Commun. math. Phys. 36, 263—276 (1974) © by Springer-Verlag 1974

Strict Convexity of the Pressure: A Note on a Paper of R. B. Griffiths and D. Ruelle

H. Roos

Institute for Theoretical Physics, Groningen, The Netherlands*

Received November 11, 1973

Abstract. Strict convexity of the pressure of a quantum lattice gas is demonstrated in [1] with the help of a trace condition. An interpretation of that condition is given, and, simultaneously, an extension of the result of [1]. In particular, it is shown that the pressure is a continuous function of the lattice gas density.

I. Introduction

It has been demonstrated by Griffiths and Ruelle [1] that the pressure $P(\Phi_i)$ and the time automorphisms $\tau_t(\Phi_i)$, i = 1, 2, exist are called function of the interaction Φ . One assumption used for the case of a quantum lattice gas is the following:

$$\operatorname{Tr}_{Y} \Phi(X) = 0$$
 for all $Y \subset X$, all finite $X \subset \mathbb{Z}^{\nu}$. (1)

Here, Z^{ν} describes the (ν -dimensional) lattice, Tr_{γ} denotes the partial trace. We are concerned with the interpretation of this condition which is not given in [1].

Definition 1.1. Two interactions Φ_1 and Φ_2 for which the pressures $P(\Phi_i)$ and the time automorphisms $\tau_t(\Phi_i)$, i = 1, 2, exist are called physically equivalent if $P(\Phi_1) = P(\Phi_2)$ and $\tau_t(\Phi_1) = \tau_t(\Phi_2)$. We then write $\Phi_1 \simeq \Phi_2$.

In view of Theorem 2.2 below, this definition seems to be a sensible one. It will turn out that in every class of equivalent interactions with vanishing trace, there is a unique interaction with vanishing partial traces, i.e. satisfying (1), provided a certain temperedness condition is fulfilled. This allows a generalization of the results of [1]; in particular, we can show the continuity of the pressure as a function of the lattice gas density.

II. Notations and Results

We study a quantum lattice system over Z^{ν} , with a two-dimensional Hilbert space \mathscr{H}_x attached to every $x \in Z^{\nu}$, $\mathscr{H}_X = \bigotimes_{x \in X} \mathscr{H}_x$. $X, Y, \Lambda, ...$

^{*} On leave of absence from the Institut für Theoretische Physik, Universität Göttingen, Fed. Rep. of Germany.

always denote finite subsets of \mathbb{Z}^{\vee} , N(X) is the number of points in X. If $Y \in X$, \mathscr{H}_X will be identified with $\mathscr{H}_Y \otimes \mathscr{H}_{X \setminus Y}$; and similarly, we identify $A \in \mathfrak{B}(\mathscr{H}_Y)$ and $A \otimes \mathbf{1}_{X \setminus Y} \in \mathfrak{B}(\mathscr{H}_X), \mathfrak{B}(\mathscr{H}) = \text{set of bounded operators on } \mathscr{H}.$ $A \in \bigcup_A \mathfrak{B}(\mathscr{H}_A)$ is called strictly local; $\mathfrak{A} = \bigcup_A \mathfrak{B}(\mathscr{H}_A)$ is the algebra of observables.

The translationally covariant interaction is given by a function $X \mapsto \Phi(X) \in \mathfrak{B}(\mathscr{H}_X), \Phi(X)$ self-adjoint. Let $f(\xi)$ be a real valued function over $\mathbb{R}^+, f(\xi) \ge 0$, then we define the *f*-norm of Φ by

$$\|\Phi\|_{f} = \sum_{X \ge 0} \|\Phi(X)\| f(N(X)).$$
(2)

The interactions Φ with $\|\Phi\|_f < \infty$ form a Banach space B_f .

For $A \in \mathfrak{B}(\mathscr{H}_X)$, $Y \subset X$, $\operatorname{Tr}_Y A \in \mathfrak{B}(\mathscr{H}_{X \setminus Y})$ denotes the partial trace, and

$$\operatorname{tr}_{\mathbf{Y}} A = 2^{-N(\mathbf{Y})} \operatorname{Tr}_{\mathbf{Y}} A . \tag{3}$$

Writing $tr_{X\setminus Y}$, we generally mean that Y is a proper subset of X. If a term tr_{φ} occurs in a summation it is meant to be zero.

Lemma 2.1. If $Y, Y' \in X \in \mathbb{Z}$, $A \in \mathfrak{B}(\mathcal{H}_Z)$, then

$$\operatorname{tr}_{Z\setminus X}\operatorname{tr}_{X\setminus Y}A = \operatorname{tr}_{Z\setminus Y}A \tag{4a}$$

$$\operatorname{tr}_{X\setminus Y}\operatorname{tr}_{X\setminus Y'}A = \operatorname{tr}_{X\setminus (Y\cap Y')}A \tag{4b}$$

$$\|\operatorname{tr}_{\mathbf{Y}}A\| \leq \|A\| \,. \quad \Box \tag{4 c}$$

The proof is trivial.

