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Abstract. The solution to the following problem is presented. Determine the least
number of degrees of freedom for which a quantum mechanical system admits a given
semisimple Lie algebra and construct the corresponding class of realizations. Such realiza-
tions are termed minimal realizations. It is shown that they can be obtained by a generaliza-
tion of the inducing construction. Their physical importance is emphasized by showing
that they possess most of the essential properties required of spectrum generating algebras.

1. Introduction

Spectrum generating algebras [1], (also called dynamical groups [2])
represent one of the most developed uses of Lie algebras in the descrip-
tion of elementary particle processes. Because they are required to
possess an irreducible representation which exhausts the spectrum of a
given system their construction involves the realization of a Lie algebra
within a minimal number of degrees of freedom. By generalizing the
notion of an induced representation we have obtained a new construction
for such realizations which applies to all semisimple Lie algebras. Here
we briefly outline the method, state the main theorems and present
explicit formulae for all the classical simple Lie algebras and for G2.
For the special linear and the symplectic Lie algebras these reduce to
certain well-known forms which have been used extensively in the con-
text of spectrum generating algebras. These earlier results are thus set
within a well-defined scheme which admits their extension to the ortho-
gonal and the exceptional Lie algebras. Furthermore we show that many
properties generally associated with spectrum generating algebras are
also associated with minimal realizations. Moreover a minimal realiza-
tion picks out a class of irreducible representations of the abstract Lie
algebra which are naturally associated with canonical operators and for
that reason are precisely the ones considered in quantum physics.
Although the analysis is within the framework of quantum mechanics
similar results can as usual be obtained in classical mechanics.
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2. The Weyl Algebra

The algebraic structure of quantum mechanics is based on the
canonical commutation relations. For our present purposes these are
most conveniently described as follows.

Let C denote the complex numbers and n a positive integer. The
Weyl algebra ,*/„(€), or simply sfn> is the associative algebra over C with
identity 1 defined on generators q i 9 p t : i=i929 ... n, which satisfy

O r ί Φ j ,

Define the canonical action of sέn to be its action in the polynomial
algebra (C[^1,^2? #n] in which qt becomes multiplication and — pt

differentiation. £/n is isomorphic to the resulting algebra of differential
operators over C[<jι,g2» ft,]- ^n admits [3,4], pp. 163-167, a left
quotient field $)n which may be viewed as the set {a^lb:a,be£#n} with
certain obvious identifications. 2n admits the subalgebra &n = [a~1 b : a
e<C[q1,q2,... q^\,be^n] which is isomorphic to the algebra of differ-
ential operators over the field of rational functions (C(q1,q2,... qn).

stfn (resp. &Λ9 @n) may be considered as a Lie algebra (of infinite
dimension) over C by defining the Lie bracket

[α, b~\ = ab — ba,

for all a,bedn (resp. Stn, &n). The Heisenberg algebra QΛ is the Lie
algebra over C defined by (2.1) but in which 1 is replaced by a central
element z. Then sέn is precisely the homomorphic image of the enveloping
algebra U$n of $n with kernel z - 1.

A Lie algebra g over C is said to admit a realization in sέn (resp. 3Sn, @n)
if there exists an injective Lie algebra homomorphism φ of g into sέn

(resp. ^π, ®π). Given dimg<oo, g admits [4], Chapter VI, a faithful
finite dimensional representation ρ. Let ρt 7 (x) denote the entries of the
matrix ρ(x): x e g. Then

φ(x)= £βijW<ϊiPj

defines a realization of g. Hence g admits a realization in stfn for n suffi-
ciently large. A realization in sΛn (resp. Λπ, ®π) is called minimal if n
takes its smallest possible value, denoted by n^(g) [resp. n^(g), n^(g)].
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Obviously

M9)^n*(9)^M9) (2.2)

for all g. Furthermore [5]

Lemma 2.1. %(gj — n and a minimal realization φ of gn in Q)n satisfies
φ(z) = α l αΦO, αeC.

The weaker statement in which $ replaces 2 is an easy consequence
of [6], Theorem 1.1 and the relations (2.1). Observe that a minimal
realization of gn defines an element of End 2n, the semigroup of endo-
morphisms of 2n.

Let φ be a realization of g in stn (resp. ^π, @n). Then φ extends to
an associative algebra homomorphism φ* of £/g into j/n (resp. &n, @n).
φ* is almost never injective. Set Jφ = kerφ*. Recall that a two-sided ideal
J of (7g is said to be primitive [7] if it is the kernel of an irreducible
representation of g. Let Dφ(Q) denote the left quotient field of φ*((7g).

