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Abstract. We study the uniqueness of the association of a classical statistical mechani-
cal state and its sequence of modified correlation measures by studying a cyclic repre-
sentation of the canonically associated Borchers algebra of the system. We show that
semi-analyticity of the cyclic vector for a particular family of symmetric operators is
sufficient for uniqueness while analyticity of the cyclic vector permits us to recover the
state from the modified correlation measures.

§ 1. Introduction

The problem of the unique specification of a state of a classical
statistical mechanical system by an infinite sequence of correlation
functions has been studied, in the past, within two widely differing
mathematical frameworks. The first is the algebraic approach as typified
by the work of Ruelle Ref. [1], and the second is the measure theoretic
approach due to Lenard Ref. [2]. In this paper the two approaches are
combined.

From the outset we assume the structure, notation, and results of
Ref. [2]. Thus the state of a system is represented by a probability measure
on the space of locally finite configurations, X, constructed from the
one particle space, (£, &\ where ^ is a ring of subsets of E. We study
not correlation functions but correlation measures, the nih correlation
measure, ρn, being a measure on (En, U[^"]) where Σ\βn~\ is the σ-algebra
generated by <%n.

We construct a "Borchers algebra" from this framework and obtain
a representation of it. This is done by introducing "modified correlation
measures" which define a "state" on the algebra, i.e. a positive linear
functional, and then applying the Gelfand-Naimark-Segel construction.
The representation so obtained is cyclic and the operators commute
on a dense invariant subspace.

We show that semi-analyticity of the cyclic vector for the operator
representatives of the Borchers algebra is sufficient to guarantee
uniqueness of the probability measure defining the correlation measures.
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Additionally, by strengthening the condition on the cyclic vector to
analyticity we obtain essential self-adjointness of certain symmetric
elements of the operator algebra and then an expression for the probability
measure in terms of the spectral measures of the self-adjoint closures
of these operators.

§ 2. Modified Correlation Measures

We assume we have at our disposal a set E and a ring of subsets of
E, &. From this we construct the measurable space

where X is the space of locally finite configurations introduced by
Lenard and Σ[(Γ) is the σ-algebra generated by the ring of sets (£ which
is generated by the cylinder sets.

Let μ be a state on X, i.e. a probability measure on

then the sequence of correlation measures is defined by

x

where, for ξ e X, ξ = (x l5 x2, . •) an enumeration of ξ,

NH(ξ) = ihe number of ordered n-tuples of distinct integers, (il9...,in),
satisfying (xil9 . . ., xin) e H .

We define the modified correlation measures, ρnn=l,2, ..., in an
analogous fashion. For HeΣ[$?w], and ξeX, with ξ = (xl9x2, •••)> let

NH(ξ) = the number of ways one can choose ordered rc-tuples of integers

(ZlΛ Λ)
such that

(x i l 5 . . . ,x i n )eH.

Note that the word "distinct" is missing from this definition.
Fact. NH is a measurable function. The proof of this is identical

to the proof of the measurability of NH given in Ref. [2].
We define

ρn(H):=lNHdμ.
x

The motivation for the definition of NH and ρn is contained in Appendix 1.
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§ 3. Construction of the Hubert Space

Definition. Let 5 be a family of subsets of a set F. A simple function

e
ί= Σ °«Mk>

 MkCF
k=l

is said to be based on g if

M f c eg, fc=l ,2 , . . . ,Λ
Let

C^M^.-.^i^e^}.
We denote by Sπ the linear space of simple functions defined on En

and based on (£π. Finally, let S be the vector space direct sum of the Sn:
00

s = + ©„.
n = 0

We adopt the usual convention that

©o = C

S is the linear space of sequences

(<?XU
with

Φ»eSπ

and φn = Q for all but a finite number of neΈ+. The special case

<t> = (0,0,...,χΛ l...Λ n,0,...)

we denote by
ΨAι...Λn>

We make © into an algebra with involution in the usual way.
Multiplication is defined by

and involution by

It is not difficult to show that

(g) : © x ©->©
and

the other linear operations and properties of involution being obvious
we indeed have an algebra with involution, the Borchers algebra for the
system.
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We now define a positive linear functional on S by means of the
sequence of measures

