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Abstract. We generalize the axiom of locality to the non-localizable case by an axiom
of essential locality which means a natural local continuity property of the field commutator
on the light-cone. For localizable fields essential locality coincides with ordinary locality
while localizable local fields restricted to non-localizable test spaces still remain essentially
local. Essential locality is proved to be sufficient for a derivation of the usual Haag-Ruelle-
Hepp scattering formalism. Functions of the free field are examples of essentially local
fields which may not be localizable.

1. Introduction

The principal aim of the present paper is to give a generalization of the
Haag-Ruelle-Hepp scattering formalism to the non-localizable case,
i.e. to the case of test spaces not containing functions with compact
support.

In the localizable case causality, usually introduced by local com-
mutativity (in short: locality), is well known to be crucial for the deriva-
tion of the asymptotic conditions. Since the standard formulation of
locality [20] does not apply to the non-localizable case, we have to
look for some other suitable additional assumption.

Thus Steinmann demands the existence of generalized retarded
products as defined in [18] and imposes certain regularity properties [19].
Steinmann himself quoted this a purely technical assumption which
cannot be given any direct physical interpretation. Moreover, despite
extensive research in this field, there does not exist any rigorous proof
for the general existence of those Green's functions even in the tempered
case (apart from the unrealistic case of two space-time dimensions [17]).
It should be interesting, however, to investigate the possibilities of
circumventing this difficulty by modification of the defining postulates,
extracted from sharp Green's functions for localizable fields, which
Steinmann introduced for convenience (compare [18] for this point).

Nevertheless we think it is desirable to work with a more direct
substitute of locality which is applicable to both the localizable and the
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non-localizable case. One possibility has been explored by Taylor [22]
(see also [23]). According to Taylor a field fulfils the condition of
generalised local commutativity if it is a certain limit of local fields. In the
present paper we present a (presumably wider) generalization of locality
which seems to us more closely related to the usual formulation of
micro-causality, at least from a mathematical point of view. This
generalized condition will be called essential locality and will, indeed,
prove sufficient for a derivation of the usual scattering formalism.

In order to avoid purely technical complications we decide to con-
sider only a single scalar hermitian field A(x) and choose the well known
Gelfand spaces Sβu'"'βn to be allowed test spaces [4]. Generalizations
will be more or less obvious.

Although our main emphasis is on the non-localizable case, we
think the following derivation to be of at least technical interest also
for the localizable case.

2. Locally Continuous Generalized Functions

As already mentioned in the introduction, we are going to deal with
generalized functions on some Gelfand space Sβu'"'βn (see [4] or [15] for
the definition and properties of these spaces). Since we are only interested
in the completely symmetric case β1 = β2 — ••• =βn, let us introduce
the notation

for s ̂  0. We should like to formulate properties of generalized functions
on Ss(Rn) which, when applied to the localizable case s > 1, characterize
the support of the functional in question. To this end let us introduce two
useful definitions *:

Definition. Let M be a closed subset of R" and S a subset of Ss(Rn).
Then S is called locally bounded on M in Ss(Rn) iff there are positive

1 We use standard
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constants e and A such that for every non-negative integer N

sup sup sup A~|α| α " s α \\χf \φia)(χ)\ < oo .
φeS χet/e(Aί) αeZ^.

Definition. Let M be a closed subset of #" and F a generalized func-
tion on Ss(Rn). Then, for non-negative so^s,F is called locally continuous
on M with respect to SSo(Rn) iff sup|F((p)| is finite for every ScSSo(Rn)

φeS

that is locally bounded on M in SSo(Rn).
Thus suitable properties of the type we are looking for are those of

local continuity:

Lemma 1. Let M be a closed subset of Rn and let F be a generalized
function on Ss(Rn). We impose the additional condition s > 1 and therefore
can define T ^ s u p p i 7 . Then the following two statements hold:

1. For every non-negative so = s the restriction of F to SSo(Rn) is
locally continuous on T with respect to SSo(Rn).

2. MjT if F is locally continuous on M with respect to Ss(Rn).

Proof Since local boundedness on T in SS0(Rn) implies local
boundedness on T in Ss(Rn\ it is sufficient to check the special case s0 = s.
Then the first statement is immediately verified by realizing that, due to
strict localizability (s> 1), for arbitrary e2 > eί > 0 there are multipliers
k on Ss(Rn) such that k(χ) = ί for χeUeί(T) and k(χ) = 0 for χφ Ue2(T),
which may be easily constructed by standard techniques (see [3],
Appendix 1, for instance). The second statement follows from the fact
that {rφ:reZ+} is locally bounded on M in Ss(Rn) for every φeSs(Rn)
with s u p p φ C R " - Ue(M), 0<e suitable; thus F(φ) = 0. •

We need one final result foτ deriving the cluster property in Section 4*.

