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Abstract. We show how a variety of parametric Hamiltonians arise by a limiting
procedure applied to a time-independent Hamiltonian. We then study one such
Hamiltonian, that for a parametric frequency converter, in detail and find its associated
Raman scattering matrix.

1. Introduction

We study the time evolution of a system with the Hamiltonian

H = H0 + ωJ3 + -^-(J_X + J+X*) (1.1)

defined o n C ^ ® ^ where
(i) the operators J 3 , J± on C N satisfy the commutation relations

IJ3,J±1 = ±J±; [ J + , J_] = 2 J 3 . (1.2)

(ii) Ho is a self-adjoint operator on the Hubert space J^;
(iii) X is an operator on J^ of a suitably regular type.
We take the initial state on (CN to be a pure superradiant state,

that is
QΛ = \ξN><ξN\ (1.3)

where

Λ6v = ?*#£,; - i < l i m y ^ y ^ . (1.4)
N->oo

If ρ is the initial mixed state on $F then the state at time t is defined by

TΪN\Q) = t r c * le-iHt(QΛ®ρWHr\ (1.5)

this being a density matrix on <F. We are interested in finding the limit
of this as iV-> co. The limit if it exists is written as

T t(ρ)=lim77*>(ρ) (1.6)
N-»oo

and is for each t a positive trace-preserving linear map on the space of
all density matrices on # \
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Before proceeding we discuss the situations in which this Hamiltonian
arises.

1. The operators J 3 , J ± can arise through the consideration of a
system of (N — 1) 2-level atoms. Each atom is described by operators
J§\ 4 r ) acting on the r t h component of ®N'1(C2. Then

have the desired commutators. These operators, and therefore the
Hamiltonian H, commute with the total angular momentum J so one can
restrict attention to a subspace of ® i V ~ 1 C 2 with a particular value of J 2 .
The most important of these is the symmetric subspace, of dimension N,
since it contains the states where all the atoms are excited or all unexcited.
See [1,2].

2. Alternatively one can consider the Hamiltonian

H = ωxafaί + ω2a%a2 + λ(μX a2X Λ- a%axX^) (1.8)

where [αr, α*] = δrs and all other commutators involving au a2 and X
vanish. Writing

/ (1.9)

2 - a X a ^ \ J = i ( ξ + ά ξ )

we get

H = (ω1+ ω2)J + (ω2 - ωj J 3 + Ho + λ(J_ X + J+ X*). (1.10)

Now the operator / commutes with the Hamiltonian H so restricting
to a subspace where J is constant we obtain the required Hamiltonian
up to a scalar. See [3].

3. In many applications one takes J^ to be a boson Fock space and
Ho to be a free Hamiltonian on <F. If

X = ya(f) + δa*(g) (1.11)

then one has the Dicke rnaser model Hamiltonian, which has been
intensively studied recently [2—10]. In most work 3F has been supposed
to have only a finite number of modes, usually one, and the rotating wave
approximation, 7 = 0, has been made. In this case

H = υa*a + ωJ3 + A(J_ α* + J+a). (1.12)

In [5,6, 8,10], however, the rotating wave approximation is not needed
and in [6,10] the infinite mode case is studied. For single mode radiation
in a cavity the appropriate coupling constant is λN~* according to [2,4]
so the choice λN'1 of [9] corresponds to taking the weak coupling limit.
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4. For a parametric device the choice is

(1.13)

as we shall see. For δ = 0 one has a parametric amplifier and for y = 0 a
parametric frequency converter [11, 12]. For single mode radiation in a
cavity the appropriate coupling constant is indeed λN'1, for the same
reasons as in [2,4].

2. The Limiting Procedure

We let 2f Q 3F be a common dense domain for Ho, X, X* on which Ho

is essentially self-adjoint. We also suppose that 2) has a topology for
which it is a Frechet space and that Ho, X, X* are continuous from 3f
to 3F. In order to get started we suppose that

H{N) = H0 + ωJ3 + —- (J_ X + J+ X*) (2.1)

is essentially self-adjoint on the dense domain <LN® 2). By [13] this would
be true if X and X* were relatively bounded with respect on Ho with
sufficiently small relative bound.

