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Abstract. Analogous of exit spaces of Dynkin [4] for Markov processes are constructed
for random fields introduced by Dobrushin [2].

Let X be a finite set and let T be countable. Let Q= XT and let 4,
be the o-algebra generated by {we Q; w(t)=X}ey rex for VCT. The
g-algebra % is denoted simply by #. Let be given a system of con-
ditional distributions gy ,(A), which satisfy the following conditions,
where V is a finite subset of T, w e Q and A € %,,.

) gy ,(*) is a probability measure on %,

B) av.(A) is a By.~measurable function of w for 4 %,

y) If ¥, CV,, then for Ae By, , Be By, and w e Q

qu,w(A mB) = § qV1,c (Vz;w’,w)(A) qu,w(da),) s
B

where c¢(V,; o', ) (t)=w'(¢t) for te V,, and =w(t) for t¢ V,.
A probability measure P on (2, ) is called a random field with con-
ditional distribution g, if for A€ %,

P(A|By)=gy.o(4) ae. (P).

Dobrushin [2] shows that the totality £ of random fields with g is a
non-empty, compact and convex set, if

5) vl}glr Sgp |qV,a)’(A) - qV,c(W;w’,w)(A)I =0

for Ae %, and w e Q, which we assume throughout this note.
Let V; CV, C--- be an increasing sequence of finite subsets V, of T
with UV, =T. Let Q be the set of w for which there exists '}1_'11% Ay, o(A)

for every cylindrical A4.

Let Q,(A) be the limit. Q,(-) is countably additive on %, for every
finite subset V. Therefore it is extended to a probability measure on %,
which we denote by the same Q. It is easy to see @, € 2.

Let 4., = ﬂ By., where V runs over the set of all finite subsets of T.
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Lemma 1. If Pe 2, then
P(AnB)= [ Q,(A) P(dw) for Ae%# and BeA,,
B

ie.,

P(A|B,)=0,(4) ae. (P).

Proof. Taking in mind that g, (4)=P(A|%y,) is a martingale,
we have P(Q_)=1 for every random field P by Doob’s convergence
theorem [3]. If A€ %), and Be 4, then P(AnB)= | gy, ,(4) P(dw)

B

= [ 4y, .(A) P(do). Letting n—co, we have
BNy
P(AnB)= [ Q,(4)P(dw)= | Q,(A4) P(dw).
B

BN Qs

The equality holds also for non-cylindrical A.
Let2,={4;P(4)=0 or 1}.

Lemma 2. (Theorem 3.4 in [6].) P is extremal in 2 if and only if
A, =2,(modP).

Proof. i) We assume %, + 2p(mod P), then there exists Qe A, such
that 0 < P(Q) < 1. Let Py(r)= P(Q)~ P(- Q). For every A € %, we have
P5(A| Bye) = qy ,(A), ie., Pze P, because for every Be %y,

Py(AnB)=P(@)"' P(ANBNQ)=P(Q)~" [ P(4|%y.) Pldo)

Bn Q2

= j 4y o(A) P@Q)"' P(don Q)= j dy.o(A) Paldw).

A measure Py € 2 is defined analogously. Both P5 and Py, are distinct,
since they are mutually singular. Therefore the sum P = P(Q)Ps
+ P(Q ) Py is not extremal.

i) Let 4., =2p(modP) and let P=AP,; +(1 —A)P,, where 0 <1< 1
and P,,P,e#?. By Lemma 1, Q,(4)=P(A) ae. (P) for each A€ %,
that is, P{w:P(A)=0Q,(4)}=1, hence P{w:Q,(4)=P(4)}=1 for
i=1, 2, because the coefficients A and 1 — A are both positive. Thus we
have, by Lemma 1 again, P,(4)= [ Q,(A4) P(dw)= P(A), that is, P,;=P,
therefore P is extremal.

Corollary. P is extremal if and only if
lim sup |[P(AnB)—P(A)P(B)|=0 forall Aec%.

V—->T BeRByc
Let B,={w'; Q, =Q,}, which belongs to %, as is easily seen.
We have by Lemma 1 Qw(Bw)_Qw(B mb)— jQw w) Qw(dw/)

=Q,(B,)? so that Q,(B,)=0 or 1. We call regular if 9, (B,)=1.
Let Q, be the set of all regular w.
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Theorem 1. P is extremal in 2 if and only if P=Q,, for some w € Q,.
(Cf. Theorem 2.2 in [5].)