Lemma 2. Let M be a closed subset of Rn and let Fo be a multi-linear
functional on Ss(Rn) x Ss{Rni) x x Ss(Rnι) which is continuous in each
variable separately and even locally continuous on M with respect to
Ss(Rn) in the first argument. Then there is a generalized function F on

Ss(Rn+nί + -+nι^ co\nciding with Fo on Ss{Rn)x- xSs(Rnι), which is
locally continuous on MxRni x ••• xRnι with respect to ss(Rn+ni + ' " + n ι ) .
The linear hull of Ss(Rn) x ••• x Ss(Rnι) is dense in ss(Rn+n' + '"+nιl therefore
F is unique.

Proof. See appendix. •

3. Axioms for Essentially Local Fields

For simplicity we decided to restrict ourselves to one kind of neutral
scalar particle with mass m > 0, described by the hermitian Wightman
field A(x) on SS(R4\ s^O.
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This means, the formal integrals

A(φ) = J dx A(x) φ(x) φ e SS(R4)

are well defined as (unbounded) operators on a common dense domain D
in a separable Hubert space Jf, and for Φ,ΨeD

is a continuous linear functional (generalized function) on SS(R4). As
usual, hermiticity of the field A(x) is defined by

A{φ)cA(φ)* for φeSs{R4),

where φ is the ordinary complex conjugate of φ. Finally, the following
axioms are postulated 2 :

1. The metric in Jf is positive definite.
2. The theory is Poincare covariant, i.e. there is a (strongly) con-

tinuous unitary representation U(A, a) of the connected Poincare group
defined in Jf7, for which we have

U(A, a) A(x) U(A, a)'1 = A(Λx + a)

in the usual distribution theoretic notation.
3. There is a vacuum state vector Ω in jf', unique up to a phase

factor, such that PΩ = 0. Here P is the energy-momentum operator,
defined by

4. A(φ)DcD for φeSs(R4). Therefore, according to Lemma 2, the
expectation values (Φ\A(x1)... A(xn)\ Ψ} (Φ,ΨeD) and especially the
vacuum expectation values (VEV)

are uniquely defined as generalized functions on SS(.R4").
5. The field is essentially local, i.e. for Φ,ΨeD the generalized

function <Φ|[^(x), ^(y)]_ | Ψ} is locally continuous on3 {(x, y)eR8:x
-yeV} with respect to SSCR8).

6. Apart from the eigenvalue 0 corresponding to the vacuum, the
spectrum of P is contained in Vf.

By Lemma 1 we see Axiom 5 to be equivalent to Einstein causality
[8] in the localizable case, i.e.

We closely follow Ruelle's formulation [21].
As usual, we denote by V the closed light-cone and by V+ the set {p e R4: ±p° > 0,
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for s > 1. On the other hand 4, again by Lemma 1, a local field A(x) on
SS(R4) (s> 1) still remains essentially local when restricted to SS0(R4),
s0 < s. Therefore we feel justified to postulate essential locality as a
substitute for locality, which cannot be formulated any more in the
non-localizable case s < 1. We expect that many results for local fields
can still be proved for essentially local non-localizable fields.

In the present paper we will check the Haag-Ruelle-Hepp theory from
this point of view and therefore need one further assumption concerning
the particle interpretation of the theory. As in [13] we assume the follow-
ing structure of the 2-ρoint function:

<Ω\A(x)A(y)\Ωy = iA + (x-y) + i ] dρ{μ)Δ+

μ{x-y), M>m. (3.1)
M

4. Cluster Property

For essentially local fields, apart from some minor alterations, we
still can use Ruelle's method [21] to prove the well-known cluster
properties first conjectured by Haag [6]. Here again, we want to keep
things as simple as possible. Therefore we will not prove the cluster
property in its most general form but just prove it in the form which is
sufficient for the derivation of Haag's asymptotic condition5.

