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Abstract. Let ^(O^C^J^) and &(®2)c&(JίP) be the von Neumann algebras asso-
ciated with the space-time regions Qv and 02 respectively in the vacuum representation of
the free neutral massive scalar field. For suitably chosen spacelike separated regions (9^
and &2 it is proved that there exists a normal product state φ <

φ(AB) = φ(A) φ(B) for all At9t(Qύ and

Some consequences for the algebraic structure of the local rings are pointed out.

I. Introduction

It has been shown by Roos [1] that the local C*-algebras ^(G^ and
31 ($2) associated with spacelike separated regions &ί and Θ2 in Min-
kowski space are statistically independent: every pair of states φ1 of
21(0!) and φ2 of 2ί(02) can be extended to a state φ of 21 (the C*-algebra
generated by all local C*-algebras). Moreover, φ can be chosen to be
a product state for 21(0 i) and 2I(02):

φ(AB) = φ(A) φ(B) for all Ae^O^ and £e2l(02).

For a general structure analysis of physically interesting representations
of the local C*-algebras it would be important to know whether one can
extend the result of Roos in the following way: let 3t(G^ and ^((92) be
von Neumann sub-algebras of J'pf ) 1 associated with the regions Θ1

and 02. Take any pair of normal states φ^ of St(β^ and φ2 of ^(02);
does there exist a normal state φ of tfSffl) which is an extension of φ1

and φ2 and a product state for St(G^ and &(Θ2)Ί If this question had
a positive answer the local rings would have the following remarkable
properties :

a) From the existence of normal product states one could conclude
that ^(^(0^,^(02)) (the von Neumann algebra generated by
and &(Θ2)) is isomorphic to the W*-tensor product of ̂ (0^ and
Locality would reflect itself in a very simple algebraic structure of

is the algebra of all bounded operators in the representation space 2tf of 21.
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b) There is an old conjecture of Borchers which says that it should
be possible to embed the local rings $((9^} and &((92) (which are in general
not Type I) into factors of Type I Jί± and Jί2 respectively without loss
of the local structure :

With the above extension theorem one could immediately verify this
hypothesis. (See the following chapter.)

c) Let Θa and &β be two regions contained in Φ ί . Then it follows from
the properties of the local rings quoted above that every isomorphism Φ
which maps the ring &(@a) onto ffl(&ft) can be implemented by an unitary
operator taken from J4^. Hence, Φ can be extended to an isomorphism
which acts trivially on ̂ ($2)

These few remarks may suffice to make plain the relevance of such
an extension theorem. Unfortunately we have not been able to prove it
starting only from basic principles of quantum field theory. But we shall
show that the theorem holds at least in the simple model of the free
neutral massive scalar field. So the main purpose of this paper is - besides
adding some new information about the good old free field — to show that
the usually accepted postulates of field theory are compatible with the
existence of normal product states within physically interesting repre-
sentations of the local algebras.

II. Some General Remarks

In this chapter we shall make some more or less incoherent remarks
about normal product states. To simplify the discussion we shall restrict
our attention to the vacuum representation of the local algebras. We base
our arguments on the assumption that the vector Ω (which represents the
vacuum) is cyclic and separating for the von Neumann algebras <%(&)
belonging to open regions & with non-empty spacelike complement &.
This Reeh-Schlieder property of the vacuum can be derived from the
basic principles of quantum field theory [2]. Furthermore we use the
fact that the local rings are "almost" factors [3]: let & be any region
containing Θ H- J\f (Jf a suitably chosen neighbourhood of 0 in 1R4). Then
A B = Q for Ae&((9) and Be3t(S)' implies ,4 = 0 or B = Q.

The following simplified version of Theorem 2.7.9 taken from the
book of Sakai on C*- and W^-algebras [4] will be repeatedly used:

Lemma 2.1. Let -M c3S(tf) be a von Neumann algebra with a cyclic
and separating vector and i e, //. Then every normal state φ of Jί can
be represented by a vector ξ e ffl : φ(.) = (ξ,. ξ). If φ is faithful, ξ can be
chosen to be cyclic for Jί.
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Now we are prepared to prove the following theorem which says that
the existence of a product state implies the existence of a very special
one. More precisely:

Theorem 2.2. Let Θ1 and Θ2 be two spacelike separated regions such
that Θί + Jft&i and (92 + J/*C02. V there exists a normal product
state φ for $(& \) and &(@2) then there exists a vector ηeJή? such that

i) φη(.) = (η, . η) is a product state for 9t(G^ and &(&2).
ii) The restriction of φη to &t(G^ and &((92) coincides with the

restriction of φ0 (the vacuum functional) to these algebras2.
iii) η is cyclic and separating for &($(Θ v\ $((9 2)) (the von Neumann

algebra generated by 9t(Q^ ana &((92)).

