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Abstract. In the first remark the catalogue of axisymmetric stationary horizons is
completed by a subset of uncharged translation-symmetric horizons, which was ignored
in the previous paper [5]. The subset consists of two one-parameter families: extreme
Kerr horizon (a = m) and a more symmetric family. In the second remark the surface area,
net angular momentum and net charges of a black hole are computed. It turns out that
the four invariant functions A, B, C, D used in [5] to classify the horizons describe, at least
formally and up to a constant factor: A the profile of the black hole surface, B the surface
density of angular momentum and C cos D, C sin D the surface density of electric and
magnetic charge. In the third remark a simplified model of a black hole surrounded by a
charged matter shell is found to satisfy a sort of generalized "no-hair-conjecture". An
example of a non-Kerr-Newman field around a horizon is provided; the magnetic field in
it is hoped to have some astrophysical importance.

1. Introduction

The search for black holes in close binaries (see, e.g. [1]) has shifted
the attention from pure vacuum black holes to systems consisting of a
hole surrounded with matter disks, rings and shells [2,3].

If there is only vacuum or electro vacuum outside a black hole, then
the well-known "no-hair-theorems" [4] tell us what the equilibrium
(= stationary) state of the horizon and the field outside it will be: for
static electrovacuum it is the Reissner-Nordstrδm family and for station-
ary vacuum a two-parameter family which, if it contains the Schwarz-
schild solution, must be that of Kerr. No proof is attempted for stationary
electrovacuum, but one conjectures that the Kerr-Newman solution is
all what is possible.

A ring of matter surrounding the hole will deform the horizon and
influence the field in its neighbourhood. In [5] (the last two papers of
[5] will be denoted by I and II, and, e.g. the equation (x) of II by II (x))
an attempt was undertaken to determine what the equilibrium structure
of such horizons and neighbouring fields can be. The method used was
based on solving the characteristic initial data constraints for Einstein-
Maxwell equations together with that part of Killing equations and their
integrability conditions which concerns the inner structure of the
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horizon hypersurface. In such a way all equilibrium horizon configura-
tions can be obtained (including counterexamples to stationary electro-
vacuum "no-hair-conjecture", if they exist). The axisymmetric stationary
families found in II were classified by means of a set of invariants. On the
other hand, the question of what external field corresponds to a given set
of these invariants is not simple to answer.

In the present paper, we investigate some further interesting prop-
erties of these horizons. In Section 2, a small subset of them which was
"forgotten" in II is described. With this subset, our catalogue of axi-
symmetric stationary horizons is completed. It consists of two one-
parameter families, one of then being the extreme Kerr (α = m) while the
second, which has more symmetry, has not yet been identified with the
horizon of any known solution (such solutions may exist, but if they do
they are unknown to the author). There is no net charge, but some
electromagnetic field can be present at the horizons of both families.
The space-times which contain a horizon of this subset can be very
numerous (e.g. for the Kerr horizon, it need not always be the Kerr
solution, see II).

In Section 3 we calculate the surface area, net angular momentum and
net electric and magnetic charges of the corresponding black hole from
our horizon invariants A, B, ReΦ1 ? — ίlmΦί. We arrive at four simple
alike integral formulas, which formally allow us to interpret B, ReΦ1 ?

— i Im Φ1 (up to some π-factors) as surface densities of angular momentum,
electric and magnetic charge, respectively. Thus, our choice of the
invariants, which was dictated by purely mathematical convenience
in II, need not be so incoherent and accidental as it looked at the first
sight.

In the last section the axisymmetric stationary perturbation analysis
of the Schwarzschild field due to Vishveshwara and Price is used to con-
struct a model of a black hole surrounded by a thin matter shell. A
formulation of a generalized "no-hair-conjecture" is motivated in such
a way and shown to be correct at least in the neighbourhood of Schwarz-
schild solution. The differential equations for the perturbations between
the horizon and the shell can be solved by polynomials for odd gravita-
tional and all electromagnetic modes. We use this to show how the
magnetic field of a shell in the neighbourhood of the hole may appear.
A proposal that such a field could have an astrophysical significance is
considered.