Unless otherwise specified a Lie algebra is assumed to be over C.
Thus so(w) denotes so(n,C). A few remarks concern the real field R
For this purpose, let «s/π(IR) denote the Weyl algebra over 1R and £&n(K)
its left quotient field.

3. Minimal Realizations of the Semisimple Lie Algebras

Given g semisimple it is well-known that %(g)^rankg. (Actually
n^(g)^rankg has been shown [8], Theorem 4, though by the implicit
assumption of the first part of Lemma 2.1.) It turns out that this estimate
is rather poor. (The failure of n^(g) = rank g is noted in [9].) Here we show
that W0(g) = w#(g) and determine this integer. Unfortunately we have not
been able to determine n^(g) completely though the uncertainty is
small (see Table 1).

For g semisimple

M9)=ΣM9i) (3-1)

where gf denote the simple ideals of g. Corresponding formulae hold for
n®(&\ %($)' Hence it suffices to consider g simple.

Assume g simple. Then g possesses a distinguished semisimple sub-
algebra g° which can be read off from the complete Dynkin diagram [10],
pp. 198-200 for g. Indeed recall that the complete Dynkin diagram for g
is the Dynkin diagram for g together with a specification of the Cartan
inner product between the simple roots and the lowest root. The Dynkin
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diagram for g° is obtained by suppressing the simple roots not orthogonal
to the lowest root. For example, given g = sl(w) : n ̂  3, then g° = sl(π — 2).

Set

fc(g) = i {(dim 9 - dim g°) - (rank g - rank g°) + 2} .

We showed in [1 1], Lemma 5.2 that

Lemma 3.1. A simple Lie algebra g admits a Heίsenberg subalgebra gw

Now suppose g admits a realization φ in ^: n = fc(g) — 1. By Lem-
mas 2.1 and 3.1 there exists z e g such that <p(z) = α 1. Since φ is injective
z e C(g), where C(g) denotes the centre of g. Yet C(g) = {0} for g simple,
hence

Lemma 3.2. ^(g)

However the interesting fact is that w#(g)^fc(g) which we prove
constructively. By (2.2) there remains to determine w^ίg).

An upper bound on n^(g) can be obtained as follows. Given g semi-
simple recall that it admits the canonical decomposition [12]

g = n+Θϊ)θτr (3.2)

where fj is a Cartan subalgebra and n± are the nilpotent subalgebras
spanned respectively by the positive and negative root eigenvectors.
In addition the endomorphisms aάQX:Xen± are nilpotent. A sub-
algebra of g containing n~ 0ί) is said to be parabolic. We remark that
the Heisenberg subalgebra gM of Lemma 3.1 can be chosen such that
gn C rt+ and the central element z of gn is the highest root eigenvector of g.

Given any Lie algebra g with subalgebra b a representation ρ of g
induced from a one dimensional representation of b can be realized [13]
in a space of infinite order differential operators over a polynomial
algebra of degree equal to dim g — dim b. (In the physics literature this
is known as a non-linear [14, 15] or an induced realization [16].) Now
if b possesses a complementary subalgebra p such that every endo-
morphism &dQX : X ep is nilpotent, then the order of the differential
operators corresponding to the elements of g are bounded. In this case
we obtain a realization of a homomorphic image θ(g) of g in j t f n : n = dimg
— dimb, which we shall call an induced realization.

Given g semisimple the above condition is met if b is parabolic.
Furthermore given g simple and b Φ g, then θ(g) = g. For g simple, let
/(g) be the infimum of dimg — dimb as b runs over the proper parabolic
subalgebras of g. We have shown that

Lemma 3.3. n^(g)^/(g).

The integers fe(g), /(g) are listed below for each simple Lie algebra.



Cartan label

An

Bn

cn
Dn

E6

EI
E8

F4

G2
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Table 1

Classical Lie algebra /c(g) /(g)

s l ( w + l )
so(2rc +
sp(2w)
so(2n)
—
—
—
—

—

n
1) 2n-2

n
2n-3
11
12
34

8
3

n
2n-i
2n-i
2n-2
16
17
67
15

5

329

Remarks

n^i

n^3
n^2
n^4
—
—
—
—

—

For Cn we note in Section 7 that n^(g) = n. Hence n^(g) is determined
to within one for the classical Lie algebras. Our construction gives a
realization of the orthogonal Lie algebras in one less degree of freedom
than that obtained previously.