As in [9] we take an orthonormal basis φί9..., φN of C N such that

(2.2)

L (2-3)

The superradiant state ξN is equal to φp where

p-~~\=yNN (2.5)

so that

γ + i. (2.6)(
N-»oo

Following the method of [9] we define a new basis by er = φp+r and rewrite

H(JV) = H0 + ω B^> + A(βW X + B (f X*) (2.7)

where for 1 —p^r^N — p

-r- p)er+, (2.8)

r-p+l)*,-! (2.9)

(2.10)
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We now define operators B3, B± on the space 12(Έ) of square-summable
bilateral sequences by

B3er = rer; B±er = er±ί (2.11)

where {er} is the natural orthonormal basis of 12(Έ). We let l2(Έ,έF)
denote the space of square-summable, J^-valued bilateral sequences.

Lemma 2.1. Let the operator #°° on 12(Έ, &) given by

/ (2.12)

be essentially self-adjoint on the domain 5£ of all $)-valued sequences
of finite support. Then

in the sense of generalised strong convergence.

Proof. We interpret HiN) as self-adjoint operators on 12(Έ,^) by
defining B3

N) er and B{+} er as above for 1 —p^r^N — p and as zero
otherwise. Then 2?(+° are bounded operators and their norms are uni-
formly bounded with respect to N. This makes it easy to prove that

γi-γ2B± (2.14)γ i γ ±
N-*oo

in the strong operator topology. It is then easy to show that

lim \H{N)Ψ -(p--^-—)ψ\ = HCX)ψ (2.15)
N-OO[ \ 2 2/ J

for all ψeJ£, and generalised strong convergence follows by [13].
We let U be the unitary operator from L2( — π, π) to 12(Έ) given by

{Uf)n= γ ^ ] f{θ)e-Mdθ (2.16)

and consider the operator K, on the space L2{( — π,π),έF} of square
integrable periodic J^-valued functions, given by

. (2.17)

Formally, one may easily check that

( 2 1 8 )

+ λ]/i-γ2 (e~wX + eίβX*) ψ(θ).



Parametric Interactions and Scattering 165

We take K to be defined on the domain of all continuous periodic func-
tions \p\\_ — π,π]^Θ which have continuous periodic derivatives
ψ': [ — π, π] -• 3F. To integrate K we need to assume the solubility of an
associated time-dependent evolution equation on #", namely

= - i{H0 + λ]/\ - γ2 (e-i{θ+ωt)X + ei{θ+ωt)X*)} ψ . (2.19)

Lemma 2.2. Suppose that for all θ, t e 1R there is an operator W(θ, t)
on !F such that

(i) W(θ, t) leaves 3) invariant and W is jointly continuous from
IRxlRx^ to 9;

(ii) both partial derivatives of W exist on 3) and are jointly continuous
from RxRx9 to &

(iii) for allxpeQ) and t, θ e 1R

- ^ W(θ, t)ψ = - iH(θ, t) W(θ, t)ψ . (2.20)

Then H00 is essentially self-adjoint on $£, K is essentially self-adjoint
on M and

(e~iκtψ) (θ) = W{θ - cot, t) ψ(θ - ωt) (2.21)

Proof Writing (Utψ){θ) for the right hand side of Eq. (2.21) we see
that Ut leaves M invariant and

— (Ut ψ) (θ) = - ωdx W(θ - ωt, t) ψ(θ - ωt)

+ 32 W(θ - ωt, t) ψ(θ - ωt) (2.22)

-ωW{θ-ωt,t)ψ'{θ-ωt)

while

ωt)

W{θ-ωt,t)ψf{θ-ωt).

Therefore

= _ iH(θ - ωt, i) W(θ - ωt, t) ψ(θ - ωt) (2.24)

= -ίH(θ-ωt,t)(UtΨ)(θ)
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so on substituting the expression for H(θ, t)

l-Utψ=-iKUtψ. (2.25)

It follows from this that Ut is a unitary group. For if

φ(t)=Ut+sΨ-UtUsΨ (2.26)

where ψeM then φ(t)eM for all t and

φ'{t)=-iKφ(t). (2.27)

Therefore

~ HΦWll2 = <Φ'(t)\φ(t)y + <Φ(t)\Φ'(Φ
= o

so
\\φ(t)\\ = \\φ(O)\\=O. (2.29)

The proof that Ut is isometric on M is similar.
Since Ut is a unitary group and M is a dense invariant domain, K is

essentially self-adjoint on M by [14] and Ut = e~iκt. Finally, the domain
$£ of K corresponding to the domain 5£ of H00 consists of the set of
functions of the form

ψ(θ)= t eirθΨr (2.30)
r+ -n

where \pre!3 for all n. Giving M its obvious Frechet space topology so
that K is continuous from M to L2{[ — π, π], #"} and is dense in M it
follows that the closure of K on i f contains K restricted to M. Therefore
K is essentially self-adjoint on i f and H 0 0 is essentially self-adjoint on if.