2. A Γ-Horizons with Φ^ = 0

In II the differential equations for the axisymmetric horizons with
translational longitudinal group (AT-horizons) were divided into three
groups. The first group system was shown to allow only Kerr-Newman
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values of Γ, Ω, Ψ2, Φί as its solutions. This does not mean, however,
that any AT-horizon belongs to the Kerr-Newman family, because the
horizon structure (metric and affΐne connection, see I) is first determined,
if one knows the additional quantities λ and μ. They must satisfy, together
with ^3 and Φ2, the underdetermined second group system

(M+ + Ω+) μ - (M - 2Γ + Ω) λ - Ψ3 + 2Φ+ Φ2 -0, J

where Γ, Ω, Ψ2, Φx is a solution of the first group. The system (1) was
solved under the condition that Φx is not zero, i.e. v < l/j/2 in the
Lemma 13 of II. In such a way, an important subclass of horizons was
ignored. A well-known member of this class is the extreme Kerr horizon
(a = m). The purpose of the present section is to fill the gap.

The system (1) holds for the values of λ, μ, ^3, Φ2 at the Cauchy
surface α = 0, computed in a frame L, M, with M tangential to the
surface α = 0 (or else there will appear additional terms in (1); for the
meaning of α, L, M, see II). All transformations leaving (1) invariant are,
therefore, generated by

L=L, M' = M + ξ(&)L, (2)

α' = f7 α, L=—L, M' = M, (3)

where η is a real constant and X(9), ξ(9) are real functions. They are not
independent of each other, because M' must be tangential to the surface
α' = 0, e.g.

or, using the relation La= 1, Mα= — Ωoc, (see I)

ξ = (M + Ω)X. (4)

The transformations of μ and λ under (2) [see I (7), I (14)] are

, (5)

(6)

under (3) are

μ' = η-μ, λ' = η-λ, (7)

where the superscript " + " means complex conjugation. This trans-
formation can be used to simplify the system (1) or to reduce the number
of the second group variables (in II, e.g. α =0 was chosen to be generated



308 P. Hajicek

by geodesies starting at the pole 9 = 0 orthogonally to the rotation axis.
Then, μ|α = 0=-Re/l).

Setting Φl = 0 in (1), we obtain

(8)

or: 1) the electromagnetic variable Φ2L=o becomes uncoupled from the
geometric variables and can be chosen arbitrarily, 2) the system (8)
for the geometric quantities is not underdetermined any more because of
the gauge freedom. One of its solutions are the extreme Kerr values of

λ, μ|α=o and ^ /3lα=o ^re there any others?

Let v = — , „ = 1/1/2 (m = d\ in the Lemma 13 of II. Then, a
2 2 v|/α2 + m2

canonical frame and the first group quantities are, according to the
lemma, given by

L =
flat 1/2 m 1/1+cos^fΓ

(9)
i s inC

8 M- 1 1 -
doc j/2 m

I d 1 + cos2 ζ
-1-

U 2

1

]/l +cos2C

ί 5

sinC dφ 1 + icosζ 5α

~j/2" "m" J/ l+cos 2 C l~^ l+cos 2 C

r- 1 1 1 / 9 ctgC
-* — 7=~ / -s—- —^

1 1 1 / i s inC \
(10)

1 1 1 / i s ind \
ί3 =

(ii)

1/2 m 1/1+ cos21 \ 1 + i c o s C / '

m2 (1 — z'cosQ3

Theorem?. All solutions of (8) corresponding to (9)-(ll) define two
one-parameter families of horizons (the parameter is m), viz