The Hamiltonian belonging to the interaction Φ is

$$H_{\Lambda}(\Phi) = \sum_{X \in \Lambda} \Phi(X) .$$
⁽⁵⁾

The pressure and the time evolution of the system are defined by

$$P(\Phi) = \lim_{\Lambda \to \infty} N(\Lambda)^{-1} \log \operatorname{Tr}_{\Lambda} e^{-H_{\Lambda}(\Phi)}, \qquad (6)$$

$$\tau_t(\Phi)A = \lim_{\Lambda \to \infty} \tau_t^{\Lambda}(\Phi)A, \tau_t^{\Lambda}(\Phi)A = e^{itH_{\Lambda}(\Phi)}A e^{-itH_{\Lambda}(\Phi)}, A \in \bigcup_{\Lambda} \mathfrak{B}(\mathscr{H}_{\Lambda}).$$
(7)

The limits are known to exist [2, 3] if $\Phi \in B_{f_1}$ (resp. $\Phi \in B_{f_2}$), $f_1(\xi) = 1/\xi$, $f_2 = e^{\alpha\xi}$, $\alpha > 0$. $\Lambda \to \infty$ means the Van Hove limit (resp. $\Lambda \to \infty$ such that it eventually contains every finite subset of \mathbb{Z}^{ν}).

Our main result is the following

Theorem 2.2. For every interaction Φ which satisfies

- (a) $\Phi \in B_{f_3}, f_3(\xi) = e^{\xi^2},$
- (b) $\operatorname{Tr}_{X} \Phi(X) = 0$ for all $X \in \mathbb{Z}^{\nu}$,

there exists a $\tilde{\Phi}$ such that

- (i) $\tilde{\Phi} \in B_{f_2}, f_2(\xi) = e^{\alpha \xi},$
- (ii) $\operatorname{Tr}_{\mathbf{Y}} \tilde{\Phi}(X) = 0$ for all $Y \subset X$, all $X \subset \mathbf{Z}^{\nu}$,
- (iii) $\tilde{\Phi} \simeq \Phi$,

(iv) $\tilde{\Phi}$ is unique. If Φ_1 and Φ_2 satisfy (a) and (b), then $\Phi_1 \simeq \Phi_2$ if and only if $\tilde{\Phi}_1 = \tilde{\Phi}_2$.

(v) $\Phi_1 \simeq \Phi_2$ implies $P(\beta \Phi_1) = P(\beta \Phi_2)$ for all $\beta > 0$, and $\varrho(A_{\Phi_1}) = \varrho(A_{\Phi_2})$ for all translationally invariant states ϱ , where $A_{\Phi} = \sum_{X=0} \Phi(X) N(X)^{-1}$

is the observable of the mean energy per site. \Box

The equivalence relation \simeq is defined in Definition 1.1. The requirement (a) can be weakened (compare the proof).

For a potential which does not satisfy (b) we define

$$\Phi^{T}(X) = \Phi(X) - \operatorname{tr}_{X} \Phi(X) \cdot \mathbf{1}_{X}.$$
(8)

$$C_{\Lambda}(\Phi) = \sum_{X \subset \Lambda} \operatorname{tr}_{X} \Phi(X) \,. \tag{9}$$

Then we have

Proposition 2.3. (i) If $\Phi \in B_f$, then $\Phi^T \in B_f$, (ii) $C_A(\Phi) = \operatorname{tr}_A H_A(\Phi)$, (iii) if $\Phi \in B_{1/\xi}$, then $\lim_{A \to \infty} N(A)^{-1} C_A(\Phi) = \pi(\Phi)$ exists and

$$P(\Phi^T) = P(\Phi) + \pi(\Phi), \ \tau_t(\Phi^T) = \tau_t(\Phi). \quad \Box$$
(10)

We can generalize the result of Griffiths and Ruelle for sufficiently tempered interactions with the help of Theorem 2.2 and Proposition 2.3:

Theorem 2.4. Let us assume that $\Phi_1, \Phi_2 \in B_{f_3}$, then the pressure $P(\Phi)$ is strictly convex between Φ_1 and Φ_2 if and only if Φ_1^T and Φ_2^T are not physically equivalent. \Box

Remark 2.5. According to (ii) and (iii) of Proposition 2.3, $H_A(\Phi^T) = H_A(\Phi) - \operatorname{tr}_A H_A(\Phi)$, and $\lim_{A \to \infty} N(A)^{-1} \operatorname{tr}_A H_A(\Phi)$ exists. In the limit $A \to \infty$, the "energy per site" is thus changed by a finite amount if we go over from Φ to Φ^T , independent of the state of the system. One may consider this as a physically irrelevant renormalization and consider Φ and Φ^T as equivalent in a wider sense. Then Theorem 2.2 implies, loosely speaking, strict convexity of the pressure as a function of the extended equivalence classes.