φ0+ Σ ί <M&, •
n=ί En

We note that this is always a finite sum. For convenience we shall write
00

Q(<P) = Σ ΪΨndQn
n = 0 En

We now use the fact that (ρn)£L i are modified correlation measures
associated with

( X 9 Σ [ K ] 9 μ )

to obtain another expression for ρ(φ).
First :

Q(<PΛι...Λn)= ί ^...AndQn
En

= ρn(Λ1...Λn)

/
Define for φ = (φπ)£L0 and φn = Σ °WMk

 trιe following functions on X:
k=l

, =
and

00

> ? Φ : = Σ ^Φn

Then, since everything in sight is linear,

Q(<P)= lήφdμ (3.1)
x

Proposition 3.1. ρ is a positive linear functional on Q.

Proof. Linearity is obvious. To show

we use formula (3.1) to show, in general,

Then
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We now apply the Gelfand-Naimark-Segal construction to the
algebra ® with the positive linear functional ρ. In this way we obtain

i) a Hubert space, Jjf, in which ® is mapped onto a dense linear
manifold, @, and

ii) a representation of ® as an algebra of operators defined on Si
which is invariant for each operator.

We introduce the following notation :
For <p e ®, Ψφ is its image in 3) and Aφ is its representative as an

operator. Denoting the unit element in ® by

£—(1,0,0,...)
we let

Ω=Ψe.

By the G.N.S. construction Ω is a cyclic vector for the representation and

ψ

and
ρ(φ) = (AφΩ,Ω). (3.3)

Proposition 3.2. Let Λt0t. Then AφΛ is a positive [hence symmetric]
operator.

Proof. For φ e ®

= (Aφ,AφΛAφΩ,Ω)

[since 3l C domain of (Aφ)* and (Aφ)*\& = A^\.

Thus
(AφΛ Ψφ, Ψφ) — \Aφ»QφΛQφίlt Ω)

D
Proposition 3.3. Let φ, φ e ®. Then Aφ and Aψ commute on 2.

Proof. Fix φ'e® and consider for arbitrary ip 'e® (AφAψΨφ>, Ψ^)
and (AyAφΨφ,9Ψψ,). Performing the usual manipulations shows that
each expression can be written as

Thus for ψ e 3)
(AφAψΨφ,,Ψ) = (AψAφΨφ,,Ψ).

The denseness of 3) and the Riesz representation theorem complete
the proof. G
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Thus we see that our patently non-commutative algebra has a
representation as an algebra of operators which commute on a common
invariant dense domain. This fact arises simply because all commutators
in ® are in the kernel of ρ.

§ 4. Semi-Analyticity of Ω and Uniqueness of the State

First we recall that a vector, Ψ, in a Hubert space is semi-analytic
for a densely defined operator, A, in fy if

i) ΨeΌom(An)n=l,2,... and
ii) the power series

n=o (2n)\

has a non-zero radius of convergence.

In this section we show that semi-analyticity of Ω for the symmetric
operators

AφΛ, Ae@

is sufficient to ensure uniqueness of the measure μ on (X, £[(£]) which
defined the sequence of modified correlation measures

This is done by showing that the semi-analyticity condition on Ω implies
a convergence condition [C.C.] on the modified correlation measures
which is sufficient to ensure uniqueness.

For convenience we state the convergence condition we will arrive at.
C.C. : The power series

n = o (2n)l

has a non-zero radius of convergence for any A e $. For convenience
we drop the subscript n from ρn adopting the convention that for

Proposition 4.1. Let Ω be semi-analytic for

AφΛ\/Aε@

then the sequence (ρn)™= ι satisfies C.C.

Proof. Since Ω is semi-analytic for AφΛ the series

γ \\A"φΛΩ\\

n% (2n)\
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has a non-zero radius of convergence. Note that

\\^Ω\\2 = (A"φAΩ,A"φΛΩ)

= (A2

φ"ΛΩ,Ω)=ρ(φΛ2n)

= $XΛ2»dtί2n

= ρ(Λ2n).

Since the "square-root" is a concave function we apply Jensen's
inequality to obtain

x x

Q(Λ^\\An

φΛΩ\\. D

We now show that C.C. implies the uniqueness of μ associated with

(βX=ι-

Proposition 4.2. A necessary and sufficient condition for the power
series

to have a non-zero radius of convergence for arbitrary

(Al9 ...,Λr), Λre&, and r,

is that the power series

has a non-zero radius of convergence for any Λε &.