Proof. i) We assume that P is extremal, i.e., £, =2p (modP) by
Lemma 2. Since Q,,.(4) is 4, -measurable, Q,,.(4) does not depend on '
a.e. (P), so that there exists Q, with P(Q,)= 1 for whose elements w, and
w, it holds Q,, (4)=0Q,,(4). Let @= () Q2,, where A4 runs over the set

A

of all cylindrical subsets of Q. The number of cylindrical subsets of Q
is countable, hence P(Q)= 1. Take an arbitrary element  of Q, then
Q. =0, foralmostall (P)w’. By Lemma { we have P = f 0, Pdw)=2Q,.

Ifwisnotregular, then P(B,)=Q,(B,)=0,i.e., P(B)=P{w';Q, +0,}
= P{w’; Q, * P} =1. Therefore we have P{w':Q,(4)=* P(4)} >0 for
some cylindrical A, which implies P{w':Q,(4)>P(4)}>0 or
P{w':Q,(A)<P(A)}>0.

In case when P{Q,(A4)> P(A)} >0, we have P{Q,.(4)>P(4)}=1
by our assumption that %, = 2,(mod P). By Lemma 1, P(4)= | Q,,(A4)
‘Pldw')= j Q. (A) P(dw') > P(A), which is absurd. In case when

{Quw(4)> P(4))
P{Q,(A) < P(A)} >0, we are led to the same contradiction.

ii) Let P=Q,, for some we Q,. For Ae %4, we have

P(4)=Q,(AnANB,)= | Qw(A)Qw(dw)—jQw(A)Qw(dw)

AnBg

= 0,(4) = P(4)*.

Therefore P(A)=0or 1 for Ae %, ie., B, =2p(modP).
Corollary 1. P(Q,)=1 for all Pe 2.

Proof. The Choquet theorem [ 1] shows that any Pe 2 is represented
in the form; P= f 0,u(dw). For any regular w, Q,(R2,)=1, since

B, C Q,. Therefore P(Q)— j 0.,(Q) udw)=1.

Corollary 2. Extremal random fields of ? are mutually singular.
Let 4, be the g-algebra on Q, generated by {Q,(4); Ae %}.

Lemma 3. The o-algebra %, coincides with the family of sets in &,
which are representable as a (possibly uncountable) union of sets B, for
regular .

Proof. 1f UB,, belongs to %, then Q,(UB,) =y, (). Therefore
UB, € %,. On the other hand {w:Q,(4)<a}= () B,e%B,,from

. 100 (4) <
which follows our result. ¢ ¢

Let P|, be the restriction of P on 4%,.
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Theorem 2. For any Pe P, P= wiP| (dw). If P= jQwu(dw)

with a probability measure yon (2,, 48,), then Pe?and u=P|,. (Cf Propo-
sition 3.5 in [6].)

Proof. P= | Q,P|,(dw) is a direct consequence of Lemma 1 and
Q2
Corollary 1 to Theorem 1. Let P= | Q, u(dw’) and let UB, € %B,. We
o
have P(UB,)= [ Qu (VB H(def) = | .5, ) pldef) = (U B,) hence
Qr

P=pon 4, by Lemma 3.
Let us consider a case where T is the v-dimensional lattice Z*. For
t € T, let notations be as follows:

tV={t+v;veV} for VCT,
tot)=w(t—1) for weQ and teT,
tA={tw;we A} for AeA.

Let S be a subgroup of T and let conditional distributions ¢y ., be S-
invariant, i.e., g,y .,(tA4) = qy ,(A) for all 7€ S. We slightly modify the
definition of Q and Q,; let Q_ be the set of w for which there exists
31_{{)10 4d.v,, o(A) for every cylindrical A and every T€S and these limits

coincide with each other for all t € S. The limit is denoted by Q, for
we Q.. The same convergence theorem as in the proof of Lemma 1
assures that P(Q_)=1 for each P € 2. Corresponding modifications are
made for definitions of B, Q,, etc. The same argument as preceding
one works for our modified Q. , Q, B, etc. Obviously, Q,(tA)
= Ji_'rgqymw(tA) = 31_{2) Qe-1y,,:-10(A) = Q.-1,(A4) for weQ, and T€S.

It is easy to see that 2, is S-invariant. Finally we remark that
P= j 0, Mdw) is S-invariant if and only if u is so.
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