Proof, i) Because we are free to replace Θl and &2 by somewhat
smaller regions we may assume that the spacelike complement of &± u$2

is not empty. Then the vacuum is cyclic and separating for
9t(β(β^ 9t(G^ and we can represent the restriction of the product
state φ to the algebra 9ί(9t(Q ^, 0t(Θ2)) bY a vector ξςjt?. (See the lemma
above.)

ii) Let P1? P2 be the projections onto the closed subspaces [β(0^)ζ\
and \β(®2)ζ\ of tf. It is obvious that P^ e 9t(G^j and P2 e 3t(02)'. From
the factorisation property of ξ it follows furthermore that

P1AP1=(ξ,Aξ)'P1 for A
and Λ (1)

P2BP2=(ξ,Bξ)-P2 for Be^(G?!).

Thus the state j/;(.) = (P1 Ω, . Pj Ω) }}P1 Ω}}~2 is again a product state for
$(&!) and 3ί(Θ2)- From the fact that the local rings are "almost" factors
and from the cyclicity of the vacuum for the local rings one can easily
conclude that ψ is faithful for 3&(G^. Again from the lemma quoted above
it follows then that there exists a cyclic vector ξc e ̂  which represents
the restriction of ψ to ffl(G^. Now we can construct in a canonical way
an isometric operator U1 e &(&))':

UlAξ=A' for A

It is evident that the ranges of P1 and U1 coincide; so we have Uί Uf — Pί .
From this and relation (1) we get

U f A U ί = ( ξ , A ξ ) ' t for Ae0t(Θ2).

Therefore the state φ^.) - (U^ Ω, . U± Ω) is a product state for 91(0 ̂  and
52) and the restriction of ιpί to 9t(Θ^ coincides with the restriction

This part of the theorem is due to Rinke.
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of the vacuum functional φ0 to this algebra. If one now carries through
the whole construction once more starting with ψ± instead of φ, then
one gets a product state for ^((9^ and &(&2) which coincides with φ0

on each algebra separately.
iii) Let Θ1>ε and (92,ε b

e the regions which are generated by the time
translated regions &1 + t and @2 + t with \t\ < ε:

^,e= U {0* + *} for fc=l,2.
| t |<e

If ε is small enough it follows immediately from the preceding discussion
that there exists a normal product state ω for ^((9ί ε) and @((92tE) which
coincides with the vacuum φQ on each algebra separately. With the help
of the unitary time translation operators U(t) we can construct another
state:

ωh(.)= ] dth(t)-ω(U(t).U-i(t)).
ε

ε

(h is a smooth positive function and j dt h(t) = 1). It is obvious that ωh
— ε

is a normal product state for $(&}) and ^(&2) which coincides with the
vacuum on both algebras. Furthermore, ωh is a faithful state of
^(St(Gl\St(Φ2))\ let β be an element of 3t(Si(G^St(G^ such that
ωh(β*β) = 0 and therefore ω(U(t)Q*QU-1(t)) = Q for |ί|<ε. Clearly
there exists a vector state φζ such that /I φζ ̂  ω for some λ > 0 and from
this it follows that β 17" 1(ί) ζ = 0 for \t\ < ε. It is then standard to conclude
that β = 0 [3]. Thus we know from the lemma that there exists a vector
ηeJt? which is cyclic and separating for ^(^(fi?1),^(C?2)); the state
φη(,) = ( η y . η) is a product state for St(f)^ and &(&2) and the restriction
of φη to ^($i) and ^?(02) coincides with the restriction of φ0 to these
algebras. Π

It is now easy to show that the existence of one normal product state
implies that the extension theorem (which has been indicated in the
introduction) holds:

Corollary 2.3. Let 0 l 9 Θ2 and 0 l 50 2 be regions^ as in the theorem
above. If there exists a normal product state for $(Θ\) and 0l((92), then
every pair of normal states φί of 3k(β^ ana φ2 of $(&2) can be extended
to a normal product state φ of ffl(& ̂  and &((92).

Proof. To begin with we represent φ± and φ2 by vectors ηl9 η2 e 3^.
Since the vacuum Ω is cyclic for $(&]) and ffi(&2) we can find sequences
An e 3t(Φ^ and Bne @((92) such that ηl = s-limAnΩ and η2 = s-limBnΩ.
Then we take the vector η with the properties specified in the theorem
above. It is trivial to verify that s-limAnBnη = ζ exists and that the
product state (ζ,. ζ) is an extension of φί and φ2. Π
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As another application of Theorem 2.2 we want to prove that the
conjecture of Borchers is true if there exist normal product states.

Corollary 2.4. Let η be the vector constructed in Theorem 2.2 and let
P1,P2 be the projections onto \β(®γ)v\\ ana [_&(@2)η'] respectively. If
MI and Jί2 are the von Neumann algebras generated by ^(Θ]},P2 and
0t(@2)> PI respectively, then

i) MI and Jt2 are factors of Type I and
ii) ^(tfJC^C^C^ίC^)'.