(a) The extreme Kerr horizon family, and
(b) A second family characterized by the existence of a canonical frame

in which

A = 0, Aί|«=o=0, tί /3L=o=0. (12)

The horizons of this family have an additional symmetry, namely the

collineation group generated by α——.
doc
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The quantities Φ2 and Ψ4 along a horizon of any of the two families
which

1) satisfy the Einstein- Maxwell characteristic initial value constraints
together with the metric and affine connection of the horizon,

2) do not break the axial and translation symmetry of the horizon
[but they can break the additional collineation symmetry in case (b)7 are
specified, if one prescribes four real invariant functions of one variable
(viz. Φ 2 l α =o and ^4\<x=o for some canonical choice of the affine coordinate
α which will be described below).

Proof. The first step is the convenient choice of the gauge (2): let
α — X($) = Q be an (axially symmetric) maximal surface:

regular at least at one of the poles 5 = 0, π. Using (4) and (5), we obtain
an equation for X:

This can be written as

(M-Γ)M+X + (ΩM+ + Ω+M)X + (Ψ2+MΩ+-ΓΩ++ΩΩ+)X

+ μ|«=o = o.
I (32), (9) and the reality of M (X is independent of α and φ) imply

Mx + (2ReΩ-/>=-μ|α = 0, (13)

x = MX. (14)yv — J.YJ. Λ\. .

Setting for M, Ω, Γ from (9) and (10) in (13), we solve easily for x

C — m 1/2 J (1 +cos2z) sinzμ(z)|α = 0 dz

sin ζ I/I -f cos2C

where C is an arbitrary constant. μ|α=0 *
s regular at both poles, because α

is a globally regular coordinate. Then, x will be regular at C = 0, if
C = C0 = 0; at ζ = π, if C = Cπ, where

or

χπ= -

ml/2 ζ
"ί I/ -̂  ί x , 9 \ / \ ι 7

x

 κ (1+cos / z)smzμ(z)L = 0 αz.
P ι / A . 2 ^ J ^ ^ r \ / ι α — u

smζ j/1 +cos2C o

ml/2 Γ /, 9 x / x , T
. ,,.// -f^ j (1 + cos2 z) smzμ(z)|α=0 dz

sinC 1/1 +cos2C o
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[xQ(xπ) is the solution of (13) which is regular at ζ = 0 (ζ = π)]. Thus, there
are two cases to distinguish:

(a) (CπφO): there is no maximal surface regular at both poles. For
each value α of the affine coordinate there is just one maximal surface
intersecting a given pole ray at α and being smooth there, but it does
not reach the opposit pole ray at finite α. One can use the remaining
gauge freedom (3), (7) to normalize Cπ = j/2 m~2.

(b) (Cπ = 0): for each value α there is just one maximal Cauchy surface
smooth at both poles.

The relation (15) shows that our gauge transformation is always
possible; the system (8) is, then, equivalent to

(16)

(17)

(16) is an ordinary, second order, linear, homogeneous differential
equation with singular points at C = 0, π, for the complex function λf

of real variable ζ, and (17) yields the value of Ψ'3\a=x correponding to
a solution λ' of (16).

Lemma 15. All solutions λ'0(ζ) (λ'π(ζ)) of Eq. (16) which are regular

at the pole ζ — 0 (ζ = π) are given by

(cosC-l)(cosC +

2m 3 / (l-icos0 2 (cosC + 1)

(cosC+l)(cosC-2)
(18)

2m 3 / ( l- icosC) 2 (cosC-l) :

where λ0 and λπ are arbitrary complex constants. The values λ0 = λπ = 1
correspond to the extreme Kerr horizon (a = m), if α is chosen, in each case

2m2 m
lg(l + cos<Q,

(19)

where u and ζ in the right hand sides of (19) are identical with the functions
u and 9, respectively, from the four coordinates u, r, 9, φ used by Carter [6]
to describe the Kerr-Newman family fa 0 j 7 r = const are maximal surfaces
regular at ζ = 0, π, respectively) .