First of all we have to exploit essential locality for the truncated
vacuum expectation values (TVEV):

Lemma 3. Let n, ή be positive integers with ή < n. Then the generalized
function (Ω | A(x x ) . . . \_A(xn), A(xn,+ 1)~]_ ... \Ω}Tis locally continuous on6

{xeR4n: xn, - ^ + 1 e F } with respect to Ss(R4n).

Proof. Remember that the TVEV

while recursively defined by
n

j g ^ = y y π tyβτ(χ. X' )
1=1 MePι(n) JeM

are explicitely given by the VEV via
n

2 B τ ( i c ) = y / i ) ^ 1 ( / — i ) f y Γ Ί 2 β ( χ . %. )
1=1 MePiin) JeM J

4 It should be of some interest to find out the necessary and sufficient conditions for a
field on SS{R4) in case s> 1 to be essentially local when restricted to SSo(R4), where s0 < 1.
However, we will not go into this problem, here.

5 There do not arise new difficulties in the proof of the general form, but it is only the
notation that is more involved [21].

6 We write x = (x l 9 ..., xn) with xr = (xj?, xr) -(x?, xι

r, x2

r, x?)e R4.



126 J. Biimmerstede and W. Liicke

Here M = {J1,..., Jz} e Pι(n) iff it is a partition of {1,..., n} into / (non-
empty) disjoint ordered subsets Jr with the ordering in each J = (/ l5..., j fc j)
being the natural relative ordering of integers. Now, if in the expression
for 2DΓ we take the sum only over such M for which xn> and xn. + x belong
to different J e M, we obtain a generalized function which is obviously
symmetric in the arguments xn, and xn> + i . This part cannot contribute to

Thus, according to Axioms 4 and 5, the statement of Lemma 3 follows
by Lemma 2. •

For the sequel it is convenient to introduce some short-hand notation:
If π is a permutation of (1, . . . , n) then we write

If, moreover, φ e Ss(R4n) and α 1 ? . . . , ane R3 we write

%l(ao)=$dxWξ(x)φ(x-ao)

with dx = dxί ... dxΠ,αo = ((0, α j , ...,(0, αn)). For positive n, Π ' G Z + ( Ξ Ξ Z + )
with n' < n we denote by Snn, the set of all permutations π of (1, . . . , n)
fulfilling the inequality π(r)<π(r /) for 0<r<rf ^ή as well as for
ή<r<r' tkn. Finally, for πeSn^ and e>0 we define

K^{xeR4n:xπir)-xπ{rΊeUe(V) for

suitable r,r' e Z+ with 0 < r ̂  rc' < r' ̂

and

mπ,άo = m m
re [I, •••,«) r e{n + I ,.. ,n)

Now we are prepared for the first basic step in Ruelle's proof:

Lemma 4. Let N be a non-negative integer and let πeSnn> and
φ G Ss(R4n). Then there is a constant C for which the inequality

holds for arbitrary a 1 ? ...,aneR3 with \\ar — ar'\\^(n—\)mπtάo.

Proof Since π e Snn>, 2Bτ(x) - 2B£(x) can be written as a finite sum
of generalized functions of the form

/ O l / d ^ v i l / 4 ^ v ^ Λ ίΎ W Λ i v W Ω\
\ i ί I / I y^j^' M w . . . |_-̂ J- V-^π' (l)/1 -^ \ It' (I ~\~ 1 )/-i " * " ^ ^ V 7C' ίrt)/ I /

with suitable /G {1, ...,w— 1} and suitable permutations π' of (1, ...,ή)
for which π\l) e {π(nf + 1),. . . , π(n)} and π\l + 1) e {π(l), . . . , π(n')}. Hence,
by Lemma 3, 2B Γ (ic)-2Bj(x) is locally continuous on Kπ

e (for arbitrary
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e>0) with respect to Ss(R4n). Therefore, by translation invariance of
the theory, it is sufficient to prove that

{<Pάo(x)Ξ mn,άoψ(x ~ ά o ) 'a2,...,ane£3, a1 = 0}

is locally bounded on Kπ

e (e>0) in Ss(R4n). This, however is an easy
consequence of the following estimate:

sup||x|Γ|<>(*)l

>o sup
x + άoeK%

ύ<ά0 sup {\\x\\+{n-\)2mπM)NI\φM{x)\

(w- ί)2)N+N' sup (||Jc|| + e)N+N' \φm(x)
R4n

p (
xeR4n

In the latter inequality we used that mπM ^ 4(||x || + e) if x + ά0 e K%

e. •

Theorem 1 (cluster property). Let N be a non-negative integer and
let φ be a test function from Ss(R*n). Then there is a constant C such that
the inequality

\\ao\\N\^(ao)\<C

holds for aί=0 and arbitrary α 2 , . . . , aneR3.

