Commun. math. Phys. 36, 321—324 (1974) © by Springer-Verlag 1974

Martin-Dynkin Boundaries of Random Fields

M. Miyamoto

Yoshida College, Kyoto University, Kyoto, Japan

Received December 20, 1973

Abstract. Analogous of exit spaces of Dynkin [4] for Markov processes are constructed for random fields introduced by Dobrushin [2].

Let X be a finite set and let T be countable. Let $\Omega = X^T$ and let \mathscr{B}_V be the σ -algebra generated by $\{\omega \in \Omega; \omega(t) = x\}_{t \in V, x \in X}$ for $V \subset T$. The σ -algebra \mathscr{B}_T is denoted simply by \mathscr{B} . Let be given a system of *conditional distributions* $q_{V,\omega}(A)$, which satisfy the following conditions, where V is a finite subset of T, $\omega \in \Omega$ and $A \in \mathscr{B}_V$.

- α) $q_{V,\omega}(\cdot)$ is a probability measure on \mathscr{B}_V .
- β) $q_{V,\omega}(A)$ is a \mathscr{B}_{V^c} -measurable function of ω for $A \in \mathscr{B}_V$.
- γ) If $V_1 \in V_2$, then for $A \in \mathscr{B}_{V_1}, B \in \mathscr{B}_{V_2 \setminus V_1}$ and $\omega \in \Omega$

$$q_{V_2,\omega}(A \cap B) = \int_B q_{V_1,c(V_2;\omega',\omega)}(A) q_{V_2,\omega}(d\omega') ,$$

where $c(V_2; \omega', \omega)(t) = \omega'(t)$ for $t \in V_2$, and $= \omega(t)$ for $t \notin V_2$.

A probability measure P on (Ω, \mathcal{B}) is called a *random field* with conditional distribution q, if for $A \in \mathcal{B}_V$

$$P(A | \mathscr{B}_{V^c}) = q_{V,\omega}(A)$$
 a.e. (P) .

Dobrushin [2] shows that the totality \mathcal{P} of random fields with q is a non-empty, compact and convex set, if

 $\delta) \lim_{W \to T} \sup_{\omega'} |q_{V,\omega'}(A) - q_{V,c(W;\omega',\omega)}(A)| = 0$

for $A \in \mathscr{B}_V$ and $\omega \in \Omega$, which we assume throughout this note.

Let $V_1
otin V_2
otin \cdots$ be an increasing sequence of finite subsets V_n of T with $\bigcup V_n = T$. Let Ω_{∞} be the set of ω for which there exists $\lim_{n \to \infty} q_{V_n,\omega}(A)$ for every cylindrical A.

Let $Q_{\omega}(A)$ be the limit. $Q_{\omega}(\cdot)$ is countably additive on \mathscr{B}_{V} for every finite subset V. Therefore it is extended to a probability measure on \mathscr{B} , which we denote by the same Q_{ω} . It is easy to see $Q_{\omega} \in \mathscr{P}$.

Let $\mathscr{B}_{\infty} = \bigcap_{V} \mathscr{B}_{V^c}$, where V runs over the set of all finite subsets of T.

Lemma 1. If $P \in \mathcal{P}$, then

$$P(A \cap B) = \int_{B} Q_{\omega}(A) P(d\omega) \quad for \quad A \in \mathscr{B} \quad and \quad B \in \mathscr{B}_{\infty} ,$$
$$P(A \mid \mathscr{B}_{\infty}) = Q_{\omega}(A) \quad a.e. \ (P) .$$

Proof. Taking in mind that $q_{V_n,\omega}(A) = P(A | \mathscr{B}_{V_h})$ is a martingale, we have $P(\Omega_{\infty}) = 1$ for every random field P by Doob's convergence theorem [3]. If $A \in \mathscr{B}_{V_n}$ and $B \in \mathscr{B}_{\infty}$, then $P(A \cap B) = \int_{P} q_{V_n,\omega}(A) P(d\omega)$

$$= \int_{B \cap \Omega_{\infty}} q_{V_n,\omega}(A) P(d\omega). \text{ Letting } n \to \infty, \text{ we have}$$
$$P(A \cap B) = \int_{B \cap \Omega_{\infty}} Q_{\omega}(A) P(d\omega) = \int_{B} Q_{\omega}(A) P(d\omega).$$

The equality holds also for non-cylindrical A.