Proof. Necessity is obvious.
We prove sufficiency for r = 2, the generalization to arbitrary reΈ +

will then be clear.
Since we are dealing with series with positive coefficients we need

only consider
ini +W2 +mi +m2

Λm2} l

Λ> } (2m,)! (2m2)I

where ί1? ί 2>0
For m1 + m2 = m we have

i)! (2m2)! (ImJ! (2m2)! = (2m)!

I+l/
(2m)!
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We also note that

(J
mi +ni2 — m

and, hence, that

Let ΛίvΛ2 = Λe$. Then, by assumption,
oo _m

Σ
w = 0 (2m)!

has a non-zero radius of convergence. Call it RΛ. Clearly if ytί <^yRΛ

and j/£2 <ij/#4 the original series converges. Π
Thus C.C. implies the convergence, in some region about the origin,

of the power series

_Z^_ 2?"

Now, for Λlt ..., Λr pairwise disjoint,

Plugging this formula into the preceding one and [assuming (z1? ..., zr)
is in the region of absolute convergence] interchanging summations we
obtain

(2m,.)!

MC£V.V.;v£r) cosh 1/nTz^ . . . cosh |A^ .

Proposition 4.3.

Σ flHi,...,nr
H i , . . .,H r

be convergent in the region in Cr

suppose the series

Σ ki... J



Hubert Space Theoretic Methods 49

converqes for
ί e 0 , R i=l , . . . , r .

Σ αm...«r
«1, . . .,«r

m ί/iϊ's region, then

Proof. We first show that it is sufficient to prove the theorem for
one complex variable. To this end we assume the theorem holds for
r = 1 and suppose

Σ f l n ι . . . « r C O s h l / n l Z l • • •
H i , . . .,«r

is identically zero for |zt | <R. Fix z l 9 ..., z r _ x in this region and consider
the series in zr :

1where

:= Σ 0nι...n r

cosh]/w1z1 ... coshj/n,. ! z r_ ! .

Because of absolute convergence we can perform the sums in an arbitrary
manner. Hence

is identically zero for \zr\ < R. Moreover

is convergent for ί r e [0, R). This follows from

\bnr\ύ Σ kι...J

where we have used the fact that

|coshz| ̂  cosh (.Re z) ̂  cosh |z|.

Since we have assumed the statement is true for r= 1 we have

bnr = Q all π r .
That is:

n1z1 ... c o s h ] n r _ v z r _ 1 =OVn,eZ + .

This clearly holds for all |z f |<K z = l , . . . , r — 1 . We continue arguing
in the same way to obtain anι...Wr = 0(n l 5 . . ., π r)eX+.
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We now proceed to prove the proposition for a single complex
variable. It is convenient to change variables to

and consider the function defined for |ζ| < 1 R by

0(0= Σ αΛcoshn iίζ= Σ an
n = 0 n=0

Then 0(0 is identically zero for \ζ\ <]/R and £ lα«l |cosj/n£| converges

for all t e 1R since
00

Σ lα«l

[This follows from the fact that cosh j/τϊί ̂  1.]
Since ^ _

|cosjAζ|gcosh(|/n2:m0
we see that

converges absolutely in the strip in the complex ζ plane

.\Zmζ\<yR.

Moreover it is easy to see that it converges uniformly on compact sets
in this region. Hence 0(0 is defined as an analytic function in the strip
\Zmζ\ < j/JR and coincides with the analytic function "Zero" in the region
\ζ\ < YR. Thus, by the uniqueness of the analytic continuation of an
analytic function, 0(0 = 0 for all ζ with \Zmζ\ <]/JR.

Consider 0(0 on the real axis,

oo

g(t)= Σ <2nCos]/ft£ = 0 all ίe lR.