Remark. This theorem shows that Sφ(^o) i s a tempered function in
the difference variables aγ — α 2 , . . . , αM_ x — an(a1 eR 3 ) .

Proof. Since for every configuration α 2 , . . . , α n there is a positive
integer ή < n and a permutation π e Snn> such that ||αr — άr> \\ ^ (n — l)mπ>do,
by Lemma 4 it is quite sufficient to prove, for arbitrary but fixed π e Snn>,
that

is uniformly bounded in α 2 , . . . , ane R3, provided \\ar — ar,\\ ^{n— ί)mπάo

holds for r, r' e {1,..., n}. In order to prove this, let us introduce another
permutation π' by

Then, by Lemma 4,

is uniformly bounded in α 2 , . . . , aneR3 (remember a1=0) for fixed
ψeSS(R4% provided \\ar-ar.\\^(n- l ) m π > .

Therefore, the theorem is proved if we find a test function ψ e Ss(R4n)
for which δ*(άo) = δ£(β0) and ^ ' ( ά o ) = O:
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Exactly as for tempered fields (see [12], Chapter III, §§ 3E and 5C)
it can be proved that

eR4n:Pl + +pn = O, £ preΫf for fc<

where the Fourier transform 2BT of 2BT is formally defined by 7

ΉF(β) = (2πT2n fdxexpίi £ p rx rW(ίc).

Consequently:

Therefore, a suitable choice for φ is given by

where ft e (^M(i^4) is equal to 1 on Kϋ1 and vanishes on V+. Π

5. Asymptotic Conditions

The derivation of the well-known asymptotic conditions can be
traced back to the methods used for tempered fields [13], by means of
the following

Lemma 5. Let n, n! be positive integers with ή^n and let S be a finite
subset of Ss(Rn). Then there is a function g e Ss(Rn) such that for every
φeS

defines a test function in Ss(Rn).

Proof Since S°(Rn) = @(Rn\ the statement is trivial for 5 = 0. Now
suppose s > 0. Then φ e Ss(Rn) iff [4]:

φ(χ)Qxp[±a(ί + | | χ | | 2 ) 2 s J e <^(#n) for suitable α > 0 .

Since S is finite, a may be chosen once for all φeS. Therefore, with

7 Note the different sign in the exponential as compared to [12].
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we have

Ml)^(^(lV.,/)eSW for φeS. •

Although each of the various steps in the following derivation was
already explicitely carried out in at least one of the Ref. [1,6,10,13 or 21],
we think it worthwhile fitting them all together. We will use the same
notation as in [13], i.e. for φeSs(R4):

I dx φ{x)eipx

φ(x;t)EE(2π)-5/2\dpφ(p)

A(φ;t)= ldxA(x)φ*{x\t).

We will also refer to the following
Definition. A set {/)} C £f{R3) is called essentially non-overlapping if

s u P P / / n s u P P / z n a s n o interior points for j Φ / .
As a first step we have to realize some physically plausible properties

of smooth Klein-Gordon wave functions:

Lemma 6. Let fe^(R3). Then there is a constant C such that the
Klein-Gordon wave function

f(x)^(2π)"3/2 f ~- f ° )
1 2ω

fulfils the inequalities

\xV2\f(χ)\<c
and

for arbitrary xe R4.

