Martin-Dynkin Boundaries of Random Fields

M. Miyamoto
Yoshida College, Kyoto University, Kyoto, Japan

Received December 20, 1973

Abstract

Analogous of exit spaces of Dynkin [4] for Markov processes are constructed for random fields introduced by Dobrushin [2].

Let X be a finite set and let T be countable. Let $\Omega=X^{T}$ and let \mathscr{B}_{V} be the σ-algebra generated by $\{\omega \in \Omega ; \omega(t)=x\}_{t \in V, x \in X}$ for $V \subset T$. The σ-algebra \mathscr{B}_{T} is denoted simply by \mathscr{B}. Let be given a system of conditional distributions $q_{V, \omega}(A)$, which satisfy the following conditions, where V is a finite subset of $T, \omega \in \Omega$ and $A \in \mathscr{B}_{V}$.
a) $q_{V, \omega}(\cdot)$ is a probability measure on \mathscr{B}_{V}.
β) $q_{V, \omega}(A)$ is a $\mathscr{B}_{V^{c}}$-measurable function of ω for $A \in \mathscr{B}_{V}$.
γ) If $V_{1} \subset V_{2}$, then for $A \in \mathscr{B}_{V_{1}}, B \in \mathscr{B}_{V_{2} \mid V_{1}}$ and $\omega \in \Omega$

$$
q_{V_{2}, \omega}(A \cap B)=\int_{B} q_{V_{1}, c\left(V_{2} ; \omega^{\prime}, \omega\right)}(A) q_{V_{2}, \omega}\left(d \omega^{\prime}\right)
$$

where $c\left(V_{2} ; \omega^{\prime}, \omega\right)(t)=\omega^{\prime}(t)$ for $t \in V_{2}$, and $=\omega(t)$ for $t \notin V_{2}$.
A probability measure P on (Ω, \mathscr{B}) is called a random field with conditional distribution q, if for $A \in \mathscr{B}_{V}$

$$
P\left(A \mid \mathscr{B}_{V^{c}}\right)=q_{V, \omega}(A) \quad \text { a.e. }(P) .
$$

Dobrushin [2] shows that the totality \mathscr{P} of random fields with q is a non-empty, compact and convex set, if

ס) $\lim _{W \rightarrow T} \sup _{\omega}\left|q_{V, \omega^{\prime}}(A)-q_{V, c\left(W ; \omega^{\prime}, \omega\right)}(A)\right|=0$
for $A \in \mathscr{B}_{V}$ and $\omega \in \Omega$, which we assume throughout this note.
Let $V_{1} \subset V_{2} \subset \cdots$ be an increasing sequence of finite subsets V_{n} of T with $\cup V_{n}=T$. Let Ω_{∞} be the set of ω for which there exists $\lim _{n \rightarrow \infty} q_{V_{n}, \omega}(A)$ for every cylindrical A.

Let $Q_{\omega}(A)$ be the limit. $Q_{\omega}(\cdot)$ is countably additive on \mathscr{B}_{V} for every finite subset V. Therefore it is extended to a probability measure on \mathscr{B}, which we denote by the same Q_{ω}. It is easy to see $Q_{\omega} \in \mathscr{P}$.

Let $\mathscr{B}_{\infty}=\bigcap_{V} \mathscr{B}_{V^{c}}$, where V runs over the set of all finite subsets of T.

Lemma 1. If $P \in \mathscr{P}$, then
i.e.,

$$
P(A \cap B)=\int_{B} Q_{\omega}(A) P(d \omega) \quad \text { for } \quad A \in \mathscr{B} \quad \text { and } \quad B \in \mathscr{B}_{\infty},
$$

$$
P\left(A \mid \mathscr{B}_{\infty}\right)=Q_{\omega}(A) \quad \text { a.e. }(P) .
$$

Proof. Taking in mind that $q_{V_{n}, \omega}(A)=P\left(A \mid \mathscr{B}_{V_{n}^{c}}\right)$ is a martingale, we have $P\left(\Omega_{\infty}\right)=1$ for every random field P by Doob's convergence theorem [3]. If $A \in \mathscr{B}_{V_{n}}$ and $B \in \mathscr{B}_{\infty}$, then $P(A \cap B)=\int_{B} q_{V_{n}, \omega}(A) P(d \omega)$ $=\int_{B \cap \Omega_{\infty}} q_{V_{n}, \omega}(A) P(d \omega)$. Letting $n \rightarrow \infty$, we have

$$
P(A \cap B)=\int_{B \cap \Omega_{\infty}} Q_{\omega}(A) P(d \omega)=\int_{B} Q_{\omega}(A) P(d \omega) .
$$

The equality holds also for non-cylindrical A.
Let $2_{P}=\{A ; P(A)=0$ or 1$\}$.
Lemma 2. (Theorem 3.4 in [6].) P is extremal in \mathscr{P} if and only if $\mathscr{B}_{\infty}=2_{p}(\bmod P)$.