Since

Σ kl<°α

the series for g(t) converges uniformly on R Hence g(t) is an almost
periodic function with "spectral points" (]/n)™=0. Such functions have
unique Fourier like expansions of the type above. Since 0 is the Zero
function the coefficients of its expansion must vanish. Hence

αn = 0 V π e IN. Π

Proposition 4.4. Let the sequence of measures (§„)%= i satisfy C.C.
Then μ is uniquely associated with (§„)%*= i.
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Proof. Suppose there are two measures μi and μ2 associated with
({?w)ϋ°= i Then we have the equality of the two series

Σ ft (Cίί/ .v .ίί r) cosh j/^ΐ . . . cosh |A^ i = 1 , 2
»l,...,«r

for any cylinder set
C Λi,. ,.,Ar

n i , . . . , «r

and
\Zi\<R

[K of course depends on the pairwise disjoint sets Λl9 ..., Λr~].
C.C. clearly implies the convergence of

Σ ι*Ά\\ :::£) cosh v7^ - - - cosh jAΛ , i = i, 2
Hi ..... W r

in this region. Hence in subtracting the two series we can subtract term
by term. Letting

we have _ . _
Σ α f l l...Πrcosh]/n1z1 ... cosh j/nrzr =

«!,.. .,«r

while clearly

Σ Kι...J coshj/Wiίi ... coshj/rcr£r<oo for

We now simply apply proposition (4.3) to conclude that the coefficients
vanish identically. Thus μί=μ2 on the cylinder sets and hence on

D

§ 5. The Relationship between μ and Ae

In this section we strengthen our assumption on Ω to analyticity
for every operator

This allows us to establish essential self-adjointness of these operators
on 2 and obtain an expression for μ on the cylinder sets in terms of the
associated spectral measures.

The basic tools which will be used in obtaining these results are
theorems concerning the classical moment problems. These and the
relevant definitions can be found in Appendix 2.

Our first task is to establish further properties of the AφΛ. To this
end we recall certain types of vectors in a Hubert space.

Definitions. Let A be an operator in a Hubert space I) and Ψefy
for which An Ψ is defined for every n.
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i) Ψ is analytic for A if the power series

has a non-zero radius of convergence.
ii) Ψ is Stieltjes for A if

11=1

We state the well known result :

Proposition 5.1. Ψ analytic for A=>Ψ semi-analytic for A=>Ψ
Stieltjes for A.

We now make the assumption that Ω is an analytic vector for

Proposition 5.2. Ω analytic for AφΛ implies Ψφε3> is semi-analytic

f°r AVΛ-

Proof. Since Ψφ is a finite linear combination of vectors of the form
^φΛi...Λr ^e triangle inequality shows that it suffices to prove the
proposition for vectors of this form. Recall

Ψ —A O
We have "W.^-'W.,,"

= ρ(A2«(A1...Λr)
2)*

Since NΛ" and NΛl Aί are elements of
Cauchy-Schwarz to obtain

τ ...
Letting

we write

we maY apply

„ , . .
to obtain

XΛ

c
XΛ

A2nΩ\\ .
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Thus M^^,..^Nconst.μ^Ω||.
Since Ω is analytic the series

00 l l Λ 2 " D l l
y II'W'II 2n

~o (2n)!

has a non-zero radius of convergence and hence so does the series

(2»)ί

Proposition (3.2), (5.2) and a theorem due to Masson and McClary
immediately yield

Proposition 5.3. AφΛ, Ae&, is essentially self -adjoint on 3).

Proof. The theorem due to Masson and McClary (Ref. [3]) states:
Let A be a symmetric operator which is bounded below and has a
domain which contains a dense set of Stieltjes vectors. Then A is es-
sentially self-adjoint.

Since semi-analytic vectors are Stieltjes vectors, 2 is dense in 2tf,
and AφΛ is positive on 3) the result is a direct application of Masson-
McClary. Π

From this point on we let AφΛ denote the self-adjoint closure of the
operator originally defined on 2.

Proposition 5.4. The spectrum of AφΛ is a subset of the positive integers.

Proof. Since spec^JdlR we only need to show that if /lelR and
λφΈ+ the operator

is bounded away from zero. This implies it has a bounded inverse and
hence

λφspec(AφΛ).

For φ e S consider

\\(A9Λ-λ)Ψφ\\2 = ((AΨA-λ)2Ψ9,Ψφ)

= \(NΛ-λ)2\ηφ\
2dμ.

X

Since NΛ is a non-negative integer valued function and we have assumed
λ is not a positive integer there exists k> 0 such that

(NΛ(ξ)-λ)2^k2 VξeX.
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Thus
\\(AφΛ-λ)Ψφ\\2*k2ΪV,φ\

2dμ
x

\\(AφΛ-λ)Ψφ\\^k\\ΨΛ

for every Ψφ e S). Since AφΛ is essentially self-adjoint on 3) this inequality
extends to every ΨeΌom(AφΛ)9 showing that AφΛ — λ has a bounded
inverse. Π

We state without proof the following easy result.