Proof See [1], Lemma 14.1. •

Lemma 7. Let {/i,/2} C^{R3) be essentially non-overlapping and
let N be a non-negative integer. Then the Klein-Gordon wave functions

fj(x) Ξ (2π)" 3/2 J A fo)e-«°»fl-">

fulfil the inequality

\tNf1(t,χ1)f2(t,χ2)\<c

for arbitrary te R1 and xί,x2£ R3 with \\x1 —x2\\2< \t\-
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Proof. See [13], Lemma 3. •
By these lemmas, if we define

F(n) = 0 for n odd,

F(n) ={MG Pn/2(ή) :kj = 2 for all JEM} for n even,

we can derive the following key result:

Theorem 2. Let φί9...9φn be test functions from SS(R4). Then there
is a constant C for which the inequality 8

<c- Σ
MeP'(n)

holds with

π
JeM

9

t\o

<Ω\A*

J3/2

[3

n

J = l

/or

/or

0)

n

n

Ω

odd

even

>

o)i β>

//, moreover, ψj(p) = /,(/>) ψ(p) (j = 1,..., ή) for some ψ e iSs(.R4) and
f1,...9fne&?(R) with at least two of any three fji,fj2,fj3 forming an
essentially non-overlapping set, then there is a sequence of constants
C o, C 1 ? . . . such that even

Ωsup\t\N (Ω JjA*(φj;t)

Yl <Ω\A*(φjl;0)A*(φj2;0)\Ωy <CN

MeP'(n) JeM

holds for all N e Z+.

Proof. Anyway, by Lemma 5, the φ } may be represented in the form
Φj(p) = fj(p)ψj(p) with {V l,. . .,φ»}CS s(Λ 4)and {/1? ...,/„} C^(R3) not
necessarily essentially non-overlapping. Now, by use of the almost
localized fields

Bj(x) = {2πY2ldxf A(xf) ψj(x' - x)

and the smooth positive frequency Klein-Gordon wave functions

= (2π) fj(p)

we may write

on D

We write A#((pj , t), meaning either A(φJ t) or A*(φy, t) throughout.
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for j = 1,..., n. Expanding the first term of

W= (Ω Ω

- Σ Π <Ω\A*(φjl;0)A*(φJ2;0)\Ω}
MeP'(n) JeM

into the corresponding sum of products of TVEV (see proof of Lemma 3),
we therefore see W to be a finite polynomial in "variables" of the form

where // e {fπ(Φ/*(r), d0 fπiφ d0 /*(r)}, r = 1,..., fc, for some permutation
π of {1,..., n} and

k

φ'(xί,...,xk)= Π \p'r{xr)
r = l

with ψ'r e {ψv, \pf, doψv, doψf} for suitable /' = ϊ(r).
Products of factors I(t) with at least one k = 1 or, alternatively, all

k < 3 do not contribute because (3.1) implies

If n is even, in each non-vanishing product we even have either a factor
I(t) with k> 3 or two factors I(t) with k = 3. Consequently, the theorem
is proved if the following statements are verified (fc> 1):

(i) sup | ί | 3 ( k - 2 ) / 2 | / ( ί ) |<oo,
teR1

(ii) if k ̂  3 and if at least two of any three fh, fJ2, fJ3 form an essen-
tially non-overlapping set, then even

sup |ίΓ|/(ί)l <
Ri

holds for all N e Z+.
Let us define

Then, by translation in variance of the theory and by Theorem 1, we have:

|/(ί)| ^ f dJCi... doc*|/ί(ί, x j /^(ί, x± + x2) - -/jί(ί, ^i + xj Si'(άoo)l

gjd*!l/ί(ί,*i)l Π max|/;(ί,jc;)|Jdjc2...djck|^(ΛOo)|.
r=2x'reR3

Hence statement (i) follows from Lemma 6. On the other hand, π(l),
π(2), and π(3) are pairwise different. If fl9 ...,/nmeet the requirements of
the second part of the theorem, therefore, by Lemma 7 there are
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r, r' e {1,2, 3} such that for every N' e Z+ there is a constant C for which
the inequality

holds for arbitrary t e R1 and arbitrary xr, xr e R3 with ||jtr — JC^||2 < |ί|.
Without loss of generality we may assume r = 2, r' = 3. Moreover, by
Theorem 1 again, for every N' e Z + there is a constant C for which the
inequality

holds for arbitrary teR1 and arbitrary x2, ...,xkeR3 with ||Λ:2 — JC 3 | | 2

^ | ί | . Therefore statement (ii) is a consequence of Lemma 6 and the
inequality

^ max

llV-*Γp<|ί| r = 2

This completes the proof of Theorem 2. •

From Theorem 2 we can conclude the following very special form of

Haag's Strong Asymptotic Condition. Let φ 1 ? . . . , φ n be test func-

tions from SS(R4) with suppφj C {p e R4 : p2 < M2}. Then the strong limit

n

s-lim Π A*(φ:'9t)Ω

exists in 34? and represents an asymptotic state corresponding to n particles
with momentum space wave functions fj(p) = ψj(ωp, p).