Proof, i) From relation (1) in the proof of Theorem 2.2 one derives

PlaPί=(η,aη)- P! for a^M2
and (2)

P2bP2 = (η,bη) P2 for fee^.

Thus MI contains the abelian projection P2 and Jt2 contains the abelian
projection Pί

 3. It remains to show that M± and M2 are factors: let z be
any projection in the center of M±. From relation (2) it follows that

zP2 = P2zP2=(η,zη) P2.

zP2 is again a projection. Hence (η,zη) must be 0 or 1. If zη = Q it
follows that z = 0, because z e ^((P1)

/n^(^2)' and η is cyclic for
«(«(#!), &(G2)\ If (*l> zn) = 1 one concludes that (t-z)η = Q and from
this follows z = i. So the center of M± contains only trivial projections.
Consequently M± is a factor and the same argument shows that Jί2

is a factor too.
ii) Since Pl&^((9l}' and P2e^(02)' it remains to show that P1P2

= P2Pί. Take any A^St(Q^ and Be@(&2). Then

Hence P1 and P2 commute and therefore M± C M'2. Π
It is obvious, but still worth mentioning, that the existence of factors

MI and Jί2 with the properties specified above implies the existence of
normal product states. As another consequence, it follows that certain
"local" isomorphisms can be implemented by unitary operators taken
from these factors:

Corollary 2.5. Let ΘΆ and (9β be two regions contained in G±. If Φ
is an isomorphism which maps ^((9^ onto &(&β) then Φ can be implemented
by an unitary operator U e M± :

Φ(A)=UAU~ΐ for all A
3 For the definition of abelian projections and their connection with Type I von Neu-

mann algebras see [4; Chapter 2.2].
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Proof. Let Pί be the projection defined in Corollary 2.4. Clearly,
P1 2tf is invariant under the action of Jtγ. Thus we can consider the
induced representation πPl of^ί on PA jήf. Since η e P1 ffl, this representa-
tion is faithful and it is easy to verify that πPl(^1) = ̂ (P1^f).

Now πpffiβ^Cπp^Jej and πP^β((9^)dτιPl(Jt^ both have a
cyclic vector, PίΩePί^ and a separating vector, ηeP^J^f. Hence
every isomorphism which maps πPl(^($α)) onto nPί($(Θβ)) is spatial
[5; p. 222, Theorem 3]. Thus there exists an unitary operator Ve τιP\Jί^
such that

πPi-Φ(A)=VπPί(A)V~i for all A

and from this relation the statement follows immediately. Π

To conclude this chapter we want to point out that one cannot
expect to have normal product states for arbitrary spacelike separated
regions Θ1 and &2. There are essentially two classes of configurations for
which such states cannot occur.

a) If the closures of the regions &1 and Θ2

 are not spacelike separated,
then, at least for the free field, it is easy to show that one runs into con-
tradictions if one postulates the existence of normal product states for
such regions. This "boundary effect" is intimately connected with the
infinite extension of momentum space.

b) A typical example of the second class of configurations not
admitting normal product states is the following one4: Let (9γ and (92

be two spacelike separated regions which are maped into themselves
by the translation a: 01-\-aQ(91 and &2 + ag(92. From the isotony of
the local net it follows then that dl(&1 + na)ζ&(@ί) and 3%((92 + na}
ζ&(@2) for all 7i e N. Because of the cluster property of the vacuum
every sequence of local operators C(nά) converges weakly and the limit
is just the vacuum expectation value of C: w-limC(nα) = φ0(C) - 1 Now

n-» oo

assume that there exists a normal product state φ for the rings ̂ (^J and
and take any pair of operators A e St(Q^ and B e 0l(Θ2). Then

φQ(AB) = lip φ(A(nά) B(na)) = lip φ(A(na)) φ(B(na)) = φ0(A) φ0(B)

But the vacuum is not a product state for &t(@^ and ffl(&2) because it is
cyclic for these rings. Thus there does not exist any normal product state
for &(Qύ and 3t(Θ2).

It is a remarkable fact that for both configurations of &1 and Θ2 the
results of Roos are still valid - at least if the local rings are factors. The
difficulties quoted above only occur if one insists on the product state
being a normal state within a physically interesting representation.

This example is due to Araki.
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III. The Product State for the Free Field

In this chapter we shall show that there exists a normal product
state for ^(Θ^} and ffl(G2) in the case of the free neutral massive scalar
field. To avoid unnecessary complications let us assume that the region
Φί is the interior of the causal shadow of a compact region Ov ClR3 at
time t = Q. With other words: &1 is the "double cone" generated by Ov

at ί = 0. (9 2 shall be generated in the same way by a region O2 ClR3 with
compact complement. Both regions shall have smooth boundaries and
the distance between O^ and O2 is supposed to be greater than zero.
(All other interesting configurations can be reduced to this one by first
making a Poincare transformation and then restricting to subregions
of 0! and$2.)