Theorem 2.3. Under the hypotheses of Lemma 2.2,

(2.31)

exists in the trace norm topology for all density matrices Q on ^ and

Tt(g) = 4~ ί W(θ, t) Q W(θ, ή* dθ . (2.32)
2π i

Proof. It is sufficient to prove this when ρ is a pure state by linearity
and density arguments. If ψ e ϊF and

(2.33)
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then

lim ψNtt(θ) = W(θ - cot, t)ψ (2.34)
N^oo

because generalised strong convergence of self adjoint operators implies
strong convergence of the corresponding unitary groups [13]. Therefore
for all bounded operators A on 3F

= lim

= lim (ψNtt\i®A\ψNtty
N-*oo

π

J <W{θ-ωt,t)ψ\A\W(θ-ωt,t)ψydθ

= tr \A —- f W(θ, t) |tp> <w\ W(θ, ή* dθ . (2.35)
L 2 ^ - π

This proves weak convergence and convergence in the trace norm
follows by Lemma 4.3 of [15].

3. The Scattering Matrix

We have shown that in the limit iV->oo the Hamiltonian H is
equivalent to the time-dependent "parametric" Hamiltonian

H(θ, t) = H0 + μ(e-iiθ + ωt)X + ei(θ+ωt)X*) (3.1)

on 3F where μ = λ]/^ — γ2 and θ is to be regarded as a random variable
uniformly distributed over [ —π, π].

In case £F is a boson Fock space and X is linear or quadratic in
creation and annihilation operators, the integration of the evolution
equation is easy in the Heisenberg picture [16,17]. In the Schrodinger
picture, however, the attempt to relate the time evolution to Glauber's
coherent states and the P-representation causes some difficulties [17].
For the single mode case these were overcome in [18,19] by the use
of a family of generalised coherent states, which have been studied in a
much more general, group-theoretical, context in [20]. To our knowledge,
however, the infinite mode case has not been studied and in particular
the scattering matrix has not been obtained.

The problem of integrating a time-dependent evolution equation is
not trivial. In [9] we solved it for the Dicke maser model by writing down
explicitly the evolution operators W(θ, t) of Lemma 2.2 and then verifying
that they satisfied the required conditions; of course this approach is
rarely possible. General techniques for integrating the evolution equation,
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at least for "nice" perturbations X, may be found in [21-23]. It is shown
there that if, for example, X is bounded then the evolution equation is
soluble. Moreover 3>(H0) is a dense invariant domain for W(θ, t) and all
the conditions of Lemma 2.2 are satisfied.

From now on we restrict to this case, which will turn out to be
adequate for the treatment of the parametric frequency converter.

We write Xί = X* and Γ ^ I s o that

= H0+μA{θ,t). ( 3 * 2 )

By [21] the solution of the evolution equation between times tί and t2 is

Wθ(t2,tί) = e-ίHo{t2-tύ-iμ J
S = t

+ (-iμ)2 J } e-iHo{t2-

+ ••• (3.3)

where this series converges in norm for all tl9 t2 and μ. Since A(θ, t) is
the sum of two terms we can write the nth term of the series as
the sum of T parts. For notational convenience if E is a sequence E
= { ± 1 , ± 1,..., ±1} we write |£ | for the length of the sequence and E
for the sum of the terms of the sequence. Then

JHotWe(t9 -t)eiHot= Σ ( - φ ) | J V f β S £ ( f ) (3.4)
E

where

ί Sl Sn- 1

^EW- J J J e e AE,e e AEI..
S\= ~t S2= -t Sn— ~t \J'J)

and we have put n = \E\.