Proof. i) We assume $\mathscr{B}_{\infty} \neq 2_{p}(\bmod P)$, then there exists $\tilde{\Omega} \in \mathscr{B}_{\infty}$ such that $0<P(\tilde{\Omega})<1$. Let $P_{\tilde{\Omega}}(\cdot)=P(\tilde{\Omega})^{-1} P(\cdot \cap \tilde{\Omega})$. For every $A \in \mathscr{B}_{V}$ we have $P_{\widetilde{\Omega}}\left(A \mid \mathscr{B}_{V c}\right)=q_{V, \omega}(A)$, i.e., $P_{\tilde{\Omega}} \in \mathscr{P}$, because for every $B \in \mathscr{B}_{V^{c}}$,

$$
\begin{aligned}
P_{\tilde{\Omega}}(A \cap B) & =P(\tilde{\Omega})^{-1} P(A \cap B \cap \tilde{\Omega})=P(\tilde{\Omega})^{-1} \int_{B \cap \tilde{\Omega}} P\left(A \mid \mathscr{B}_{V c}\right) P(d \omega) \\
& =\int_{B} q_{V, \omega}(A) P(\tilde{\Omega})^{-1} P(d \omega \cap \tilde{\Omega})=\int_{B} q_{V, \omega}(A) P_{\tilde{\Omega}}(d \omega)
\end{aligned}
$$

A measure $P_{\tilde{\Omega}^{c}} \in \mathscr{P}$ is defined analogously. Both $P_{\tilde{\Omega}}$ and $P_{\tilde{\Omega}^{c}}$ are distinct, since they are mutually singular. Therefore the sum $P=P(\tilde{\Omega}) P_{\tilde{\Omega}}$ $+P\left(\tilde{\Omega}^{c}\right) P_{\Omega^{c}}$ is not extremal.
ii) Let $\mathscr{B}_{\infty}=2_{P}(\bmod P)$ and let $P=\lambda P_{1}+(1-\lambda) P_{2}$, where $0<\lambda<1$ and $P_{1}, P_{2} \in \mathscr{P}$. By Lemma 1, $Q_{\omega}(A)=P(A)$ a.e. (P) for each $A \in \mathscr{B}$, that is, $P\left\{\omega: P(A)=Q_{\omega}(A)\right\}=1$, hence $P_{i}\left\{\omega: Q_{\omega}(A)=P(A)\right\}=1$ for $i=1,2$, because the coefficients λ and $1-\lambda$ are both positive. Thus we have, by Lemma 1 again, $P_{i}(A)=\int Q_{\omega}(A) P_{i}(d \omega)=P(A)$, that is, $P_{i}=P$, therefore P is extremal.

Corollary. P is extremal if and only if

$$
\lim _{V \rightarrow T} \sup _{B \in \mathscr{B}_{V c}}|P(A \cap B)-P(A) P(B)|=0 \quad \text { for all } \quad A \in \mathscr{B} .
$$

Let $B_{\omega}=\left\{\omega^{\prime} ; Q_{\omega^{\prime}}=Q_{\omega}\right\}$, which belongs to \mathscr{B}_{∞}, as is easily seen. We have, by Lemma $1, Q_{\omega}\left(B_{\omega}\right)=Q_{\omega}\left(B_{\omega} \cap B_{\omega}\right)=\int_{B_{\omega}} Q_{\omega^{\prime}}\left(B_{\omega}\right) Q_{\omega}\left(d \omega^{\prime}\right)$ $=Q_{\omega}\left(B_{\omega}\right)^{2}$, so that $Q_{\omega}\left(B_{\omega}\right)=0$ or 1 . We call ω regular, if $Q_{\omega}\left(B_{\omega}\right)=1$. Let Ω_{r} be the set of all regular ω.

Theorem 1. P is extremal in \mathscr{P} if and only if $P=Q_{\omega}$ for some $\omega \in \Omega_{r}$. (Cf. Theorem 2.2 in [5].)

