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Abstract. Analogous of exit spaces of Dynkin [4] for Markov processes are constructed
for random fields introduced by Dobrushin [2],

Let X be a finite set and let T be countable. Let Ω = Xτ and let &v

be the σ-algebra generated by {ωeΩ\ ω(t) = x}teV)X(=χ for VcT. The
σ-algebra &τ is denoted simply by έ%. Let be given a system of con-
ditional distributions qv ω(A\ which satisfy the following conditions,
where V is a finite subset of T, ω e Ω and A e &v.

α) <?F,ω(') is a probability measure on $v.
β) <lv,ω(A) is a ^Fc-measurable function of ω for A e &v.
y) If Vv C V29 then for A e Λv^ B e &V2\Vl and ω e Ω

where c(V2 ω', ω) (ί) = ω'(f) for ί e F2, and = ω(ί) for t φ V2.
A probability measure P on (Ω, $} is called a random field with con-

ditional distribution q, if for A e $v

P ( A \ ό f t \ — n (Λ\ P P (P\\-ΛL I t^tyc) — *ιV co\'^/ d.^> \Λ. ) .

Dobrushin [2] shows that the totality & of random fields with q is a
non-empty, compact and convex set, if

δ) lim sup\q V t ( 0 >(A) — qv c(W.ω> ω)(A)\ = 0
W^T ω ' ' ' '

for A e $v and ω e Ω, which we assume throughout this note.
Let V1 C V2 C be an increasing sequence of finite subsets Vn of T

with vVn=T. Let Ω^ be the set of ω for which there exists lim qv ω(A)
n~* co n'

for every cylindrical A.
Let Qω(A) be the limit. βω( ) is countably additive on ̂ v for every

finite subset V. Therefore it is extended to a probability measure on J*,
which we denote by the same βω. It is easy to see Qω e &.

Let J^ = P) ̂ FC, where 7 runs over the set of all finite subsets of T.
F
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Lemma 1. // P e ̂ , then

for AE@ ana

P(A\&J = Qω(A) a.e. (P).

Proof. Taking in mind that qVni(0(A) = P(A\&Vc) is a martingale,
we have P(Ωao) = 1 for every random field P by Doob's convergence
theorem [3]. If Ae @Vn and BE ^00, then P(Ar\B}= j qVn^(A) P(dω)

B
= ί Qvn, ω(A) P(dω). Letting n -> oo , we have

P(AπB)= J Qω(A)P(dω)=lQω(A)P(dω).
BnΩoo B

The equality holds also for non-cylindrical A.
Let2p = {4;P(>i) = 0 or 1}.

Lemma 2. (Theorem 3.4 in [6].) P is extremal in 0> if and only if

Proof, i) We assume ̂  Φ 2p(modP), then there exists Ω e ̂  such
that 0 < P(Ω) < 1. Let Pβ( ) = P(Ω)~1 P( nΩ). For every A e &v we have

) = qVi(0(A), i.e., P#e^, because for every

1 J P(A\£lvc)P(dω)
BnΩ

= f ^ι(0(X) P(β)- 1 P(rfconί3) = J qv,ω(A) P^(dω) .
B B

A measure P& e & is defined analogously. Both P^ and P ĉ are distinct,
since they are mutually singular. Therefore the sum P = P(Q)P$
+ P(ΩC)PΩC is not extremal.

ii) Let @^ = 2p(modP) and let P = λP1+(l- λ)P2, where 0 < λ < 1
and P1?P2e^. By Lemma 1, Qω(A) = P(A) a.e. (P) for each Ae&,
that is, P{ω:P(A) = Qω(A)} = i9 hence P,{ω: Qω(A) = P(A)} = 1 for
ί= 1,2, because the coefficients λ and 1 —λ are both positive. Thus we
have, by Lemma 1 again, Pι(A)= lQω(A)Pί(dώ) = P(A\ that is, Pt = P9

therefore P is extremal.

Corollary. P is extremal if and only if

lim sup \P(AnB)-P(A)P(B)\ = Q for all Ae@.
V-+T B<=@Vc

Let Bω = {ω'; Qω> = Qω}> which belongs to J^, as is easily seen.
We have, by Lemma 1, Qω(Bω) = Qω(BωnBω)= f βω,(BJ Qω(dω')

Bω

= Qω(BJ2, so that Qω(Bω) = 0 or 1. We call ω r^w/αr, if βω(BJ=l.
Let Ωr be the set of all regular ω.
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Theorem 1. P is extremal in & if ana only if P = βω for some ω e Ωr.
(Cf. Theorem 2.2 in [5].)