Theorem 3.1. //

\\SE(t)\\ίτKM (3.6)

for all t and SE(t) converges strongly as ί->oo to a limit SE then for
sufficiently small μ the limit

T0 0(ρ)= \imeiHotlT2t(eiHot ρe-iHot)]e-iHot (3.7)
ί->oo

exists in the trace norm for all density matrices ρ on 3F. T^iρ) may be
written as a power series involving only even powers of μ.
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Proof. We see from Eq. (3.4) that provided 2\μ\K< 1

Σ(-iμ)\E\e^
θSE= \imeίHotWθ(t, -ήeίHot

ί-*oo

169

(3.8)

the limit being taken in the strong operator topology. Writing the left
hand side as S(θ) and putting

B = Y S
mn Z-ί _ E

\E\=m,E = n

so that Bmn = 0 unless —m^n^m and (m — ή) is even, we get

oo m

So = y y ( — iu)meιnθBWin.
v La La \ t~) mn

m = 0 /J
 = : wt

Therefore, for all density matrices ρ on #"

lim e ί / / o ( [Γ 2 ( (e i J ϊ o ί ρe- ί ί ί o ' ) ] e " i H o t

= l i m - ^ - j {eiHoί Wβ(t, -t)eiHot) ρ{eiHot Wβ(t, -t)eiHat}* dθ

l

(3.9)

(3.10)

= Σ Σ Σ (-iμniμyBpnQB*H
p= 0 # = 0 « = — oo

oo Γ m m

= Σ (ψr\Σ Σ (-i)rβrn^*-r,Π
m = 0 Lf = 0 « = — m

(3.11)

(3.12)

It is clear that the sum in square brackets vanishes if m is odd. Therefore

(3.13)
m = 0

2m 2m

= 0 n= - 2 m

The above calculations prove the existence of the limit in Eq. (3.7)
at least in the weak operator topology. Since Sθ is a strong limit of
unitary operators, it is isometric. Therefore by Eq. (3.11)

4 π

tr[T0 0(ρ)]=-τ- f tr[SθρS^dθ

2π _π

= tr[ρ]

= limtτ[_eiHotTt(eiHotρe-iHo')e-iHo']. (3.14)
t-»oo

It follows by Lemma 4.3 of [15] that convergence is actually in the
trace norm.
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Corollary 3.2. Under the conditions of Theorem 3.ί, if μ is small then

To0(ρ) = ρ + μ2{S{1)ρSf1) + S{_1)ρSf_1}-S{lf_ί)ρ-S{_ίfl}ρ-ρSfu_1}

-ρSf_1Λ}} + 0(μ4). (3.15)

Proof. One substitutes into the first two terms of Eq. (3.13) the expres-
sions for Bmn given in Eq. (3.9).

We comment that since

tr[Γ00(ρ)] = tr[ρ] (3.16)

this is also true in all orders of perturbation theory. Using Eq. (3.15) it
follows that

a result which could also be proved directly.

4. The Parametric Frequency Converter

The above analysis is very general and subject to a variety of condi-
tions which may or may not be satisfied in a particular case. We illustrate
their usefulness now by considering in detail the case of the parametric
frequency converter.

We take #" as the boson Fock space with a single particle space ffl
and let Ho be a free Hamiltonian on $F with a non-negative absolutely
continuous spectrum, apart from the non-degenerate vacuum. We let
/ e J f b e a test function; considered as localised in the neighbourhood
of a microscopic system of N atoms. We take as Hamiltonian for the
system of N atoms and the quantised field

After taking the limit ΛΓ -• αo the parametric Hamiltonian on 2F is

H(θ, ί) = H o + μ(e~i{θ + ωt) + e ί ( θ + ω ί )) *•(/) a(f) (4.2)

where

μ = ]/£_y2 (4.3)

and {y + j) is the proportion of atoms initially in the excited state. This
Hamiltonian is quadratic and commutes with the number operator.
The only interesting part of the problem therefore consists of solving the
evolution equation on the single particle subspace Jf. On this subspace

H(0, t) = Ho + μ(e-i{θ + ωt) + ei{θ + ωt)) |/> </ | (4.4)
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which is of the form discussed in Section 3 with

X±1 = X=\f><f\. (4.5)

In order to verify the conditions of Theorem 3.1 we need to suppose /
has regularity properties of a type familiar from scattering theory [13].