Lemma. Let Abe a positive operator defined on a Hilbert space ί). Let
Ψ e f y b e a Stieltjes vector for A. Let Sk = (AkΨ, Ψ) k = 1, 2, . . . . Then

k=l

Theorem 5.5. Let ί) be a Hilbert space and A and B two positive
unbounded symmetric operators defined on a common, dense, invariant
domain, Q), of vectors in t) which are Stieltjes for both A and B. Suppose
that A and B commute on Q). Then the spectral measures associated with A
and B commute.

Proof. By the Massen-McClary Theorem A and B are essentially
self-adjoint on <3). Hence they are each associated with a spectral measure.
We denote by E and F the spectral measures associated with A and B
respectively. We shall show that if M and N are Borel sets in IR such that
E(M) Φ 0 and F(N) φ 0 then for ψ e 2

(E(M) F(N) Ψ, Ψ) = (F(N) E(M) Ψ, Ψ) . (5.1)

This is obviously necessary and sufficient to show that E(M) commutes
with F(N). (5.1) is obviously equivalent to

(E(M) Ψ, F(N) Ψ) = (F(N) Ψ, E(M) Ψ) .

For Ψ e 9 with || Ψ\\ = 1 let σf be the measure on IR defined by

We consider =^2(
σl) Since 3) is invariant under A Ψ e C°°(<4). Let

Sk = ] λkdσl = (AkΨ, Ψ).
o

Then (S f c)fcLo is a sequence of real numbers with S0 = 1. By the preceeding
lemma this sequence satisfies

Σ is tf"=oo.
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Thus by Theorem (A.2-A), Proposition (A.2-1), and Theorem (A.2-B)
the polynomials are dense in JS?2(0Ί;)

Let χM be the characteristic function of M. Then #Me^2(σf) Let
(Pπ)ίJ°=o be a sequence of polynomials which converges to χM in (̂^I)-
Since χM is real valued the polynomials can be chosen to be real. We have

That is
Tάm\\(Pn(A)-E(M))Ψ\\=0.

Thus Pn(A) Ψ converges strongly to E(M) Ψ. By similar arguments
concerning ^2(

σ^) we obtain a sequence of polynomials (βXL0

satisfying Qn(B) Ψ converges strongly to F(N) Ψ. Thus

(E(M) Ψ, F(N) Ψ) = lim lim (Pn(A) Ψ, Qm(B) Ψ)
m— » oo n— * oo

D

We are now in a position to obtain the desired expression for μ
on the cylinder sets.

Let 5 be any function defined on the real line and consider

where "°" denotes composition :

(3r°#J

Clearly g ° JVΛ is a function defined on X and

Let /2(μ> ̂ ) denote the Hubert space of sequences of complex numbers
(αj^o satisfying

Σ
TU m = 0

Thus
go

if and only if
( δ ( m - = 0 e 2 μ , / L .

Let σ° denote the measure defined by the cyclic vector Ω and the
spectral measure associated with AφΛ.
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Proposition 5.6. The polynomials are dense in Jz?2(σ^), A e $.

Proof. By assumption Ω is analytic for AφΛ,AE0l. Hence by
Proposition (5.1) it is Stieltjes. We now argue exactly as in the proof
of Theorem (5.5). Π

Proposition 5.7. ^2(
σ5) ίs isomorphic to a subspace of £2(μ,Λ).

Proof. By the previous proposition it suffices to show that the
polynomials are mapped isometrically into £2(μ,Λ) since an isometric
mapping of a dense linear manifold of one Hubert space into another
clearly extends to a mapping of the whole Hubert space into the other.

Consider

Let π be an arbitrary polynomial in ̂ 2(σ^). The above equality obviously
generalizes to

00

σ5= X μ(C;£) |π(m)|2 .

This formula explicitly exhibits both the mapping of
/2(μ> A) and its isometric nature. Π

For meZ + let pm: = (EΛ(m)Ω, Ω). Where EΛ denotes the spectral
measure of AφΛ. We know from spectral theory that

00

i) Σ Pm = 1 and
w = 0

ii) pm Φ 0 if and only if m e spec (AφΛ).
The next proposition exhibits the relationship between

Proposition 5.8. m e spec^^^) if and only if μ(Cfy ή= 0.