Proof. i) We assume that P is extremal, i.e., $\mathscr{B}_{\infty}=2_{P}(\bmod P)$ by Lemma 2. Since $Q_{\omega^{\prime}}(A)$ is $\mathscr{B}_{\omega^{\prime}}$-measurable, $Q_{\omega^{\prime}}(A)$ does not depend on ω^{\prime} a.e. (P), so that there exists Ω_{A} with $P\left(\Omega_{A}\right)=1$ for whose elements ω_{1} and ω_{2} it holds $Q_{\omega_{1}}(A)=Q_{\omega_{2}}(A)$. Let $\bar{\Omega}=\bigcap_{A} \Omega_{A}$, where A runs over the set of all cylindrical subsets of Ω. The number of cylindrical subsets of Ω is countable, hence $P(\bar{\Omega})=1$. Take an arbitrary element ω of $\bar{\Omega}$, then $Q_{\omega^{\prime}}=Q_{\omega}$ for almost all $(P) \omega^{\prime}$. By Lemma 1 we have $P=\int Q_{\omega^{\prime}} P\left(d \omega^{\prime}\right)=Q_{\omega^{\prime}}$.

If ω is not regular, then $P\left(B_{\omega}\right)=Q_{\omega}\left(B_{\omega}\right)=0$, i.e., $P\left(B_{\omega}^{c}\right)=P\left\{\omega^{\prime} ; Q_{\omega^{\prime}} \neq Q_{\omega}\right\}$ $=P\left\{\omega^{\prime} ; Q_{\omega^{\prime}} \neq P\right\}=1$. Therefore we have $P\left\{\omega^{\prime}: Q_{\omega^{\prime}}(A) \neq P(A)\right\}>0$ for some cylindrical A, which implies $P\left\{\omega^{\prime}: Q_{\omega^{\prime}}(A)>P(A)\right\}>0$ or $P\left\{\omega^{\prime}: Q_{\omega^{\prime}}(A)<P(A)\right\}>0$.

In case when $P\left\{Q_{\omega^{\prime}}(A)>P(A)\right\}>0$, we have $P\left\{Q_{\omega^{\prime}}(A)>P(A)\right\}=1$ by our assumption that $\mathscr{B}_{\infty}=2_{P}(\bmod P)$. By Lemma $1, P(A)=\int Q_{\omega^{\prime}}(A)$ $\cdot P\left(d \omega^{\prime}\right)=\int_{\left\{Q_{\omega^{\prime}}(A)>P(A)\right\}} Q_{\omega^{\prime}}(A) P\left(d \omega^{\prime}\right)>P(A)$, which is absurd. In case when $P\left\{Q_{\omega^{\prime}}(A)<P(A)\right\}>0$, we are led to the same contradiction.
ii) Let $P=Q_{\omega}$ for some $\omega \in \Omega_{r}$. For $A \in \mathscr{B}_{\infty}$ we have

$$
\begin{aligned}
P(A)=Q_{\omega}\left(A \cap A \cap B_{\omega}\right) & =\int_{A \cap B_{\omega}} Q_{\omega^{\prime}}(A) Q_{\omega}\left(d \omega^{\prime}\right)=\int_{A} Q_{\omega}(A) Q_{\omega}\left(d \omega^{\prime}\right) \\
& =Q_{\omega}(A)^{2}=P(A)^{2} .
\end{aligned}
$$

Therefore $P(A)=0$ or 1 for $A \in \mathscr{B}_{\infty}$, i.e., $\mathscr{B}_{\infty}=2_{P}(\bmod P)$.
Corollary 1. $P\left(\Omega_{r}\right)=1$ for all $P \in \mathscr{P}$.
Proof. The Choquet theorem [1] shows that any $P \in \mathscr{P}$ is represented in the form; $P=\int_{\Omega_{r}} Q_{\omega} \mu(d \omega)$. For any regular $\omega, Q_{\omega}\left(\Omega_{r}\right)=1$, since $B_{\omega} \subset \Omega_{r}$. Therefore $P\left(\Omega_{r}\right)=\int_{\Omega_{r}} Q_{\omega}\left(\Omega_{r}\right) \mu(d \omega)=1$.

Corollary 2. Extremal random fields of \mathscr{P} are mutually singular.
Let \mathscr{B}_{r} be the σ-algebra on Ω_{r} generated by $\left\{Q_{\omega}(A) ; A \in \mathscr{B}\right\}$.
Lemma 3. The σ-algebra \mathscr{B}_{r} coincides with the family of sets in \mathscr{B}_{∞} which are representable as a (possibly uncountable) union of sets B_{ω} for regular ω.