Proof. By Theorem 2 we see that

Jt- U
which is the VEV of an even number of field operators, decreases like
|ί |~3 for ί-» ± oo. This is because the subtraction of products of 2-point
functions formally required in Theorem 2 is actually redundant, since

by (3.1). So the strong limit
n

s-lim Π A*(φj;t)Ω
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exists in J f and we are left to justify its physical interpretation. Here we
remark that the well-known properties of asymptotic states are fulfilled,
as there are correct transformation under U(Λ, a) and scalar products
among each other. These properties can be easily established from (3.1)
and inequalities of type

1 - 3 / 2 Ω
l-ί

l\A*(φJ;t)lA*(φι;t)9A*(φι+1;t)]. Π A*(φj;t) Ω

- Ω
I - 1

A*(φj;t) Ω

<C

which are a direct consequence of Theorem 2 since the required subtrac-
tions cancel each other. For further discussion of the physical interpreta-
tion we refer to Haag's papers [2, 6, 7]. •

Denote by Jίfout (resp. J^n) the closed subspace of Jίf generated by
all out (resp. in)-states obtained from Haag's strong asymptotic condition.
Moreover, given an arbitrary family {Φt}teRι of vectors in Jf, write for

u t (resp. Φ _ e J * y

Φ+ = Φt (resp. Φ_ = w_-lim Φt

whenever

> ± 00

holds for all Ψ+ e J^out (resp. ψ_ e 3ti?in). Using this convention we next
derive the corresponding form of

Haag's Weak Asymptotic Condition. Let φί9...,φn be test func-

tions from SS(R4). Then

n

w±-lim f ] A*((pj;ήΩ

exists and represents an asymptotic state corresponding to n particles with
momentum space wave functions fj(p) = φj((op,p).

Proof. First of all, by Theorem 2 again, we see

J = l

to have an upper bound independent of t. By Haag's strong asymptotic
condition, therefore, if we choose test functions φ'ί9 . . .,φ^eS s(K 4) with
suppφ} C{pe R4 \p2 < M2} and φ'j(ωp, p) = φj(ωp, p), it is quite sufficient
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to prove the

lim /
f-*±ooλ

for arbitrary

J. Biimmerstede

identity

v 4
n

Ψ± of the form

Ψ± = s-lim f

andW.

lim

in

Lϋcke

n

with t^ 6 SS(R4), suppφj C {p e K4 : p 2 < M 2}. This identity follows from

lim
t-> ± 00

-(β

Ω

YlA(ψr;t)YlA*(φ'j;t) Ω = 0,

which, in turn, is a consequence of Theorem 2 since the required subtrac-
tions cancel each other by (3.1). •

Just as for tempered fields we still have the following

Lemma 8. Let φi9..., φn be test functions from S*(R*). Then there are
C,N e Z+ such that

Ω

holds for all χeR".

Proof. Note that

E U * (</>,; Ω

Ω Ω

with

= μp<Ω\A(Pl)...A(pn)\Ω) Π ΦfίP.

2ωn

3-ω p)ί

Since (Ω\A(p1)...A(pn)\Ω} is a generalized function on Ss(R4n\ for
every A > 0 there are integers JV̂ , CA such that (see [4])

Ω

^ CA max max max β
p A \d\^N β Z f

Ω

7=1
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Choosing A big enough, we see the r.h.s. to be bounded by a polynomial
in the \χj\ of degree % NA, due to the restriction |ά| ̂  NA. •

This Lemma enables us to take over Hepp's proof for the following
form of the LSZ asymptotic condition [10]:

Theorem3. Let φί,...,φn be test functions from SS(R4). Then, if
is essentially non-overlapping, we have

w±-\imA*(φ1;t)w±-\im Y[ A^(φj

m, t')Ω= w+-lim f] A*(φf, t)Ω.
ί-> ± oo ί'->±oo _2 ί " ^ i 0 0 ; = l

//, moreover, suppφjC{pe R4 :p2 <M2} for j=ί,...,n then we may
substitute all the w±-lίmίts by strong limits.

Remark. The physical interpretation of this theorem is obviously
given by Haag's weak asymptotic condition.