These restrictions on the regions make it possible to use the time-slice
description for the free field. We adapt our notation to that of Araki [6]
and work with the following quantities: let K be a direct sum of Schwartz-
spaces, K = ̂ (IR3)©^(1R3). We shall denote the elements of K by
capital letters F, G. K is the testfunction space for the field operators,

(φ(.) denotes the "field" and π(.) its canonically conjugate "momentum".)
The adjoint of B(F) is

B(F)* = B(ΓF),

Γ being the antilinear operator of complex conjugation, ΓF = F. The
commutator of the field B(.) defines a hermitian form γ on K:

y(F9 G) - 1 = B(F)* B(G) - B(G) B(F)* = F, °

With this structure the *-algebra 2I(X, y, Γ) generated by all polynomials
of the operators B(F) is a "self-dual CCR algebra" in the sense of Araki [6].

Now we come to the definition of the vacuum functional φ0 of
$I(K, y, Γ). As a quasifree state φ0 is completely determined by its 2-point
function

~ (3)

With this definition of the vacuum φQ the correspondence between regions
in configuration space and sets in the testfunction space K is as follows:

5 Here (. , .) denotes the scalar product in L2(IR3)®L2(IR3). We shall also use this
symbol for the scalar product in L2(IR3), but we think that no confusion will arise because
we shall always use capital letters for elements of L2(IR3)®L2(1R3) and small letters for
elements of L2(IR3).
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the "local" self-dual CCR algebra W(K(O\ y, F) attached to the region
OclR3 at time ί = 0 is generated by the field-operators B(F) with test-
functions F e K(O\

K(O) = ω1/2 y(O)®ω- 1/2 Sf(O) .

(The operator ω is diagonal in momentum space: ώ(p) = (\p\2 + m2)1/2,
m φ 0 being the mass. ^(O) denotes the elements in ^(IR3) with support
in O.) The local rings 31(0) (Θ being the causal shadow of the region
OclR3 at time ί = 0) are generated by the spectral projections of the
selfadjoint elements of the algebras 2l(K(O), y, Γ) in the vacuum repre-
sentation.

Let us now briefly sketch how we shall proceed in order to show that
there exist normal product states for St(β^ and &((92)\ from the con-
siderations in Chapter II we know that one has only to check whether
there exists a normal product state for @fc(&^ and t%(Θ2) which coincides
with the vacuum φ0 on each algebra separately. Therefore we start with
a positive functional φp on St(G^ V $(&2) (

tne algebra of all finite sums
Σ AnBn, An e 9t(Θύ and Bn e &(®2}} which is defined by

φp(ΣAnBn)=Σφ0(An)φ0(Bn) for An*»(Qύ and Bne®(Θ2}. (4)

Clearly φp induces a representation of the self-dual CCR algebra
<Ά(K(O1uO2),y,Γ). Since the vacuum is a quasifree state of the CCR
it follows from the definition that φp is a quasifree state of the CCR too.
Hence we have to compare two quasifree representations of the CCR
which are primary (as we shall see). Now Araki [7] has given a criterion
which tells us when two such representations are equivalent. So we have
only to check his conditions in order to verify that φp can be extended
to a normal product state for &(&ύ and ^(02)

To carry through this program we need some more definitions. We
introduce on K(O\ O = O1uO2 a scalar product (.,.)o :

(F, G)0 = S0(F, G) + S0(ΓG, ΓF) = (F, G) ||F||2 = (F, F)0 . (5)

The completion of K(O) with respect to || . ||0 is denoted by K0(O); KQ(O)
is a closed subspace of L2(1R3)0L2(1R3). On K0(O) we can represent the
positive form S0(. , .) (see relation (3)) by a positive operator 50 which is
bounded by 1 :

~ ; (F,S0G)0 = So(F,G) f o r F,GeK0(O). ( 6 )

(Here E denotes the orthogonal projection in L2(1R3)0L2(]R3) onto
K0(O).) The restriction of φ0 to 8ί(K(O),y,Γ) is then completely
determined by S0.
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Next we consider the quasifree state φp introduced by relation (4).
Because of the non-zero distance of O± and O2, every element F e K(O)
can be decomposed uniquely into a sum of an element Ft e K(O^} and
an element F2 e K(O2). From this and relation (4) one gets for the 2-point
function:

Sp(F, G) = φp(B(F)* B(G)) = S0(Fi9 GJ + S0(F2, G2). (7)

Now we proceed as above: we introduce on K(O) another scalar product

(.,-),'

The completion of K(O) with respect to ||. ||p is denoted by Kp(O}. From
(8) and the definition of the decomposition F = F1 + F2 it follows im-
mediately that there exist two mutually orthogonal projections Θx and
Θ2 on Kp(O) which satisfy Θ1F = Fί and Θ2F = F2 for all FeK(O}.
Thus Kp(O) can be considered as a direct sum of KQ(O^ and K0(O2).