Proof of the Lemma 15. A straightforward but tedious calculation
making use of the extreme Kerr horizon values as given, e.g. in [7] and
employing (4), (14), and (15) yields (19) and (18) with I0 = Iπ = 1; at each
pole ζ = 0, π, one of these functions λ'0, λ'π is regular and one is singular.
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They are linearly independent, so any solution of (16) is a linear com-
bination of them with complex coefficients. But, if both coefficients are
non-zero, then the resulting solution would be singular at both poles,
so the only possibility is (18), which proves the lemma.

The last step in the proofof the Theorem 7 initiates at the observation
that the constants λ0 and λn cannot be completely arbitrary and in-
dependent of each other, if they both refer to the same horizon. In fact,
λ'0 is computed in the frame L, M', where M' is tangential to the surface
α- X0(9) = 0 and analogously λ'π. Hence, according to (6) and (4)

+Ω+)(Xπ-X0). (20)

From (9), (10), and (15), we have

2 mCπ

dζ
or

where C is an arbitrary constant. Thus,

Xκ - λ'Q = ]/2mCπ C(M+ + Γ+ + Ω+)Ω+

2 m Cπ(M+ + Γ + , ^ + \ / * , r + , ^ + \ l ^ l / A COSC

The first term on the right hand side is zero by virtue of I (3 1) and we
obtain in the two cases (a) and (b):

(a) λ'π-λ'0=(M+

— Ig(l-cosζ) -- lg(l+cosC)
m m \

from (19) and (20) it follows that λf

π — λ'0 is, in this case, exactly equal to
the difference between the corresponding extreme Kerr values, e.g.
necessarily λ0 = λπ — 1. But then, the horizon is clearly the Kerr one with
a = m.

(b) ^ - A Ό = 0 ;

from (18) it follows that this is only possible, if λQ = λπ = 0. But then,
the maximal surface u = X(9) satisfies λ' = 0 in addition to μ'\Λ=χ(^) = 0,
and must, therefore, be a totally autoparallel Cauchy surface, which,
together with (17) and Lemma 6 of I, proves the Theorem 7.

There are a few comments on the Theorem 7. The freedom in Φ2

 and
Ψ4 probably means that the space-times containing any AT-horizon
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with Φ1 = 0 are very numerous, because it seems likely that there is at
least one axisymmetric stationary space-time for any allowed value of
Φ2, Ψ4. In addition to that, complete characteristic initial data must be
given along two intersecting null hypersurfaces [8] in order to determine
the solution uniquely. The AT-horizons consist of only one null hyper-
surface unlike the bifurcate AC-horizons. Thus, one ought to choose
another null hypersurface intersecting the AT-horizon and specify the
rest of initial data along it. On the other hand, if the resulting space-time
should be axisymmetric and stationary, one cannot prescribe the data
along the second null hypersurface completely arbitrarily. The question
is how much freedom can remain.

Concerning (b) of the theorem, it is of interest to construct
at least one space-time containing a (b)-horizon. If we require that the
full ACT-symmetry of the horizon be induced by a space-time symmetry,
then there is no remaining freedom in Φ2 and Ψ4

Φ 2 =0, Ψ4 = 6(Ω+)2Ψ2a
2.

This space-time (if it exists) would be pure vacuum. The horizon would
be bifurcate at any surface α = const and so would all the branch horizons,
because they must have the same structure as the original one
(see II), i.e. any point p of the corresponding space-time lies on two
perfect horizons. Thus, this space-time cannot be asymptotically flat.
On the other hand, it is conceivable that an axisymmetric stationary
shell of reasonable matter surrounding the horizon can separate such an
inner metric from a more sensible outer one. If this proves to be impossible,
and if even all horizons of the (b)-family turn out to have only
asymptotically non-flat surroundings, then we would arrive at some sort
of exclusivity of the extreme Kerr horizon.