Let \mathcal{N}_x denote the particle number operator in \mathscr{H}_x ; $\mathcal{N}(X) = \sum_{x \in X} \mathcal{N}_x$. Define (0) $\mathcal{N}(X) = \mathcal{N}(X)$

$$p(\beta, \mu) = P(\beta \Phi_{\mu}), \qquad \Phi_{\mu}(X) = \Phi(X) - \mu \delta_{1, N(X)} \mathcal{N}(X),$$

$$\delta_{a,b} = \text{Kronecker symbol}.$$
(11)

 $[H_A(\Phi_\mu) = H_A(\Phi) - \mu \mathcal{N}(A)$ gives rise to the statistical operator of the grand canonical ensemble.]

It is known [4] that

$$p^{\Phi}(\beta,\mu) = \sup \left(S(\varrho) - \beta \varrho(A_{\Phi}) + \beta \mu \varrho(\mathcal{N}_{0}) \right),$$

where the supremum is to be taken over all invariant states ϱ over \mathfrak{A} , $S(\varrho)$ denotes the corresponding entropy. Let the supremum be reached for ϱ_s , then $\varrho_s(\mathcal{N}_0)$ can be considered as the equilibrium density of the system.

Proposition 2.6. If $\Phi \in B_{f_3}$, then $p^{\Phi}(\beta, \mu)$ is a continuous function of the equilibrium density $v^{\Phi}(\beta, \mu) = \varrho_s(\mathcal{N}_0)$.

This follows from the strict convexity of $p^{\Phi}(\beta, \mu)$ with respect to μ which, in turn, is a consequence of Theorem 2.4.

Remark 2.7. The definition of Φ^T and $\tilde{\Phi}^T$ gives non-trivial results for classical interactions too. Our conjecture is that, for classical Φ_i , $\Phi_1 = \Phi_2$ if and only if $\Phi_1^T \simeq \Phi_2^T$. This would prove the strict convexity of $P(\Phi)$ for strongly tempered classical interactions by the same method as for quantum interactions. But since the class of classical interactions considered in [1] is appreciably larger, it does not seem worth proving that conjecture.

Remark 2.8. Looking through the proof of Theorem 2.2 one easily realizes that, for $\Phi_1, \Phi_2 \in B_{f_3}$ and $\operatorname{Tr}_X(\Phi_1(X) - \Phi_2(X)) = 0$ for all X, the equality $\tau_t(\Phi_1) = \tau_t(\Phi_2)$ already implies $P(\Phi_1) = P(\Phi_2)$. From $A_{\Phi_1} = A_{\Phi_2}$ for physically equivalent interactions, it follows that the equilibrium states $\varrho_s^{\Phi_1}$ and $\varrho_s^{\Phi_2}$, as defined by the above variational principle, coincide if $\Phi_1 \simeq \Phi_2$.

III. Proofs

If $f(\xi) \ge \overline{f}(\xi)$ for sufficiently large ξ , then $\Psi \in B_f$ implies $\Psi \in B_{\overline{f}}$ and $\Psi \in B_{\max(f,\overline{f})}$.

Proof of Theorem 2.2. It suffices to assume

$$\Phi \in B_{f_4}, f_4(\xi) = e^{\alpha \xi} \sum_{\nu=1}^{\xi-1} \prod_{\mu=1}^{\nu} \left(1 + {\xi \choose \mu} \right).$$
(12)

With the estimate $\binom{\xi}{\mu} < 2^{\xi}$ one easily gets

$$f_4(\xi) \le e^{\xi^2 \ln 2 + \alpha \xi} \le e^{\xi^2} = f_3(\xi)$$
 for large ξ . (13)

For the sake of convenience, we take $\alpha = 1$ and assume $\Phi \in B_{f_0}$, $f_0(\xi) = e^{3\xi} f_4(\xi)$. Clearly, $\Phi \in B_{f_0}$ if $\Phi \in B_{f_3}$.

Lemma 3.1. If
$$\Psi \in B_{1/\xi}$$
, then $\sum_{Z:Z \supset X} \operatorname{tr}_{Z \setminus X} \Psi(Z)$ exists, and
 $\left\| \sum_{Z:Z \supset X} \operatorname{tr}_{Z \setminus X} \Psi(Z) \right\| \leq N(X) \|\Psi\|_{1/\xi}$.