Proof. If $\cup B_{\omega}$ belongs to \mathscr{B}_{∞}, then $Q_{\omega^{\prime}}\left(\cup B_{\omega}\right)=\chi_{\cup B_{\omega}}\left(\omega^{\prime}\right)$. Therefore $\cup B_{\omega} \in \mathscr{B}_{r}$. On the other hand $\left\{\omega: Q_{\omega}(A)<a\right\}=\bigcup_{\omega ; Q_{\omega}(A)<a} B_{\omega} \in \mathscr{B}_{\infty}$, from which follows our result.

Let $\left.P\right|_{r}$ be the restriction of P on \mathscr{B}_{r}.

Theorem 2. For any $P \in \mathscr{P}, P=\left.\int_{\Omega_{r}} Q_{\omega} P\right|_{r}(d \omega)$. If $P=\int_{\Omega_{r}} Q_{\omega} \mu(d \omega)$ with a probability measure μ on $\left(\Omega_{r}, \mathscr{B}_{r}\right)$, then $P \in \mathscr{P}$ and $\mu=\left.P\right|_{r}$. (Cf. Proposition 3.5 in [6].)

Proof. $P=\left.\int_{\Omega_{r}} Q_{\omega} P\right|_{r}(d \omega)$ is a direct consequence of Lemma 1 and Corollary 1 to Theorem 1. Let $P=\int_{\Omega_{r}} Q_{\omega^{\prime}} \mu\left(d \omega^{\prime}\right)$ and let $\cup B_{\omega} \in \mathscr{B}_{r}$. We have $P\left(\cup B_{\omega}\right)=\int_{\Omega_{r}} Q_{\omega^{\prime}}\left(\cup B_{\omega}\right) \mu\left(d \omega^{\prime}\right)=\int_{\Omega_{r}} \chi_{\cup B_{\omega}}\left(\omega^{\prime}\right) \mu\left(d \omega^{\prime}\right)=\mu\left(\cup B_{\omega}\right)$, hence $P=\mu$ on \mathscr{B}_{r} by Lemma 3 .

Let us consider a case where T is the v-dimensional lattice Z^{v}. For $\tau \in T$, let notations be as follows:

$$
\begin{array}{rll}
\tau V=\{\tau+v ; v \in V\} & \text { for } & V \subset T \\
\tau \omega(t)=\omega(t-\tau) & \text { for } & \omega \in \Omega \text { and } t \in T \\
\tau A=\{\tau \omega ; \omega \in A\} & \text { for } & A \in \mathscr{B} .
\end{array}
$$

Let S be a subgroup of T and let conditional distributions $q_{V, \omega}$ be S invariant, i.e., $q_{\tau V, \tau \omega}(\tau A)=q_{V, \omega}(A)$ for all $\tau \in S$. We slightly modify the definition of Ω_{∞} and Q_{ω}; let Ω_{∞} be the set of ω for which there exists $\lim _{n \rightarrow \infty} q_{\tau V_{n}, \omega}(A)$ for every cylindrical A and every $\tau \in S$ and these limits coincide with each other for all $\tau \in S$. The limit is denoted by Q_{ω} for $\omega \in \Omega_{\infty}$. The same convergence theorem as in the proof of Lemma 1 assures that $P\left(\Omega_{\infty}\right)=1$ for each $P \in \mathscr{P}$. Corresponding modifications are made for definitions of B_{ω}, Ω_{r}, etc. The same argument as preceding one works for our modified $\Omega_{\infty}, \Omega_{r}, B_{\omega}$, etc. Obviously, $Q_{\omega}(\tau A)$ $=\lim _{n \rightarrow \infty} q_{V_{n}, \omega}(\tau A)=\lim _{n \rightarrow \infty} q_{\tau^{-1} V_{n}, \tau^{-1} \omega}(A)=Q_{\tau^{-1} \omega}(A)$ for $\omega \in \Omega_{\infty}$ and $\tau \in S$. It is easy to see that Ω_{r} is S-invariant. Finally we remark that $P=\int_{\Omega_{r}} Q_{\omega} \mu(d \omega)$ is S-invariant if and only if μ is so.

References

1. Choquet, G.: Ann. Inst. Fourier 10, 333-344 (1960)
2. Dobruschin, R.L.: Teor. Verojatnost. i Primenen 13, 201-229 (1968) Russian
3. Doob, J.L.: Stochastic Processes 1953
4. Dynkin, E. B.: Actes congrès internat. math., tom 2, 507-512 (1970)
5. Georgii, H. O.: Commun. math. Phys. 32, 107-118 (1973)
6. Lanford III, O.E., Ruelle, D.: Commun. math. Phys. 13, 194-215 (1969)

Communicated by G. Gallavotti