3. Surface Area, Angular Momentum, and Charges of
Axisymmetric Horizons

In II it was shown that the AC-horizons determine their axisymmetric
stationary surrounding space-times uniquely, so that the characteristic
parameters of the corresponding black hole such as the total mass M,
total surface area A, total angular momentum J, total electric charge Q
(and magnetic H), can be computed, at least in principle. Concerning the
AT-horizons, some Kerr-Newman-like parameters m, α, <?, h were
formally defined, but their possible relation to M, A, J, β, H was not
clarified. It is the purpose of the present section to calculate the
parameters A, J, β, H from the horizon structure of an axisymmetric
perfect horizon Jf.
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First, we choose a convenient reference frame on M. The coordinates
α, 5, φ always exist such that the line element of the horizon is

ds2 = — R2(dS2 + A2(&) dφ2), (21)

d/dφ being the generator of the axial horizon symmetry and α an affine
coordinate satisfying,

τ-*ιr-l=0 (22)
da oφ \

that is to say, the vector field

L_ 3L--^
is axially symmetric and VLL = 0. Finally, if

1/2 R

then [M, L] =ΩL, and we obtain FLM = 0 defining Ω by

Note that

F J LL=-ΩφL, (25)
e<p

where
Ωφ= -]/2RA(-ίQmΩ) (26)

is the φ-component of the covariant vector ΩA [see I (21)] (which is
identical with the invariant B(9) introduced in II). Let M be embedded
in an axisymmetric space-time Jϊ,

such that

d

* dφ
(27)

where K is the Killing vector field of the axisymmetric group normalized
so that the group parameter spans Jhe interval (0, 2π); choose an axi-
symmetric space-like hypersurface S in Jί intersecting the horizon Jt
at a surface dS with α = 0 at dS. There is a unique pseudo-orthonormal
tetrad L, N, M, M+ along Jl v&Jl such that AT is future oriented and

ΘJL) = Z, θ>|t(Af) = M. (28)
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The total surface area A of dS is clearly given by

0 0

or, using (21)

π

A = 2πR2 J A(9)d9. (29)
o

Introduce the function p(9):

\A(z)dz, (30)

so that ]/g = p'/2π, A = p(π).
The total angular momentum J, as defined by Bardeen, Carter and

Hawking [3], is given by

where one integrates along dS, the semicolon denoting the co variant
derivative with respect to the affine connection V of Jt and

dΣab = L[aNb]]/gd9dφ.

Because Ka;b is antisymmetric in a and b, we obtain

J Ka.bN
aLb}/gdSdφ. (31)

°'L dS

Onjhe_other hand, developing V^K in the pseudo-orthonormal tetrad
Z, JV, M, M+:

VLK = (Ka.bN
aLb)L- (Ka;bM

aLb)+ M - (Ka.bM
alb)M+ ,

applying θ~1 to both sides of this relation and using I (2), (27), and (28),
we obtain

L Qy a b a b a b

But (22), (23), and (25) imply

VL-^-=-ΩφL. (33)
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Comparing (32) and (33) yields, together with (31)

(34)

Using the relation (30) and I (23) and integrating by parts, we express
the angular momentum in terms of the invariant Ψ2 '•

J=-~](-ilmΨ2)PP'd&, (35)
on o

because Ωφ(0) = Ωφ(π) = 0.
The geometric meaning of Ωφ is as follows: parallel transport of any

vector L tangential to the rays along the closed group orbit α = const,
θ = const from φ = 0 to φ = 2π results in exp( — 2πΩφ) - L. Thus, Ωφ is
an invariant, and J is independent of S and dS.