Lemma 4.1. Defining

<f\e~iHotf> if t>0
m

suppose that
00

1 1 % = J |Λ(t ) |dί<oo. (4.7)
00

Then for all φ e Jf

]κf\eiH°'φ}\2dtίc\\φ\\2 (4.8)

00

and there is a dense subspace Jf of ffl such that for all φ e Jf

? - i H o ί < / > > M ί < o o . (4.9)

Proof. Let Jί be the linear subspace of Jf spanned by finite linear
combinations

Φ= Σ ^~iHotrf (4.10)

and let Jί = Jί®JίL. Let φeJί and specifically

φ= Σ are~iH^f + g (4.11)

where geJίL. Then

ί \<f\e-iH°'φ)\dt= J
r=\

dt

(4.12)

For the first inequality we \etφeJ4? be arbitrary and put φ = Φί
where 0X e l " and φ2£<ML. In the subspace ^#~ we take Ho in its
spectral representation. Then Eq. (4.6) states that the Fourier transform
of I/I2 is in U{K) and this implies that | / | 2 is bounded, so feL°{R).
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By the Plancherel theorem the left hand side of Eq. (4.8) is equal to the
square of the L2 norm of /• φu and this is clearly dominated by | | / | |
• H ^ l l i which is itself smaller than \\\\i \\\\2

Theorem 4.2. Suppose that Eq. (4.7) is valid. Then

Hs^Oll^φllΓ1 (4.13)
for all t, and the limit „ .. _ . . ,. . ..

SE=hmSE(t) (4.14)
t-+αθ

exists in the strong operator topology, being given by
00 00

(ψ\SEφ)= J ••• J ζψ\eiHoSίf}eiEίωsih(s1-s2)eiE>ωS2...
., = - . Sn=-co ( 4 1 5 )

... Λ(s»-i -sn)eiE"^ (f\e-iH°°"φ> ds,... dsn

where n = \E\ and φ,ψeJίf.

Proof. By Eq. (3.5) we have

(ψ\SE(ήφ}= J - ί (ψ\eiH^f}eiE^ h(Sl-s2)...
si--t sn--t ^ Λ 6 )

...(f\e-ίH^φ}dSl...dsn.

Using Eqs. (4.7) and (4.8) we obtain by standard Fourier analysis that

ψiWhWΓ1. (4.17)

Since φ,\peJ^ are arbitrary Eq. (4.13) follows.
It is clear from Eqs. (4.15) and (4.16) that SE(t) converges to SE at

least in the weak operator topology. Since SE(t) are uniformly bounded
in norm as ί~»oo it is sufficient to prove strong convergence for φ in
the dense subspace Jί of Lemma 4.1. If φ e Jί then

^ J \\f\\\h{s1-s2)...h{sn_ι-sn)(f\e-iH°*«φy\ds1...dsn.
max|s r | >t

Using Eqs. (4.7) and (4.9) one sees that this converges to zero as ί-»αo.
We have now verified for this model all the hypotheses of Theorem 3.1.

Therefore the scattering operator 7^, which describes the processes of
coherent Raman scattering, exists and is given by Eqs. (3.13) or (3.15),
where the operators SE are given by Eq. (4.15). This is the main result
of the paper, which we illuminate by providing some further information
about the operators SE.

Theorem 4.3.
(4.19)

so SE commutes with Ho if and only if E = 0.
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Proof. If φ9ψeJf then by Eq. (4.15)

<ψ\SEe
iH°<φ> = f J

s i = — oo sn= — oo

00 00

Ml = — 00 M n = — 0 0

= eiEωt(e~ίHotxp\SEφ}. (4.20)

Therefore

SEeiHot = eiEωteίHotSE (4.21)

which is equivalent to Eq. (4.19).
For the sake of completeness we write down the form of SE when the

spectral decomposition of Ho is given. We suppose for simplicity that
J f = L2(0, oo) and that

(Hoφ)(x) = xφ(x) (4.22)

for all φ in the domain of Ho. We also introduce the notation

ET = E1 + -+E, (4.23)

where as before £ is a sequence { + 1,..., ± 1} of length n = \E\. We denote
by h the Fourier transform of h.

Theorem 4.4. For all φ e L2(0, oo)

(SF φ) (x) = An2 f(x) h(x + ω E1) h(x + ω E2)...
£ _ _ (4.24)

Proof By Eq. (4.15)

<ψ\sEφy= ί ί
s i = — o o sn= — oo

{e i £ "-'< s "-'- s ">^ n -i -sΠ)} {^β >-</|e- i f l«"-ψ>} d S l ... dsn

= 4π 2 j (v
— oo

00

= 4π2 j ψ

(4.25)
which yields the result.

In order to obtain the first terms in the expansion of T^ρ) of Eq. (3.15)
we only need a few of the SE. In the above spectral representation these are

) φ) (x) = 4π2 f{x) f(χ ±ω)φ(x±ω) (4.26)

(S{ τu±1] φ) (x) = 4π2 f(x) h(x + ω) fix) φ(x). (4.27)
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