4. The Construction of Minimal Realizations

The construction of a minimal realization derives from Lemma 3.1.
Thus we construct a realization of the Heisenberg algebra gπ and attempt
to extend this to a realization of g itself. Since g«Cn + the inducing
procedure described in Section 3 can in principle be applied. However the
requirement dimp = fc(g) on the complementary subspace p C gπ excludes
the realization of the whole of g in this fashion (except for An). What we
do is to obtain a realization of a certain parabolic subalgebra of g and
complete this to a realization of g by implementing the action of the
Weyl group in Aut @n. (See Section 9 for further details.) It is this latter
step which pushes the realization outside £/n. Indeed the realization
always lies in the localization (see below) of sin at φ(z) where z is the
central element of gπ being also the highest root eigenvector for g.
Typically φ(z) = qn. Define the localization s£'n of sέn at qn through
sέ'n={q~ka\at j t f n : k = Q, 1,2...}. Obviously sέ'nC@n. Identify two
realizations φ, φ' in 2n if φ' = θφ for some θ e Aut £&„, the group of
automorphisms of Q)n. It is shown in [5] that

Theorem 4.1. Each simple Lie algebra g (excluding AJ admits a
unique minimal realization Φ in 2n with the following properties

(1) n = k(g\
(2) Φ(g)C<.
(3) The Weyl group acts in Φ(g) through Aut 2>n.
(4)DΦ(g)=2>n.
(5) Jφ is a primitive ideal of Ug.
(6) Every realization φ of g in @n

takes the form φ = ΘΦ : θ e End Q)n. Furthermore Jφ = JΦ.
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Part (5) of the theorem implies φ*(C(Ug))c<Ci, where C(Ug) denotes
the centre of Ug. Part (6) asserts the uniqueness of the primitive ideal.
This is weaker than saying the corresponding irreducible representation
is unique to within equivalence, which fails to hold (see Section 7). (This
fact underlies the motivation for studying primitive ideals.)

The case of An is described in the next section. In later sections we
give the explicit form of the minimal realization for each simple Lie
algebra (excluding F4,E6,£7,E8 though our method applies also to
these cases).

5. An = sl(n+l)

Let {etj: ίj= 1, 2, ... n + 1} denote the canonical basis for gl(n+ 1)
(etj is the matrix with one in the i/ t h entry and zeros elsewhere). The
canonical decomposition (3.1) of si (n 4-1) can be chosen such that
{eij:i<j} spans n+. Then {elh ejn+ί : i = 2, 3, ... n+ 1, j = 2, 3, ... n}
spans the Heisenberg subalgebra Q^^ of Lemma 3.1. The special nature
of si (n 4-1) derives from the fact that a maximal commutative sub-
algebra p of gn_ 1 given by p = lin span {e1 1 : ί = 2, 3 . . . n 4- 1 } is a com-
plemented by a subalgebra b of g. Consequently a representation of g
induced from a one-dimensional representation of b determines a
minimal realization of g in sίn. Furthermore, since the derived algebra b'
of b has codimension one, b admits a one-parameter family of one-
dimensional representations. Hence we obtain a one parameter family
of induced realizations φ α :αeC, inequivalent mod End @n. These are
described below.

Let ψΛ : α e C denote the linear map of sl(n 4- 1) into $ίn given by

Vα(eii) = 4i- ι : ί = 2,3,... n+i

ψΛ(x) = 0, for all x e b ' .

Set AI = ade l f, A = Σ Pί^ί Then φα is given by
i

φΛ(x) = :ψol((QxpA)x): (5.2)

for all x e si (n + 1). In (5.2) the dots denote normal ordering. That is the
Pi are taken outside ψΛ and are placed to the right. The relative simplicity
of this formula derives from the fact that p is commutative. We remark
also that since p C n + , it follows that φα(x)e J/M for each Xe$. When
α = 0, φ(Q) is generated by qi9 qtpj9 (q - p) pt : ij = 1, 2 . . . n, where

n

q p= Σ Mi-
ί=l



Spectrum Generating Algebras 331

Under the canonical action of sέn, φ0(g) acts in C[g1?q2 ... qn~] and
defines an irreducible representation of 9. This holds for each α e C.
Indeed