With the help of Θ^ and Θ2 we can represent the positive form
Sp(.,.) on Kp(O) by a positive operator Sp which is bounded by 1:

(F,SPG)P = SP(F,G) for F,GeKp(O).

(Here El7E2 arc the orthogonal projections in Z?(IR3)®£2(J[R3) onto
KoίOJ and K0(O2) respectively.) Now we are prepared to formulate
the criterion given by Araki [7; Lemma 6.2 and 6.5].

Criterion. The representations π0 and πp of ^(ΘJV &((92) induced
by φ0 and φp respectively are unitarily equivalent if the following con-
ditions hold:

i) 50 and Sp do not have the eigenvalue \ in K0(O) and Kp(O) re-
spectively.

ii) The norms ||. ||0 and | |. ||p are equivalent on K(O).
iii) The operators (S0 - Sp) (1 - 2S0)"1 and ]/S0(ϊ-S0) ~ ]/Sp(t-Sp)

are of Hilbert-Schmidt class in K0(O). (Here we have identified K0(O)
and Kp(O) using Condition ii). The positive square root of S0(t — S0)
is relative to (., .)o and tnat °f ^p(t — Sp) is relative to (., .)p.)

 6

iv) S0 and Sp do not have the eigenvalue 0 in K0(O) and Kp(O)
respectively.

For a better understanding of this criterion let us illustrate which
properties are imposed by these conditions on the representations π0

6 Our Condition iii) differs from the condition Araki has given. We shall show in
Appendix A that both conditions are equivalent.
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and πp: Condition i) is equivalent to the requirement that both represen-
tations are primary. It is well known that this is the case for the represen-
tation π0 [8] and it follows from the tensor product structure of the
representation induced by φp that πp is primary too. If in addition the
Conditions ii)and iii) are satisfied then the two representations are quasi-
equivalent. This would be already enough to prove that π0 and πp are
unitarily equivalent because one knows that the local rings are Type III
[8]. Hence it would actually not be necessary to check Condition iv)
which says that φ0 and φp must be separating states. Yet for the reader's
convenience we shall prove explicitly that all the conditions given by
Araki are fulfilled in our special case. Let us start with the first one:

Lemma 3.1. S0 and Sp do not have the eigenvalue \ in K0(O] and
Kp(O) respectively.

Proof, i) Let Eπ and Eφ be the projections in L2(IR3) onto the closed
subspaces [ω1/2y(O)] and [ω~1/2^(O)] respectively. Then the pro-
jection E in L2(1R3) 0L2(IR3) onto K0(O) can be expressed in the following
way:

Thus S0-— F = 0 in K0(O) implies that EφEπf = EπEφg = 0 for

certain elements /e[ω1/2^(O)] and ge [ω~1/2^(O)]. We want to
show that f = g = Q.

Take any element /zeZ?(IR3). h can be decomposed into a sum
h = hί+h2 with h1eL2(O) and h2 eL2(lR3 - O). Since we can find for
each /e [ω1/2^(O)] a sequence φne^(O) such that / = s-limω1/2φn,
we get

From this it follows that ω~lj2f = Q and therefore / must be zero.
In order to prove that g = 0 we have to be a little bit more careful.

Let ® ω ι/2 be the domain of ω1/2. The elements h e L2(1R3) which can be
expressed ash = h1+h2 with /ιx e L2(O)n^ωι/2 and h2 e L2(1R3 — 0)0^1/2
are a core for ω1/2 because the boundary of O is smooth [8]. Now
we can proceed as above: every ge [ω~1/2^(O)] is a strong limit
g = limω" 1/2ψn with ψn e ^(O). Take any h from the set described above.
Then
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From this it follows that ge^ωι/ 2 and ω1 / 2# = 0, hence g = ΰ. Thus we
have proved that S0 does not have the eigenvalue ^ in K0(O).

I i\
ii) Let us now assume that \Sp -- \F = Q for some FeKp(O).

From relation (8) and (9) it then follows that

o = 0 n

and

~ = 0 in K0(O2).

Applying the same methods as in the preceding section, one can conclude
that {^F^Oin KQ(O^ and Θ2F = Q in K0(02); from this one imme-
diately gets the desired result: F = 0 in KP(O). Π

In the next step we shall prove that the norms ||.||0 and ||.||p are
equivalent. Actually if O1 and O2 were sufficiently far apart, this would
follow from the cluster property of the vacuum. Since we want to prove
the statement for arbitrary positive distances between the regions, we
proceed as follows :

Lemma 3.2. The norms ||.||0 and \\.\\ p on K(O) are equivalent.

Proof. To begin with we shall show that there exists a fixed positive
number ε < 1 such that

\(f,ω-1g)\2^ε2(f,ω-1f)(g,ω-1g) and \(f,ωg)\2 ^ε2(f,ωf)(g,ωg)

for all /e ̂ (OJ and g e &*(O2). Let d be the distance between Ov and O2

and consider the function

s(p)= f d3x~e-'^.