Charges Q and H. The meaning of the invariant Φί is, according to [9]

Let us introduce the real orthonormal tetrad el

a with radial vector e\
oriented out of the sphere dS:

'

The affine coordinate α can always be further specialized so that el

0 is
orthogonal to S : because S and α are axially symmetric the corresponding
transformation (if necessary) of α will not disturb the relation (22). Then

Where E1 and H1 are the outer 35-normal components of El and Hl as
measured by an observer moving along el

Q. Then, the theorem of Gauss
implies

Q-iH = ̂ ~l Φ1]/gd9dφ=R2\ΦίAd9. (36)

The magnitudes of^E1 and H1 are, in fact, independent of any observer
and hypersurface S, because Φί is an invariant (see II).

The simple formulae (29), (34), and (36) determine four of the five
black hole parameters from the corresponding horizon structure. In case
the horizon has some longitudinal symmetry in addition to the axial one,
then there should be a well-definable total mass M of the corresponding
black hole (if there is only one stationary axisymmetric space-time
for the horizon). But M is difficult to obtain, because it is defined by a
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Killing vector field K which is time-like and unit at the infinity of Jί [3],
and so we are as yet not able to calculate M directly from the local

horizon data: we do not know the two factors in K = aL + b~—.
oφ

Concerning the AT-horizons, the formulae (34) and (36) imply that
our Kerr-Newman-like parameters m, α, e, h as defined in II have, at
least partially, not only a formal meaning. Indeed,

(r+ + a2)2 arctg ar+ (r2

+ — a2) 1

4α 2r+

Q — iH = e — ih,

where
% = m +

4. Schwarzschild Black Hole in Weak External Field

In II the question remained open what shape of horizon corresponds
to a given matter and charge content of the outer space-time, and what is
the field around the horizon.

In the present section the last question is answered for a very sim-
plified model. Its main features are

1) exact stationarity and axisymmetry,
2) the matter and charge produce only a small perturbation of the

background geometry,
3) the background geometry is Schwarzschild,
4) the matter and charge are concentrated on a spherical surface layer

at r = R0 (2m <R0< oo).
Such a shell is mathematically described as a jump in the r-derivative

of the metric and vector potential (see, e.g. [11]). The matter of the shell
must satisfy three groups of conditions :

1) the validity of Einstein-Max well equations outside the shell imply
the equations of motion of matter and conservation of charge [11],

2) The distribution and motion of matter and charge must be
stationary and axisymmetric,

3) the stress-energy tensor τab of matter must have one time- or
light-like eigenvector with positive eigenvalue and the dominant energy
condition should not be violated.

1 Note that for the Kerr-Newman black hole with non-zero charges, Jφ —ma;
the minus sign associated with ma appears, because the hole rotates backwards in the
Carter coordinates [6] we are using (see also [10]).
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Several (unpublished) models have been constructed showing that
these conditions are compatible. I emphasize: no attempt is made to
claim that such a (possibly) differentially rotating, soap bubble with
negative surface tension can really be constructed from conceivable
material or even exist in astrophysical systems. It is merely believed
that some qualitative features of the model could have some general
validity.

A part of the well-known results [12,13] on perturbations of Schwarz-
schild background can be summarized as follows:

The stationary, axisymmetric π, l-multipole perturbation of a spin S
field 2 consists, for any / and π (except for I = 0) of two linearly independent,
unique, modes, Φ\ικ, Φjίπ such that, say

1) their radial parts equal +1 at r = R0,
2) Φ$lπ vanishes at oo as r~l,
3) Φ2

slπ is regular at the horizon, but is non-zero (or diverging) at oo.
Φl

slπ is regular at the horizon only if / < S.
Hence, the most general regular solutions of a given S, /, π in the two

regions of the model are

I. (R0<r<ao): Asl«Φl

slπ,

ll.(2m<r<RQYBsl«Φlκ + Csl«Φllκ if

CslπΦ2

slπ if l^

where Aslπ, Bslπ, and Cslπ are arbitrary constants. The continuity at
r = R0 requires (see the Condition 1))

Aslπ = Bslπ + Cslπ, if /<S,

Aslπ = Cslπ, if l^S.