Theorem 5.1. For each positive integer n, the simple Lie algebra
9 = s l (nH-l) admits a one parameter family of minimal realizations
φa: α 6 C in sέn with the following properties

(1) The Weyl group acts in φα(g) through Aut 2n.
(2) Dφtt(ί)=9n9 for each ue<C.
(3) J φ α :αeC are distinct primitive ideals of UQ. In particular the

realizations φa are inequivalent mod End &n.
(4) Every realization φ' of 9 in 3)n takes the form φ' = θφ0ί'.θe End @)n,

αeC and Jφ' = Jφ<x>

The case n = 3 has been of physical interest. Recall the isomorphism
si(4, (C) = so(6, (C). Real multiples oϊqi9 qtpj9 (q - p)p{: ϊj =1,2,3; generate
the non-compact real form so (4,2). This can be considered as a spectrum
generating algebra of the hydrogen atom in momentum space [1,17].

The statement corresponding to Theorem 5.1.4 with «$/„ replacing ®n

is false. (See [18] and Section 7.)

6. An Endomorphism of

Define Θ e End @n through

(6.1)

The presentation of the minimal realizations for the remaining simple
Lie algebras is greatly facilitated by the use of Θ. That is we replace the
realization Φ of Theorem 4.1 by Ψ = ΘΦ. It should be noted that ψ does
not share all the properties of Φ. In any case Φ can be easily recovered
from Ψ. A further advantage of Ψ is that the canonical action of sέn leads
quickly to an irreducible representation associated with Jφ.

7. Cn =

By an accident Ψ(^)C^n for g = sp(2n), whereas this fails for Φ.
Furthermore ^(9) is generated by the quadratic elements of <$tfn namely

<M;, PiPj, (<liPj + P j q j ) : i , j = l , 2 , . . - n. This shows that n^fo) = na(s): Q
= sp (2n). This realization of sp (2n) is of course well-known [1]. It provides
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the spectrum generating algebra of the harmonic oscillator in n dimen-
sions, the case n = 3 being of the most physical importance [19,20].

Under the canonical action of «s/n, Ψ(§) acts in <C[q l 5q2,... qn~\ and
defines a reducible representation of g. This has two inequivalent irre-
ducible components spanned by the odd and even polynomials. The
corresponding primitive ideal is Jφ in each case. Neither representation
nor their direct sum can be considered as an induced representation of a
proper subalgebra of g. This has been shown in [21], example 3, for the
case n = 2. In general it is a consequence of the fact that sp(2π) admits no
proper subalgebra of codimension less than or equal to n.

Taking n = 1 in Section 5,7 we obtain two classes of realizations of
si(2) in &/! which are inequivalent mod End sέv. These classes do not
exhaust [18] all realizations of si (2) in sέv but every realization admits
a certain common spectral property [18], Theorem 2.6, with them.
Does a corresponding result hold in sέ^ Finally note that the realization
of si (2) given above is equivalent to φ_ 1 / 4 mod End ̂ .

8. Description of the Simple Lie Algebras

To define notation we recall some general properties of simple Lie
algebras [22]. Let g be a simple Lie algebra. With respect to (3.1) let A
(resp. A +) denote the non-zero (resp. positive) roots. Let π denote the set
of simple roots, β0 the highest root [10], pp. 165-6. Let ( , ) denote
the Cartan inner product. Let Eα : α e A denote a root eigenvector with
root α. The £α may be chosen such that

where NΛβ is real and

(8.1)

(8.2)

where β + ία : s ̂  ί ̂  r is the α-chain containing β.
Set

Hβ= [£.,£_„]. (8.3)

The map α->f/α is linear, {Ha : α 6 A} spans ί) and {Eα, Ha : α e A} spans g.
Equations (8.1)-(8.3) and

αez! (8.4)



Spectrum Generating Algebras 333

define the commutation relations in g (up to sign) given α(//α) = (α, α).
(The signs can be obtained by explicit construction of the Lie algebras [4],
Chapter IV, Section 6 or from [23].)

Let ωα denote the reflection in ϊ)* defined by the plane normal to α.
The group generated by {ωα: α e A} is called the Weyl group W. W leaves
A stable and acts in ί) through the map α->Jffα. It is generated [4], p. 241,
by {ωα.: αf e π}. It should be noted that there is no connection between
the Weyl group and the Weyl algebra.