It is easy to verify that oo > cί Ξ; (\p\2 + m2)1/2 s(p) ^c2 > 0. Thus one can
find a number <5 and a positive number ε < 1 such that

\(\p\
and

Let ω*, ω# be two operators which are diagonal in momentum space,

<o*(p) = δ ' s ( p ) and ω#(p) = δ - (\p\2 + m2) s(p) .

Take any element ge <9*(O2). It follows immediately from the definition
of s(p) that ω* g and ω# 0 are elements of ^(1R3) and that the supports
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of ω* g and ω# g in jc-space are separated from O1. Thus one gets

( f , ω * g ) = ( f , ω * g ) = 0 for all fe#>(OJ and #e^(02).

From this it follows

K/.ω-^IHίMω^-ω^

| ̂  ε j ^3p(|j>|2 + m2)- ̂  \f(p)\ - \g(p)\ ^ ε(/, ω~lf)112 fe, ω~ l

and in the same way \(f, ωg)\ :g ε(/, ω/)1/2 (#, ω#)1/2. Now it is obvious
that

and

for arbitrary /e^ίOJ and ge^(02). Recalling the definition of ||.||0
and ||.||p it is trivial to conclude from these equations that

ε)-1 / 2 | |F||0 for all FεK(O). D

Now we come to that condition in Arakis criterion which looks most
complicated. It will turn out that the operator E1E2 is of trace class in
L2(IR3)0L2(1R3) and this allows us to verify Condition iii).

Lemma 3.3. The operators (S0 - Sp) (i- 2SO)"1 and ]/S0(l-S0)
- ]/Sp(i - Sp) are of Hilbert-Schmidt class in K0(O).

Proof. Starting from the relations (6) and (9) a straightforward
calculation shows that

i) (Sp~SQ)(t-2S0Γ
1=E-E1-E2

and

ii) 1/50(1 - S0) - 1/SP(1 - Sp) = {ET(t - E) TE}112

-{E1T(ίί-E1)TE1}
ίl2Θ1-{E2T(t-E2)TE2}

ί/2Θ2.

(Here we have introduced the operator T=i I . The symbol {.}1/2

says that the positive square root has to be taken in L2(1R3)0L2(1R3).)
i) It follows from the definition of Θx and <92 that Θ1 + <92 = 1 in

JK0(0). Thus one gets

= (E-Eί-E2)(Θ1 + Θ2) = (E-E1- E2) (E^Θ^ E2 Θ2)

= -E2E1Θ1-E1E2Θ2.
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Hence if El E2 is of trace class in K0(O), (Sp - S0) (i - 2S0)~1 is of trace
class too and thus a fortiori of Hubert-Schmidt class,

ii) Let us next prove that the operator

{ET(t - E) TE}1/2 - {Eί T(l - Ei) TE^112 Θ^
(a) -{E2T(l-E2)TE2}

1/2<92

is of Hubert-Schmidt class in K0(O) if E1E2 is of trace class. It follows
from the definition of Θ1 and Θ2 that

Θ1=E1Θ1=E1-E1Θ2 = El-E1E2'Θ2 and Θ2 = E2 -E2E1 Θ^

and therefore we can replace Θ1 and Θ2 in the expression (a) by E1 and
E2 respectively, the difference being of trace class. Therefore we are left
with the question of whether

{£T(i-£)TE}1 / 2-{E1T(i-E1)TE1}
1 / 2-{E2T(l-E2)TE2}

1/2

is of Hubert-Schmidt class. In Appendix B it is shown that the operator
{X2+YYI2~X (oo>X^O and X2+Y^G) is of Hubert-Schmidt
class if Y is of trace class. If one puts X={E1T(t-Eί)TEί}

1/2

+ {E2T(i-E2)TE2}
1/2 and X2 + Y = ET(t-E) TE one has only to

verify that

(b) ET(i - E) TE - E! T(i - EJ TE1 - E2 T(t - E2) TE2

is of trace class. (Here we have omitted the "mixed terms"
{E^T^-EJ TE t}

1/2 {E2T(ί-E2) TE2}
1/2 etc, again using the fact

that E1E2 is of trace class.) Now we know from our preceding con-
siderations that one can replace in expression (b) the operator E by
E! + E2, the error being of trace class. It is furthermore easy to show that
E1TE2 = E2TE1=Q and T T = i. Bearing this in mind, it is almost
evident that the operator given by expression (b) has the desired prop-
erties.

iii) Finally we have to show that the operator E1E2 is really of trace
class. For this purpose we express E1 and E2 as follows:

Λ - /£12) 0
and

E%\ E(φ} fe=l,2 being the projections onto the closed subspaces
[ω1/2^(Ofe)] and [ω~1/2^(Ofc)] of L2(1R3) respectively. Thus it suffices
to show that E(

