sum i. One has

Now:

<logTv)Γv =

A p Φ O

= lim

"^^

-lim

i™ Σ
p=ί

Trρlogρ

-S(ιp). Q.E.D.
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Propositions 3.1 and 3.2 give the same expression for the entropy of a
system of classical statistical mechanics described by a measure space and
for the entropy of a quantum mechanical system described by a Hubert
space of wave functions. This justifies the following definition:

Definition 3.3. Let φ be a faithful normal semi-finite weight on a
von Neumann algebra Jί. Let φ be a normal state on Jt almost majorised
by φ. Let Tψ be the density operator associated with ψ. The entropy
S(ψ) of the state ψ with respect to the weight φ is given by :

if (log Tφ>Γv exists. In the other case S(ψ) is not defined.
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