Proof. We again consider the [determinate] moment problem

Sk = (Ak

φΛΩ, Ω) = ί λkdσΩ

Λ = X mk(EΛ(m) Ω, Ω)
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Thus we have the two expression for Sk

sk= Σ ™kpmw = 0
and

Sk=

Since these sums are merely special cases of integrals we conclude,
since the moment problem is determinate,

This equality plus ii) above yields the proposition. Π
The equality

establishes the complete one to one correspondence between
and £2(μ,Λ). Since

we may conclude that if

and (πXL0 a sequence of polynomials that converges strongly to /
then (πn ° NA) converges strongly to /° NΛ in Jϋ?2PC Σ[QJ]9 μ).

We have now assembled the machinery necessary to recover μ on all
cylinder sets. This is our final result.

Theorem 5.9. Let

Aί9 Λ2, . . ., Λr be disjoint sets in & and let Ei

denote the spectral measure of AφΛ, i = 1, . . ., r. Then, for positive integers

Proof. Choose sequences of polynomials (π(

fe

l}), i = 2, ...,r so that
(π^}) converges strongly to χ{mι} on ^2(

σΛ)- Then (n(^°NΛι) converges
strongly to χ{mι}°NΛ. in ^(X, !"[(£] ,μ). Moreover the operator poly-
nomials π(i\AφΛ) satisfy

5 - lim π(ί\AφΛ ) Ω = E^m^ Ω, i = 29...,r.
fc->00 '

Consider

Sn : = \imm ^lim felim (A"φΛπ£\AφJ ... 4;>(4V J Ω, Ω) .
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The above formula and Theorem (5.5) yield

Sn = (A»φΛE2(m2)...Er(mr)Ω,Ω)

= Σ K)" (£ι K) £

2K) - Er(mr) Ω, Ω) .
mi

Noting that

X

we obtain the alternative expression for Sn\

Sn = j (NAίγ χ{m2} °NΛ2... χ{mr} ° NArdμ
x

Since E2(m2)...Er(mr}Ω is clearly analytic for AφΛ we again have

Σ |Sj"̂  = oo.
«=1

Thus Carleman's result again tells us that the moment problem associated
with the sequence (Sn) is determinate and hence we conclude that

;;;^) = (£1(m1)...£r(mr)0,β). D

Appendix 1 : On the Definition of the Modified Correlation Measures

We consider correlation functions

where ρn(xί9 ...,x«) is the probability density for the positions of rc-dis-
tinct particles. To construct the modified correlation functions we
remove the condition that the particles be distinct. Thus we allow for
the possibility of two or more variables in fact describing the same
particle. For n — 2 we have

The second term taking into account the possible identity of particles 1
and 2.
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The generalization of the above expression for n variables is

n

Qn(xl9x2,...,xJ= Σ Σ ρm(#)Ml,2,...,n).
m = 0 <ίίe^<n

w>

Here ^m) is the set of partitions of n integers into m disjoint subsets.
ρm(^) is the w-particle correlation function with arguments

Xkι> '">Xkm

determined by <& as follows:
iφj=>fc. and kj are in different members of #, and

ki is the smallest integer in its subset.
δ<$(i,2, ...,n) is a product of delta function factors indicating that

the variables indexed by integers in the various subsets that comprise #
are to be identified.

Now let Λl9 ...,Λr be pair-wise disjoint measurable sets in the phase
space of the particles and let ml9 ...9mr be positive integers satisfying

Define
ρn(A^\...A^):= j ... j ρn(xl9..., xn)dx1 ...dxn

and Λ^'"ΛΓ'
Qn(Λ™* ...Λ™r)\= J ... J ρw(x l9 . . . j X j α X i ... αx π .

Plugging in the expression for ρn above and employing a little delta-
function mathematics and combinatoric analysis yields the expression

mi mr r

ρn(ΛT...Λ?')= Σ - Σ Π^WX^...^).
fcι = 0 kr = 0 r = l

[We adopt the convention: Λ°Λ'k = Λ'kJ]
Here 5^m) is the Stirling number of the second kind and is the number

of ways of partitioning a set of n elements into m non-empty disjoint
subsets.