π

ΐ}E(2) and E^E^2) are of trace class in L2(1R3).
Now let #! be an element of 5^(1R3) and B2 be an element of $M(IR3)

(the space of slowly increasing °̂° functions) such that the distance
between the supports of 9ί and 92 is non-zero and

B1(x)=i for x e O 1 ? B2(x)=i for xeO2.
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(Such functions exist since the region O1 is compact and the distance
between O1 and O2 is greater than zero.) Let A19A2 be the operators
of multiplication by θ^x) and θ2(

χ) m x-space respectively. Then it is
easy to verify that the operators

ω-ll2Aίω
1'2 and ωl/2A2ω~ll2 = t + ω1/2(A2 -l)ω~1/2

are bolmded in L2(IR3) if one notes that ($2 — 1) is an element of #°° with
support in the (compact) complement of O2. From the definition of
E(

π

1} and E(2) it follows furthermore that

and
hence

Thus it suffices to show that ω~1/2 AίωA2ω~1/2 is of trace class in
L2(IR3). Now the function

is arbitrarily often differentiable for z φ 0 and it decreases (with all its
derivatives) faster than any inverse power of |z| if z|-»oo. Therefore
the kernel of A 1 ω A 2 in x-space,

is an element of ^(IR6). Passing to momentum space, it is obvious, that
the kernel of ω~1/2 Δ1ωA2ω~1/2 is also an element of ^(IR6) and from
this fact it follows that ω"1/2 AίωA2ω~112 is a trace class operator in
L2(IR3). Thus we have proved that E(

π

l}E(2} is of trace class in L2(1R3).
If one applies the same methods to E^E^ one can conclude that this
operator has the same property. Π

It remains to prove that the last condition of the criterion is also
satisfied.

Lemma 3.4. SQ and Sp do not have the eigenvalue 0 in KQ(O) and
Kp(O) respectively.

Proof. ϊ)LetF = f®gbQ an element of KQ(O) such that

S0F = 0, hence E( { ) -S 0 F = 0.
\ — i I/

From this one gets for the components of F after a simple calculation

Ef = E = f and Eg

It is well known that for arbitrary open regions 0 C 1R3 the linear span of
&(0) and ω^(0) is dense in L20R3). (This follows immediately from the
fact that there do not exist positive energy solutions of the Klein-Gordon
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equation which vanish in open regions of IR4.) Now take any
he^(]R3 — 0). Since / = s-limω1/2φπ = s-limω~1/2y^ for suitable se-
quences φn9 ιpn 6 £f(O) one can conclude

(h, ω~ 1/2/) = (ωft, ω~ 1/2/) - 0 .

Thus we have proved ω~i/2f = ΰ and from this follows / = 0. With the
same methods one shows g — 0, hence F = 0.

ii) Let us assume next that there exists a F e Kp(O) such that SpF = 0.
From this one gets the relations

1 1F = n X o !

and

£2(! "^£2-0^ = 0 in Xo(02).

If one performs the same calculations as above one gets Θ1F = 0 in
Ko(Oι) and Θ2F = 0 in K0(O2), hence F = 0 in Kp(O). D

Now we are finished: since all the conditions are satisfied it follows
from the criterion that the representations π0 and πp are unitarily
equivalent. Thus φp can be extended to a normal state dί0t(β(Θ^ &(@2)).
Lemma 2.1 guarantees that this extension of φp can be represented by a
vector ηeJ^. Hence there exists a normal product state for 0t(Θ^ and

Theorem 3.5. Let Θ ± be α bounded region such that &ί + jV is spacelike
separated from the region &2. Let ^((9^ and ffl(Φ2) be the local rings
associated with these regions in the vacuum representation of the free
neutral massive scalar field. Then there exists a vector ηeJtf such that

= φ0(A) φ0(B) for all Ae^(Θ^ and

ΓV. A Necessary and Sufficient Condition

The existence of normal product states could be established in the
free field case. Since our methods of proof have been very much adapted
to the special features of this model it is opportune to say something
about the general situation.

If one wants to investigate whether there exist normal product states
in the vacuum representation of an algebra of observables one should
start with the state φp of ffl(&ι) V ffi(&2) which is defined by

φp(Σ AnBn) = Σ φ0(An) φ0(Bn) for all An E »(G& Bn e
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One knows from Theorem 2.2, that φp is a vector state if there exists any
normal product state for these algebras. In this case the norm distance
of φ0 and φp with respect to $(0^) V $(&2) would be less than 2 since φ0

is separating for {3t((S^ V

On the other hand this is a sufficient condition for the existence of normal
product states since it implies that the representations π0 and πp are
not disjoint [9]. To simplify the discussion let us assume that the local
rings ^($i) and &((92) are factors. (This is a reasonable postulate in
quantum field theory.) Then np(β(G^ V St((ΰ2))" ^ π0(gt(ΰ J)® π0(3t(Φ2))
is also a factor and from this it follows that πp is isomorphic to a sub-
representation of π0. Hence by Lemma 2.1 φp can be extended to a
vector state of &(&).