Let $2_P = \{A; P(A) = 0 \text{ or } 1\}.$

Lemma 2. (Theorem 3.4 in [6].) *P* is extremal in \mathscr{P} if and only if $\mathscr{B}_{\infty} = 2_p \pmod{P}$.

Proof. i) We assume $\mathscr{B}_{\infty} \neq 2_p \pmod{P}$, then there exists $\tilde{\Omega} \in \mathscr{B}_{\infty}$ such that $0 < P(\tilde{\Omega}) < 1$. Let $P_{\tilde{\Omega}}(\cdot) = P(\tilde{\Omega})^{-1} P(\cdot \cap \tilde{\Omega})$. For every $A \in \mathscr{B}_V$ we have $P_{\tilde{\Omega}}(A | \mathscr{B}_{V^c}) = q_{V,\omega}(A)$, i.e., $P_{\tilde{\Omega}} \in \mathscr{P}$, because for every $B \in \mathscr{B}_{V^c}$,

$$P_{\tilde{\Omega}}(A \cap B) = P(\tilde{\Omega})^{-1} P(A \cap B \cap \tilde{\Omega}) = P(\tilde{\Omega})^{-1} \int_{B \cap \tilde{\Omega}} P(A \mid \mathscr{B}_{V^c}) P(d\omega)$$
$$= \int_{B} q_{V,\omega}(A) P(\tilde{\Omega})^{-1} P(d\omega \cap \tilde{\Omega}) = \int_{B} q_{V,\omega}(A) P_{\tilde{\Omega}}(d\omega).$$

A measure $P_{\tilde{\Omega}^c} \in \mathscr{P}$ is defined analogously. Both $P_{\tilde{\Omega}}$ and $P_{\tilde{\Omega}^c}$ are distinct, since they are mutually singular. Therefore the sum $P = P(\tilde{\Omega})P_{\tilde{\Omega}} + P(\tilde{\Omega}^c)P_{\Omega^c}$ is not extremal.

ii) Let $\mathscr{B}_{\infty} = 2_P \pmod{P}$ and let $P = \lambda P_1 + (1 - \lambda)P_2$, where $0 < \lambda < 1$ and $P_1, P_2 \in \mathscr{P}$. By Lemma 1, $Q_{\omega}(A) = P(A)$ a.e. (P) for each $A \in \mathscr{B}$, that is, $P\{\omega : P(A) = Q_{\omega}(A)\} = 1$, hence $P_i\{\omega : Q_{\omega}(A) = P(A)\} = 1$ for i = 1, 2, because the coefficients λ and $1 - \lambda$ are both positive. Thus we have, by Lemma 1 again, $P_i(A) = \int Q_{\omega}(A) P_i(d\omega) = P(A)$, that is, $P_i = P$, therefore P is extremal.

Corollary. P is extremal if and only if

$$\lim_{V \to T} \sup_{B \in \mathscr{B}_{V^c}} |P(A \cap B) - P(A) P(B)| = 0 \quad for \ all \quad A \in \mathscr{B}.$$

Let $B_{\omega} = \{\omega'; Q_{\omega'} = Q_{\omega}\}$, which belongs to \mathscr{B}_{∞} , as is easily seen. We have, by Lemma 1, $Q_{\omega}(B_{\omega}) = Q_{\omega}(B_{\omega} \cap B_{\omega}) = \int_{B_{\omega}} Q_{\omega'}(B_{\omega}) Q_{\omega}(d\omega')$ $= Q_{\omega}(B_{\omega})^2$, so that $Q_{\omega}(B_{\omega}) = 0$ or 1. We call ω regular, if $Q_{\omega}(B_{\omega}) = 1$. Let Ω_r be the set of all regular ω .

322

i.e.,

Theorem 1. *P* is extremal in \mathscr{P} if and only if $P = Q_{\omega}$ for some $\omega \in \Omega_r$. (Cf. Theorem 2.2 in [5].)