9. G2

G2 is the lowest rank Lie algebra for which our construction gives
a novel realization. Set π = {α1? α2}, then [10], p. 276

A+ = {α1,α2,α1 + α2,2α1 +α2, 3a1 + α2, 3a1 +2α2} . (9.1)

Hence /?0 = 3α 1+2α 2. Since (α l5)80) = 0, (α2,/?0)Φθ, it follows that
g° = si (2) with simple root o^ (cf. Section 2). Define

/ = i(£ t t l£_αι + £_αι£J-|Hα

2

l-l/6. (9.2)

Apart from the constant, / is the quadratic Casimir invariant for g°.
We give the minimal realization Ψ of G2 in si^ below. For convenience
we omit Ψ, that is we identify Ψ(E^ with Eα.

(9 3)

- I)2 + l/3(<hP2 -l/2)2 + (dPι-ίιPl)9 (9.4)

1 ί l J J], (9.5)

2 ,

where

J = 7- l/%3 p3+2)2
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The commutation relations (8.1)-(8.4) may be verified by explicit
computation. The Heisenberg subalgebra g2 of Lemma 3.1 is spanned by
{E α :αezl + αφα^. The Weyl group acts through AutΘ®3. This
action may be determined by examining the image of g20<C//00 which
generates a Θ <&3. For example ωαι is given by

Extend the canonical action of j/3 in C [ ^ ? ^ ^ ] to an action of
j/3 in C^!,^,^). Then G2 acts in C(^1?g2,^3). The vector space
generated by the constant function defines an irreducible representation
of G2. This representation is not an induced representation of a proper
subalgebra. On the other hand the restriction of Φ to the parabolic sub-
algebra ϊ = n+ 0l)0<CE_α2 of 9 is an induced realization from its sub-
algebra b = CE2αι+α20CE3αι+α20C£αι0ί)©CE_α2. The complement
p=CEα20CEαι+α20CE3αι + 2α2 of b in ϊ is a maximal commutative
subalgebra of g2. The point is that p is not complemented in g by a sub-
algebra and for this reason we require a generalization of the inducing
procedure to obtain a minimal realization.

We draw attention to a characteristic feature of minimal realizations
illustrated by (9.5). That is the Casimir invariant of a subalgebra, / in
this case, appears in the expression for certain elements of the comple-
mentary subspace. This result is reminiscent of a procedure (see, for
example [24], Eq. (80)) whereby a Lie algebra realization is obtained
from that of a subalgebra by a similar use of the invariants of the sub-
algebra. Yet this construction is not entirely general for there is no a
priori reason why the resulting expressions should close on a Lie algebra
and certainly no guarantee that the realization obtained be minimal.
Indeed this is generally not the case (see Section 11). Essentially these
invariants occur because Jφ is very large and because elements of the
complementary subspace must transform correctly under the sub-
algebra. Yet for physical considerations this feature is important since /,
or a function of/, may be regarded as the Hamiltonian for a system whose
symmetry is described by g° and whose spectrum generating algebra is g.

10. Bn =

According to Table 1, Bn admits a minimal realization in ^2 n_2. Set
π = {at: ί= 1,2,... n}. We may write αt = wf — w ί + 1 : i = 1, 2,... n— 1;
αn = wn. Then [4], p. 138, [10], p. 254,

(10.1)
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In addition

fO iΦ;,

i=j>

We have β0 = wί + w2. Since (αί?^0) = 0:
ΐ = 1,3,4 ... n, it follows that g° = sl(2)0so(2rc- 3). In this the first

component is defined through π = {oci}, the second through π
= {α3,α4,... αj. The following equations define Ψ for these two sub-
algebras. Set

i 4, , 2ι j . 2, ̂  i 2, ^ , , ^^^

Then the si (2) factor is defined by

(10.3)

where the dot denotes summation over i. The so(2rc — 3) factor is
defined by

£χ, + wk = bjdk - bkdj9 E_Wj_Wk = djCk - akCj ,

EW-Wk=-(akbj + ckdj), E_(W_Wk) = ajbk + Cjdk, (10.4)

withj<k:j, fc = 3,4, ... n. Set

-* = 2" W w i - W 2 ^ - ( W i - W 2 ) "̂ ~ ^ - ( W l - W 2 ) ^ W l - W 2 /

This is the quadratic Casimir invariant for the si (2) factor. It is also the
Casimir invariant for the so(2rc— 3) factor for this realization. The Hei-
senberg subalgebra g2«-2 i§ defined by