Thus it suffices in principle to calculate the norm distance of the
states φ0 and φp with respect to ffl^JV $(&2) in order to prove or
disprove the existence of normal product states. Yet this is a very hard
task even in the simple model which was the subject of this paper.

Appendix A

As was pointed out in Chapter III, our Condition iii) differs from the
condition originally given by Araki [7; Lemma 6.5]. For the sake of
completeness we want to prove the equivalence of both formulations.

Lemma. Let 0 ̂  S0 rg i and 0 ̂  Sp ^ i be two operators which do not
have the eigenvalue \ on K0(O) and Kp(O) respectively. Assume furthermore
that the norms ||.||0 and \\.\\p are equivalent. Then the following conditions
are equivalent:

i) The operator t-σ(Sp)e~χ(Sp)eχ(So)σ(SQ) is of Hilbert-Schmidt
class in K0(O).

ii) The operators (SQ - Sp) (i - 2S0) ~ 1 and |/S^Ϊ-S0) -1/^(1 - Sp"j
are of Hilbert-Schmidt class in K0(O).

(Here we have defined σ(Sp) = \2Sp-t\ (2^-i)"1 and χ(Sp)
= Tanh"12|/Sp(i — Sp); the absolute value and the positive square root
have to be taken in Kp(O). The operators σ(S0) and χ(S0) are defined
analogously.)

Proof. It follows from the definition of Tanh"1^) that

and
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Thus the operator in Condition (i) can be rewritten:

To begin with, let us show that ]/S0(i-S0) - |/Sp(i - Sp) is of Hubert-
Schmidt class if Condition (i) is satisfied. For this purpose we multiply
the operator (ϊ) on the left by ]/S^(]/S^+ ]/i - Sp) and on the right by

It follows then that

(a) ]/Sp(t-Sp) S0-Sp }/S0(ί-S0)

is of Hubert-Schmidt class. If one multiplies (i') on
]/i - Sp(]/S~+ l/i - Sp) and on the right by (]/S~0 - ]
one can conclude that

(b) sp) - s0) - ]/sp(ί-sp) (i -
is of Hubert-Schmidt class too. The difference between (b) and (a) is
just l/S0(i - S0) - l/Sp(i - Sp). Hence this operator is of Hubert-
Schmidt class if Condition (i) is satisfied.

Since ]/S~p + |/i - Sp Ξ> i in Kp(O) and the norms ||.||0, ||.||p are

equivalent it follows that j/S^ 4- ]/ί — Sp has a continuous inverse
in K0(O). If one now multiplies (i') on the left by
and on the right by (j/S0 + 1/i — S0)~2 one gets after a simple calculation
the result

2{]/Sp(t-Sp) - 1/S0(1-S0)} + 2(Sp - S0)(ll - 2S0)- 1

and this operator is of Hubert-Schmidt class iff Condition (i) is satisfied.
From this fact and the preceding considerations the statement of the
lemma then follows immediately. Π

Appendix B

Lemma. Let X, Y be bounded operators on a Hilbert space ffl such
that X ^ 0, X2 + Y ̂  0. We furthermore assume that Y is of trace class.
Then H = }/X2 + Y-X is of Hilbert-Schmίdt class.

Proof, i) First we shall prove that H is a compact operator: the
function ]/z is continuous for z ̂  0. Thus by the Weierstrass approxima-
tion theorem there exists for every ε>0 a polynomial Pn(z) such that
|]/z-Pπ(z)|<ε for ze[0, \\X2\\ + \\X2 + F||]. From this it follows that
||^-Pπ(^2)||<ε and \\\/X2 + Ύ-Pn(X2+ Y)\\ <ε. Now the operator
Pn(X2 + Y) — Pn(X2) is compact because it is a finite sum of operators
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each of which contains the trace class operator Y as a factor. Since
|| {jA2+7- X} - {Pn(X2 + 7) - Pn(X2)} \\<2εH can be approximated
in the norm topology by compact operators. Thus H is a compact
operator itself.

ii) Since H is compact and selfadjoint there exists an orthonormal
basis {Φn} in ^f which diagonalizes H, HΦn = λnΦn. Furthermore
(H + X)2 = X2+Y, hence Y = H2 + XH + HX. Taking matrix elements
of this equation one gets

KΦ,, YΦ n)\ = \λ2 + 2λn(Φn9 XΦn)\ = \λn\ - \(Φn, {H + 2X} Φn)\ .

From the definition of H it follows immediately that — (H
Thus one gets \λn\ ^ |(ΦΠ, {H + 2X} Φn)\ hence \λn\

2

^\(Φn, YΦn)\- Since Y is a trace class operator we can conclude that
00

Σ \λn\
2 < oo and this proves our statement. Π
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