Proof. By Lemma 5Λhere is a suitable function g e SS{R3) such that
f/(p) ΞΞ φj(ωp, p)/g(p) e S*(R3) for; = 2,..., n. Let us choose some he^iR1)
with supp/z C (0, M2), h(m2) = 1 and define

Ψ(P) = U(P) HP2), <Pj(p) = f/(p) Ψ(P)

for j = 2,..., n. Then we have ψ, φ'j e SS(R4), and {/2

r,.. .,/„'} is essentially
non-overlapping. Therefore, by Theorem 2 (second part) we have

d Λ 2

I I A % (snk f\ (~) ^- (~*

dt μ2

for every N e Z+ (compare proof of Haag's strong asymptotic condition).
Furthermore, by Lemma 8, we obtain the following estimate

j=2

= sup
ΨeD

= sup
ΨeD

dt'

tJ- f[ A*(φ'j;t2))Ω
j=2 J

Ψ
3=2

Ω

dt' 3=2

Ω

-πr Y[A*{φ),t')Ω

$dt' [\\A{9I ;t)A»(φ, t)----
7 \[

at
n
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which, with suitable C, N e Z+, is valid for a\\t,tut2eR1 with 0<tί<t2

or t2 < tγ < 0. Since A*{φ1 t) is closed we see from this estimate that
n

s-lim [ ] A*(φ)\tr)Ω,
t'^ + co j = 2

if it exists, is in the domain of A*(φ1 t). Therefore, by Haag's asymptotic
conditions and since φ'j(ωp, p) = φj(ωp, p) for j = 2,..., n, we see that

Y\A*(φj;t')Ω- ft A*(<p'/,t)Q

s-iim pt')Ω- Π

^ 0 for £->±oo,

i.e. the w+ (resp. strσngj-limit of

for ί-> + oo exists and is equal to the w+ (resp. strong)-limit of

Φ'(t) = A*(φi;t)f[ A*{φ'j;t)Ω
7=2

for ί-» ± oo, iff the latter exists. By Haag's weak asymptotic condition the
w+-limit of Φ'(ή exists and, due to φf

j(ωp9p) = φj(ωp9p) for j = 2, ...,n,
is equal to

n

w+-lϊm y | ^ ( φ ^ ίJΩ.

Hence, the first statement of Theorem 3 is proved. The second follows
analogously from the fact that for supp ψj C {p e R4 : p2 < M2}, j = 1,..., n,
Haag's asymptotic conditions imply

s-lim Φ'{t) = s-lim Π ^l*(φ,; ί)

w±-lim fl A*(<pj;t)Ω= s-lim
ί^ + H +

•

6. Conclusions

We introduced the axiom of essential locality as a natural generaliza-
tion of local commutativity. Contrary to the latter, essential locality
- while equivalent to locality in the localizable case - is meaningful also
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for the non-localizable case. Thus, by essential locality, we rigorously
derived the usual Haag-Ruelle-Hepp scattering formalism with all its
different forms of the asymptotic condition in a self-contained way.

We did not derive the LSZ reduction formulae, since we were not
willing to postulate existence of the commonly used Green's functions.
However, modified9 reduction formulae can be derived in the usual
way [10].

There are examples of essentially local non-localizable fields which
are not just restrictions of localizable fields to non-localizable test spaces.
Such examples are provided by functions of the free field10 as treated by
Rieckers [15].

We conclude that the idea of Einstein-causality still has some
applicability to the non-localizable case and ensures a particle inter-
pretation of the theory.

Finally, as a by-product, we have an explicit derivation of asymptotic
conditions for Jaffe fields [11]. For example, we have all the usual
asymptotic conditions for the simple case of asymptotic particles
corresponding to wave functions with compact support in momentum
space. This is because every Jaffe field yields, just by restriction, an essen-
tially local field on S^R4) and because ^(Rn)cSi(Rn).

Appendix: Proof of Lemma 2

We prove Lemma 2 for the special case / = 1 only, the full statement
following directly by induction, then 1 1 .

Let us first affirm that:

(i) the linear hull Ss(Rn)®Ss(Rnί) of Ss(Rn) x Ss(Rni) is dense in
Ss(Rn+nί).