Proof, i) We assume that P is extremal, i.e., &QO=2P (modP) by
Lemma 2. Since Qω>(A) is J^ -measurable, Qω>(A) does not depend on ω'
a.e. (P), so that there exists ΩA with P(ΩA) = 1 for whose elements ω1 and
ω2 it holds Qωι(A) = Qω2(A). Let Ω= Q ΩA, where ^4 runs over the set

A

of all cylindrical subsets of Ω. The number of cylindrical subsets of Ω
is countable, hence P(Ω)= 1. Take an arbitrary element ω of Ω, then
Qω, = Qω for almost all (P) ω'. By Lemma 1 we have P = J Qω,P(dωf) = Qω.

If ω is not regular, then P(Bω) = Qω(Bω) = 0, i.e., P(Bc

ω) = P {ω' Qω, φ Qω}
= P{ω';βω<φP} = l. Therefore we have P{ω' : Qωf(A)^P(A)} >0 for
some cylindrical A9 which implies P{ωf : Qω (A) > P(A)} > 0 or
P{ω':βω,μ)<Pμ)}>0.

In case when P{Qω,(A)>P(A)}>^ we have P{Qω,(A)>P(A)} = i
by our assumption that $^ = 2P(modP). By Lemma 1, P(A)= J Qω'(A)
- P(dω') = J δω'(^) P(dω') > P(v4), which is absurd. In case when

(QW'(A}>P(A)}

>0, we are led to the same contradiction.
ii) Let P = Qω for some ωeΩr. For Ae &^ we have

= J fi

Therefore P(X) = 0 or 1 for 4 e ̂ 00, i.e., J ̂  = 2P(modP).

Corollary 1. P(Ωr) = 1 /or α/ί P e ̂ .

Proof. The Choquet theorem [1] shows that any P e ̂  is represented
in the form; P= J Qωμ(dω). For any regular ω, βω(Ωr)=l, since

5ω C Ωr. Therefore P(ΩΓ) = J βω(Ωr) μ(dω) - 1.
Ωr

Corollary 2. Extremal random fields of & are mutually singular.

Let 3ίr be the σ-algebra on Ωr generated by {Qω(A); Ae&}.

Lemma 3. The σ-algebra &r coincides with the family of sets in $^
which are representable as a (possibly uncountable) union of sets Bω for
regular ω.

Proof. If u£ω belongs to J^, then βω'(u5J = χuβω(ω/). Therefore
u Bω E &r . On the other hand {ω : Qω(A) < a} = (J Bωe^00, from

i i f it i, ω;Qω(A)<a
which follows our result.

Let P r be the restriction of P on 36 γ.
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Theorem 2. For any Pε0>, P= J QωP\r(dω). If P= J
Ωr Ωr

with a probability measure μ on (Ωr, έ$r), then P e & and μ = P|r. (Cf. Propo-
sition 3.5 in [6].)

Proof. P— J QωP\r(dω) is a direct consequence of Lemma 1 and
Ωr

Corollary 1 to Theorem 1. Let P= J Qω μ(dω') and let u5ωe^r. We
Ωr

haveP(uBJ= J Qω>(uBω)μ(dω') = f χuβω(ω/)μ(^ω/)-μ(uJ5J, hence
βr Ωr

P = μ on J*r by Lemma 3.
Let us consider a case where T is the v-dimensional lattice Zv. For

τ e T, let notations be as follows :

τV={τ + υ\υeV} for F c T ,

τω(ί) = ω(ί — τ) for ωeΩ and ί e T ,

} for Aεέ%.

Let 5 be a subgroup of T and let conditional distributions qVt(0 be S-
invariant, i.e., qτV τω(τA) = qv ω(A) for all τeS. We slightly modify the
definition of Ω^ and βω; let ί200 be the set of ω for which there exists
lim qτV ω(A) for every cylindrical A and every τ e S and these limits

n-> oo n'

coincide with each other for all τ e 5. The limit is denoted by Qω for
ωeΩ^. The same convergence theorem as in the proof of Lemma 1
assures that P(Ωoo) = 1 for each P e ̂ . Corresponding modifications are
made for definitions of Bω, Ωr, etc. The same argument as preceding
one works for our modified Ω^, Ωr, Bω, etc. Obviously, Qω(τA)
= ]imqVntω(τA)=limqr-ιVnτ-ίω(A) = Qτ-ί(0(A) for ωeί^ and τeS.

n-*co n^> oo

It is easy to see that Ωr is ^-invariant. Finally we remark that
P = ί Qωμ(dω) is S-in variant if and only if μ is so.

Ωr
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