Proof. i) We assume that *P* is extremal, i.e., $\mathscr{B}_{\infty} = 2_P \pmod{P}$ by Lemma 2. Since $Q_{\omega'}(A)$ is \mathscr{B}_{∞} -measurable, $Q_{\omega'}(A)$ does not depend on ω' a.e. (*P*), so that there exists Ω_A with $P(\Omega_A) = 1$ for whose elements ω_1 and ω_2 it holds $Q_{\omega_1}(A) = Q_{\omega_2}(A)$. Let $\overline{\Omega} = \bigcap_A \Omega_A$, where *A* runs over the set

of all cylindrical subsets of Ω . The number of cylindrical subsets of Ω is countable, hence $P(\overline{\Omega}) = 1$. Take an arbitrary element ω of $\overline{\Omega}$, then $Q_{\omega'} = Q_{\omega}$ for almost all $(P) \omega'$. By Lemma 1 we have $P = \int Q_{\omega'} P(d\omega') = Q_{\omega}$. If ω is not regular, then $P(B_{\omega}) = Q_{\omega}(B_{\omega}) = 0$, i.e., $P(B_{\omega}^c) = P\{\omega'; Q_{\omega'} \neq Q_{\omega}\} = P\{\omega'; Q_{\omega'} \neq P\} = 1$. Therefore we have $P\{\omega': Q_{\omega'}(A) \neq P(A)\} > 0$ for some cylindrical A, which implies $P\{\omega': Q_{\omega'}(A) > P(A)\} > 0$ or $P\{\omega': Q_{\omega'}(A) < P(A)\} > 0$.

In case when $P\{Q_{\omega'}(A) > P(A)\} > 0$, we have $P\{Q_{\omega'}(A) > P(A)\} = 1$ by our assumption that $\mathscr{B}_{\infty} = 2_P \pmod{P}$. By Lemma 1, $P(A) = \int Q_{\omega'}(A) \cdot P(d\omega') = \int_{Q_{\omega'}(A) > P(A)} Q_{\omega'}(A) P(d\omega') > P(A)$, which is absurd. In case when

 $P\{Q_{\omega'}(A) < P(A)\} > 0$, we are led to the same contradiction.

ii) Let $P = Q_{\omega}$ for some $\omega \in \Omega_r$. For $A \in \mathscr{B}_{\infty}$ we have

$$P(A) = Q_{\omega}(A \cap A \cap B_{\omega}) = \int_{A \cap B_{\omega}} Q_{\omega'}(A) Q_{\omega}(d\omega') = \int_{A} Q_{\omega}(A) Q_{\omega}(d\omega')$$
$$= Q_{\omega}(A)^{2} = P(A)^{2}.$$

Therefore P(A) = 0 or 1 for $A \in \mathscr{B}_{\infty}$, i.e., $\mathscr{B}_{\infty} = 2_{P} \pmod{P}$.

Corollary 1. $P(\Omega_r) = 1$ for all $P \in \mathcal{P}$.

Proof. The Choquet theorem [1] shows that any $P \in \mathscr{P}$ is represented in the form; $P = \int_{\Omega_r} Q_{\omega} \mu(d\omega)$. For any regular ω , $Q_{\omega}(\Omega_r) = 1$, since $B_{\omega} \subset \Omega_r$. Therefore $P(\Omega_r) = \int_{\Omega_r} Q_{\omega}(\Omega_r) \mu(d\omega) = 1$.

Corollary 2. Extremal random fields of \mathscr{P} are mutually singular. Let \mathscr{B}_r be the σ -algebra on Ω_r generated by $\{Q_{\omega}(A); A \in \mathscr{B}\}$.

Lemma 3. The σ -algebra \mathscr{B}_r coincides with the family of sets in \mathscr{B}_{∞} which are representable as a (possibly uncountable) union of sets B_{ω} for regular ω .

Proof. If $\cup B_{\omega}$ belongs to \mathscr{B}_{ω} , then $Q_{\omega'}(\cup B_{\omega}) = \chi_{\cup B_{\omega}}(\omega')$. Therefore $\cup B_{\omega} \in \mathscr{B}_{r}$. On the other hand $\{\omega : Q_{\omega}(A) < a\} = \bigcup_{\omega : Q_{\omega}(A) < a} B_{\omega} \in \mathscr{B}_{\infty}$, from which follows our result.