9{Rn+n') is dense in Ss(Rn+^1) and the topology of @(Rn+nί) is finer
than the topology induced by Ss(Rn+ni). Therefore, sin£e @{Rn)®9{Rnι)
is well known to be dense in @{Rn+nχ\ we see S\Rn)®Ss{Rni) to be dense
in §*(Rn+nι). Thus, by Fourier transform, we get (i).

Note that, by this statement, in the localizable case s > 1 any generaliz-
ed function F on Ss(Rn+ni) has its support in M x Rni if its restriction to
Ss(Rn) x Ss(Rni) has so. Therefore, by Lemma 1, it is sufficient to prove

9 In the formal definition of the Green's functions the step function has to be substituted
by some suitable multiplier.

1 0 The non-obvious proof will be given elsewhere.
1 1 This is because the dual space of Ss(Rn) is complete with respect to weak limits

[4,15].
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Lemma 2 for the following two cases:

1. Case: M = Rn, 5 arbitrary,

2. Case: M arbitrary, 5 ^ 1 .

Now, if for A, e>0 we denote by SsώA

e(Rn) the set of all functions
φ e Ss(Rn) fulfilling

\\φ\\A.tN = sup sup A'-««lα--«(l + \\χ\\)N\φ^(χ)\
χeUe(M) αeZ? / ^ j \

< 00

for arbitrary Ne Z+, A' > A and choose the topology given by the set
of semi-norms (A.I), we see S%A

e{Rn) to be metrizable (since Hausdorff)
in Jx>th cases under consideration. On the other hand, since SSiA(Rnί)
ΞS^i ίJR" 1 ) and hence also Ss*Λ{Rnί) is nuclear [5, p. 84], we have

tf tf8 A(Rnί). (A.2)

Recall that the π-tensor product [14, p. 97] is the algebraic tensor product
endowed with the finest topology such that the canonical embedding

SSMA

e{
Rn) x Ss'A(RHl)^S8ά*e(R")®*SatΛ(Rni)

is continuous, thus every continuous functional on SsύA

e(Rn) x Ss*A(Rni)
has a unique continuous extension to SsύA

e{Rn)®πS
ls Λ(Rni) [16, p. 131].

Moreover, since Ss'Λ(Rni) is a Frechet space (and remember that SsύA

e(Rn)
is metrizable), the functional in question is only required to be separately
continuous in both arguments [16, p. 136]. Fo clearly meets the latter
requirement, so, by (A.2), we are left to prove the following statements:

(ii) Ss>A{Rn)®Ss>A{Rnι) is dense in Ss{Rn+nί); hence SsύΛ

e(Rn)® Ss>Λ(Rni)

(iii) The topology of SsύΛ

e{Rw)<g)εS
s Λ(Rni) is the same as the topology

induced by SSMA

Rnι,e(Rn+nil
Although statement (ii) is a generalization of statement (i) it follows

from the same argument (because 3) C SS'A). The proof of statement (iii)
is slightly more involved:

Consider the set

Since U is closed and absolutely convex, we have U = U00 [16, p. 36].
Here, as usual, by U° and U00 we denote the polar and bipolar of U
respectively. Hence U may also be characterized by

U={φe SsώA

e(Rn): \F{φ)\ S 1 for all FeU0}.
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On the other hand, the functional FXtΛ, defined by

is clearly in U° and we even have

U={φe Stfe(Rn): \FχJφ)\ ^ 1 for all χ e Ue(M\ α e Z " } .

Using some obvious generalization of our notation and defining

WΛ..N,Λ = {χ 6 Stfe(Rn)®Ss>A(Rnή : \FXta®FxuΛί(χ)\ g δ

for all χ e Ue(M)9 α e Z ^ ^ e Rn\ oc, e Z^}

we conclude:

for all FeU^FiEU?}. (A3)

While the definition of the WA,>N>δ(A' > A,δ>0,N e Z+) shows that they
form a base of O-neighbourhoods in SsύA

e(Rn)(g)Ss>Λ(Rni) with respect to
the topology induced by Ss^A

xRn1>e{Rn+n% Eq. (A.3) shows that this also
holds with respect to the topology of the ε-tensor product [14, p. 97].
This proves statement (iii).
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Note Added in Proof. In a paper we did not know before publication in J. Math. Phys.
15, 824—830 (1974), Constantinescu and Taylor introduced the notion of order of extension
of the commutator bracket outside the light cone. For s < 1 this order may be proved to be
^ (1 - s)" 1 iff the field on SS(R4) is essentially local.