EWi=gf, EW2 = ge, EWί + W2 = g2,

£ W l _ W ι = gα ί ? E^2_Wι = g C i , (10.6)

z = 3, 4, ... n. Its counterpart in n~ together with Hβo is given by

E_Wl^2 = g-2(I+i/4(gh + l/2)2-i/4), H^1 + W2 = gh + 5/2, (10.7)

and commutation with (10.6), using (8.1) and (8.2).
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11. D =

According to Table 1, Dn admits a realization in &2n-3- Set
π = {αt : i = 1,2, ... n}. We may write af = wf — w ί + 1 : ϊ = 1,2, ... H— 1,

(11.1)

Comparison of (10.1) and (11.1) shows that Dn is obtained from BΠ by
suppressing the roots vv f . Correspondingly we obtain IP from (10.3), (10.4),
(10.6) by setting e = f = 0 and adjusting certain numerical factors which
arise from the commutation of e and /. Thus we require

instead of the expressions appearing in (10.3) and (10.7). This and the
previous section give minimal realizations for so (n, C) : n ̂  7. For the
low dimensional cases the following isomorphisms (over C) should be
noted.

so (3) = si (2), so (4) = si (2) 0 si (2), so (5) - sp (4), so (6) = si (4) .

Thesubalgebrasp 1=linspan{EW l,£W l_W i,EW l + W i : i = 2,3,... n}, p2

= lin span {EWl _ Wι, £Wl + Wι : ί = 2, 3, . . . n} are complementary to maximal
parabolic subalgebras of so(2n+ 1) and so(2n) respectively. Moreover
Pi, p2

 are commutative, so (5.2) applies to give a one-parameter family
of induced realizations of so(m + 2) : m ̂  3 in <stfm. This family of realiza-
tions is equivalent under a linear automorphism of <£/m(C) (but not
«s/m(IR)) to that defined in the special case m = 3 by [24], Eq. (10), (80).
In this we remark that the familiar bilinear realization of so(m): namely
that defined by generators qipj — qjpi:i,j=i,2, ... m is lifted by a
twofold process to a realization of so(m + 2). The first step is the inverse
stereographic projection [24], Eq. (10) taking so(w) to so(ra+l), the
second the expansion procedure [24], Eq. (80) taking so(m+l) to
so(m + 2). The additional generators can be chosen as qi9 ( q - p + oήpi
— i/2qtp

2 : i = 1, 2, . . . m; (q p + α) : α e C being the defining parameter.
This realization of so(m + 2) can be considered as a spectrum generating
algebra for the m dimensional hydrogen atom in momentum space [24].
Considered as a realization in &m it is not minimal; but this does not
exclude the possibility of it being minimal in s£m. In ^m(lR) the corre-
sponding realizations give the non-compact real form so(m+ 1, 1).
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12. Casimir Invariants and Real Forms

Let C(l/g) denote the centre of U g. For g semisimple it is a poly-
nomial algebra generated by the Casimir invariants. For a minimal
realization φ in 2n we have φ*(C(t/g))c<Cl. This has the following
consequence.

Lemma 12.1. Let g be a compact semisimple Lie algebra over 1R. Then
g does not admit a realization in ^(IR) with n = fc(g).

For example so (5,1R) cannot be realized in Q)2 (1R). A similar statement
is pointed out in [9]. The problem of determining minimal realizations
in (̂1R) for all real forms is thus as yet unsolved.

The fact that it is always a non-compact real form which admits a
realization in ®M(1R): n = fc(g) may be thought to be related to the fact
that the corresponding representations are infinite dimensional whilst
the unitary irreducible representations of compact groups are finite
dimensional. This relationship is not quite direct, as noted in [25].
Dashen and Gell-Mann [26] stressed the use of non-compactness in
spectrum generating algebras because of the infinite nature of the spec-
trum. We believe that the concept of a minimal realization serves this
purpose just as well. Furthermore it gives a much more precise answer
as to which representation to pick.

The statement φ*(C(l/g))c<Cl for minimal realizations admits the
following generalization.

Lemma 12.2. Let g be semisimple, φ a realization of g in &n. Then
d(§) + ^(δ) = n> where d(g) denotes the transcendence degree of φ*(C(UQ))
over <C.

We have been unable to prove a corresponding result for 3>n. The
difficulty lies in extending [6], Theorem 11 to 3ϊn.
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