Let $P|_r$ be the restriction of P on \mathscr{B}_r .

Theorem 2. For any $P \in \mathcal{P}$, $P = \int_{\Omega_r} Q_{\omega} P|_r(d\omega)$. If $P = \int_{\Omega_r} Q_{\omega} \mu(d\omega)$ with a probability measure μ on $(\Omega_r, \mathcal{B}_r)$, then $P \in \mathcal{P}$ and $\mu = P|_r$. (Cf. Proposition 3.5 in [6].)

Proof. $P = \int_{\Omega_r} Q_{\omega} P|_r(d\omega)$ is a direct consequence of Lemma 1 and Corollary 1 to Theorem 1. Let $P = \int_{\Omega_r} Q_{\omega'} \mu(d\omega')$ and let $\bigcup B_{\omega} \in \mathscr{B}_r$. We have $P(\bigcup B_{\omega}) = \int_{\Omega_r} Q_{\omega'}(\bigcup B_{\omega}) \mu(d\omega') = \int_{\Omega_r} \chi_{\bigcup B_{\omega}}(\omega') \mu(d\omega') = \mu(\bigcup B_{\omega})$, hence $P = \mu$ on \mathscr{B}_r by Lemma 3.

Let us consider a case where T is the v-dimensional lattice Z^{v} . For $\tau \in T$, let notations be as follows:

$$\tau V = \{\tau + v; v \in V\} \quad \text{for} \quad V \subset T,$$

$$\tau \omega(t) = \omega(t - \tau) \quad \text{for} \quad \omega \in \Omega \quad \text{and} \quad t \in T,$$

$$\tau A = \{\tau \omega; \omega \in A\} \quad \text{for} \quad A \in \mathcal{B}.$$

Let S be a subgroup of T and let conditional distributions $q_{V,\omega}$ be Sinvariant, i.e., $q_{\tau V,\tau \omega}(\tau A) = q_{V,\omega}(A)$ for all $\tau \in S$. We slightly modify the definition of Ω_{∞} and Q_{ω} ; let Ω_{∞} be the set of ω for which there exists $\lim_{n\to\infty} q_{\tau V_{n,\omega}}(A)$ for every cylindrical A and every $\tau \in S$ and these limits coincide with each other for all $\tau \in S$. The limit is denoted by Q_{ω} for $\omega \in \Omega_{\infty}$. The same convergence theorem as in the proof of Lemma 1 assures that $P(\Omega_{\infty}) = 1$ for each $P \in \mathcal{P}$. Corresponding modifications are made for definitions of B_{ω} , Ω_r , etc. The same argument as preceding one works for our modified Ω_{∞} , Ω_r , B_{ω} , etc. Obviously, $Q_{\omega}(\tau A)$ $= \lim_{n\to\infty} q_{V_n,\omega}(\tau A) = \lim_{n\to\infty} q_{\tau^{-1}V_n,\tau^{-1}\omega}(A) = Q_{\tau^{-1}\omega}(A)$ for $\omega \in \Omega_{\infty}$ and $\tau \in S$. It is easy to see that Ω_r is S-invariant. Finally we remark that $P = \int_{\Omega_r} Q_{\omega} \mu(d\omega)$ is S-invariant if and only if μ is so.

References

- 1. Choquet, G.: Ann. Inst. Fourier 10, 333-344 (1960)
- 2. Dobruschin, R. L.: Teor. Verojatnost. i Primenen 13, 201-229 (1968) Russian
- 3. Doob, J.L.: Stochastic Processes 1953
- 4. Dynkin, E.B.: Actes congrès internat. math., tom 2, 507-512 (1970)
- 5. Georgii, H.O.: Commun. math. Phys. 32, 107-118 (1973)
- 6. Lanford III, O.E., Ruelle, D.: Commun. math. Phys. 13, 194-215 (1969)

Communicated by G. Gallavotti

M. Miyamoto Yoshida College Kyoto University Kyoto, Japan