We now have an expression in terms of correlation measures. We
adopt this as the definition of the modified correlation measures on the
sets Λ™1 ...Λ^r. Our goal is to obtain an expression for ρn similar to that
for ρn, i.e., find a function NH such that

ρn(H)=$NHdμ.
x

We substitute into the above expression for ρn the formula (see Ref. [2])
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This yields

ρnμT1...^-)
Γ mi mr Y

= \dμ\ Σ ... Σ n#%}(*t
X Lfcι = 0 kr = 0i=ί

r Γ m;

= f d μ Π Σ ^fl)(*ξj(*
X ί=l U; = 0

We now use the combinatoric identity

m

tm=
=

to obtain
Qn(ΛT-Λ^)

Now, for ξε X,
(*ξAίΓ

i'"(*ξArΓ
r

is the number of ways one can choose ordered n-tuples of integers

, t (ii^'iί- ^U
such that

(^^...^JeylT1...^.

Notice that we do not demand that

ik Φ iy if fc Φ; .

This combinatoric fact shows us what our definition of NH must be for
arbitrary He@n: for

ξ = (xι,x2,...)eX
and H e mn

NH(ξ):= The number of ways one can choose ordered rc-tuples
of integers

( i l 9 . . . 9 ί n )
such that

(x / 1,...,x ί n)eH.

Appendix 2: On The Classical Moment Problem

Suppose we are given a sequence of real numbers

The Hamburger moment problem is concerned with the existence and/or
uniqueness of a real valued non-decreasing function σ satisfying

Sfc= J λkdσ(λ) k = 0,1,2,....
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In the above expression the integral is that defined by the Lebesque-
Stieltjes measure determined by σ. In the following we shall let σ denote
either the non-decreasing function or the measure associated with it.
The Stίeltjes moment problem is concerned with non-decreasing functions
satisfying

Sk = ] λkdσ(λ) fc = 0,1,2,....
o

The moment problem is said to be determinate if the solution exists
and is unique in the sense that it determines the same measure on R.
The following theorem is due to T. Carleman (Wall, Ref. [4]).

Theorem A.2-A. a) Let (Sk)£=0 be a sequence of real numbers for
which a solution of the Hamburger moment problem exists. This moment
problem is determinate if

b) Let (S/JfcL o be a sequence of real numbers for which a solution of
the Stίeltjes moment problem exists. This moment problem is determinate if

Consider J2?2(
σ) where σ is the solution of some moment problem.

Since the moments are, by definition, finite, it is obvious that the
polynomials are in £?2(

σ\ A natural problem that arises is to find
necessary and sufficient conditions on σ to ensure that the polynomials
are dense in £>

2(
σ\ Before stating the theorem, due to Naimark, which

characterizes those measures for which the polynomials are dense we
point out that the solutions of a given moment problem form a convex
set of measures. The extreme points of this set are called the extremal
solutions1 of the moment problem.

Theorem A.2-B (Naimark). Let σ be a Stieltjes measure on R. The
polynomials are dense in =£?2(

σ) tf and only if σ is an extremal solution
of some Hamburger moment problem.

The following proposition tells us that determinate solutions of
Stieltjes moment problems satisfy this condition.

Proposition A.2-1. Let (Sk)£L0 be a sequence of real numbers for
which σ is a determinate solution of the Stieltjes moment problem. Then σ
is an extremal solution of the corresponding Hamburger moment problem.

1 Akheizer (Ref. [5]) calls these solutions F-extremal to distinguish them from
solutions that he terms TV-extremal.



62 S. I. Levy

Proof. First we point out that be defining:

σ(λ):=σ(0) for λ<Q

we extend σ to be a non-decreasing function on IR and hence define a
Stieltjes measure on IR which is a solution of the Hamburger moment
problem. Suppose that σ is not an extremal solution. Then there exists
σ± and σ2, non decreasing functions, which determine different solutions
of the Hamburger moment problem and satisfy

σ = ασ! +(1 — α)σ2

for some αe(0,1). This equality holds in the sense of Stieltjes measures
onR

Since σ vanishes on ( — oo,0] it follows that both σί and σ2 must
vanish on ( —oo,0]. Thus the supports of σi and σ2 are contained in
[0, oo) and clearly than σ1 and σ2 are solutions of the Stieltjes moment
problem. By assumption this problem is determinate and hence σ1ή=σ2

cannot exist. Π
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