Thus, there are two distinct types of continuous modes:
Hole modes:

BslπΦl

slπ in I. + II., for / < S ,

Matter modes:

Csl«Φl

slπ in I, CslπΦ2

slπ in II., for a n y / .

The hole modes are analytic throughout the spacetime and couple to a
small amount of mass (S = 2, / = 0, π = 0), angular momentum (S = 2,
/ = 1, π = 1), and charge (S = 1, / = 0, π = 0) added to the black hole. The

2 / is the total angular momentum, (— i)π + l is the parity and S is 2 for gravitational,
1 for electromagnetic perturbation mode.
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matter modes couple to the S, /, π-part of the shell stress-energy tensor
(S = 2) and electric current (S = 1) showing the corresponding jump at
r = R0. The decomposition of the shell stress-energy tensor into spherical
harmonics is unique. The coefficients of the decomposition determine the
corresponding coefficients Cslπ without ambiguity. Thus, in this special
model, the stationary space-time, or, with other words, the equilibrium
configuration of the system hole - matter shell, is fixed, if we specify

1) total mass, angular momentum and charge of the black hole,
2) stress-energy tensor of matter (density + angular velocity, stress

being determined by the equations of motion),
3) density and angular velocity of charge.

There is, therefore, a clear sense in which one can say that the equi-
librium degrees of freedom of the black hole are given by the three
parameters 1). If we assume the same not only for our special model,
but for all stationary situations, we obtain a sort of generalized no hair
conjecture.

But the field around the hole is not uniquely determined by the three
parameters 1). One must consider the modes Φ^π, because they describe
the part of the perturbation between the shell and the horizon that
produce a deformation of the horizon from its standard Kerr-Newman
shape. Let us describe an example with pure magnetic perturbation
(total charge of the shell as well as that of the hole is zero). The example
could even have some direct physical value: As it is currently believed
(see, e.g. [14]), the more collapsed an astrophysical system is, the more
significant is the role played by rotation and the magnetic field. For
vacuum black holes (which could be the most collapsed astrophysical
objects at all), the validity of the rule cannot be extended, because the
magnetic field of the original star must be completely radiated away [13]
(if the hole has no net electric charge). On the other hand, if the end-
product of a collapse is a hole surrounded by matter, no proof for
"radiating away" exists, and the conjecture that some of the original
enormous magnetic field remains captured in the matter, even if the
resulting hole is electrically neutral, need not seem a priori wrong.

Price's equation [13]

for the stationary axisymmetric /-partial wave of Φ0-component of
Maxwell spinor has solutions
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where QQ(x) = 1, and Qι(x\ i f / ̂  1, are polynomials with lowest power 2,
of degree /+ 1, whose coefficients are given by the recurrent formula

IΠ^ 1, each of these Φ0's is regular at the horizon and non-zero at oo.
Hence, they represent our matter modes for /^ 1. The magnetic dipole
contribution is

Φ0= - y

where B0 is some real constant. The corresponding magnetic field com-
ponents in the orthonormal tetrad associated with a freely-falling
observer, who starts from rest in spacial infinity (for exact definition,
see [13]) are,

Br = B0cos&, B*= -£0sinθ, Bφ = ΰ. (37)

We have a "homogeneous" magnetic field, which is exactly as strong
at the horizon as at the shell.

In face of this naturally looking result, one is tempted to conjecture
that a charged ring or disk can produce a sort of solenoidal field which
would be even stronger at the horizon than at the source.

There is still a point to be settled. A theorem was proved [15] that
black holes behave like exact conductors, i.e. the electromagnetic field
at the horizon must be purely radial. But this is only true for the fields
in a limiting stationary frame, which is singular at the horizon, because
its radial and time-like unit vectors collapse into the null direction of
the horizon rays. Hence, there is no contradiction to our field (37),
which is written in a regular time-like frame.
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