This follows from $\|\operatorname{tr}_{Z\setminus X}\Psi(Z)\| \leq \|\Psi(Z)\|$ and

$$\sum_{Z:Z \supset X} \|\Psi(Z)\| = \sum_{x \in X} \sum_{Z \ni x} \|\Psi(Z)\| N(Z)^{-1} = N(X) \|\Psi\|_{1/\xi}.$$

Due to this Lemma, we can define a sequence of interactions Φ_k , k = 0, 1, 2, ..., by

Definition 3.2. $\Phi_0(X) = \Phi(X);$

$$\Phi_{k}(X) = \begin{cases} \Phi_{k-1}(X) & \text{if } N(X) < k , \\ \Phi_{k-1}(X) + \sum_{Z:Z \supset X} \operatorname{tr}_{Z \setminus X} \Phi_{k-1}(Z) & \text{if } N(X) = k , \\ \Phi_{k-1}(X) - \sum_{Y:Y \subset X, N(Y) = k} \operatorname{tr}_{X \setminus Y} \Phi_{k-1}(X) & \text{if } N(X) > k . \end{cases}$$

Because of

$$\Phi_k(X) = \Phi_{N(X)}(X) \quad \text{for} \quad k \ge N(X) , \qquad (14)$$

the sequence converges in an obvious sense to

$$\tilde{\Phi}(X) = \Phi_{N(X)}(X) . \tag{15}$$

We are going to show that $\tilde{\Phi}$ has the properties required in Theorem 2.2.

Remark 3.3. It is clear from the definition that Φ_k and $\tilde{\Phi}$ are translationally covariant. If Φ is of finite range, or if $\Phi(X) = 0$ for $N(X) \ge N_0$, the same holds true for Φ_k and $\tilde{\Phi}$.

(i) Calculation of the norm. For k < N(X), we have

$$\|\Phi_{k}(X)\| \leq \|\Phi_{k-1}(X)\| + \sum_{Y:Y \in X, N(Y)=k} \|\Phi_{k-1}(X)\| = \|\Phi_{k-1}(X)\| \left(1 + \binom{N(X)}{k}\right),$$

consequently, because also k - 1 < N(X),

$$\|\Phi_k(X)\| \le \|\Phi(X)\| p(N(X);k), p(\xi;k) = \prod_{\mu=1}^k \left(1 + {\xi \choose \mu}\right).$$
 (16)

Insertion of (16) into

$$\|\Phi_{N(X)}(X)\| \le \|\Phi_{N(X)-1}(X)\| + \sum_{Z:Z \supset X} \|\Phi_{N(X)-1}(Z)\|$$

yields

$$\|\Phi_{N(X)}(X)\| \leq \|\Phi(X)\| p(N(X); N(X) - 1) + \sum_{Z: Z \supset X} \|\Phi(Z)\| p(N(Z); N(X) - 1),$$

hence

$$\|\tilde{\Phi}\|_{e^{\xi}} = \sum_{X \neq 0} \|\Phi_{N(X)}(X)\| e^{N(X)} \leq \sum_{X \neq 0} \|\Phi(X)\| p(N(X); N(X) - 1) e^{N(X)} + \sum_{Z \neq 0} \|\Phi(Z)\| \sum_{X: X \subset Z, X \neq 0} p(N(Z); N(X) - 1) e^{N(X)},$$
(17)

where the second term is obtained by rearranging the terms of the original sum $\sum_{X \neq 0} \sum_{Z: Z \subset X}$.

Note that $p(\xi; \xi - 1)e^{\xi} \leq f_0(\xi)$ and

$$\sum_{X: X \in \mathbb{Z}, X \ni 0} p(N(\mathbb{Z}); N(X) - 1) e^{N(X)} \leq \sum_{\nu=1}^{N(\mathbb{Z})-1} e^{\nu} p(N(\mathbb{Z}); \nu - 1) {N(\mathbb{Z}) \choose \nu} \leq f_0(N(\mathbb{Z})),$$

therefore, we conclude from (17) that

$$\|\tilde{\Phi}\|_{e^{\xi}} \leq 2 \|\Phi\|_{f_0} < \infty$$
.

(ii) Vanishing of the partial traces. We have by assumption $\operatorname{tr}_X \Phi_0(X) = \operatorname{tr}_X \Phi(X) = 0$. Now suppose that

$$(T_l): \operatorname{Tr}_{X \setminus Y} \Phi_l(X) = 0 \quad \text{for} \quad N(Y) \leq l, N(Y) < N(X)$$

holds for all $l \leq k - 1$. We then show the validity of (T_k) . If N(X) < k, then $N(Y) < N(X) \leq k - 1$, and $\operatorname{tr}_{X \setminus Y} \Phi_k(X) = \operatorname{tr}_{X \setminus Y} \Phi_{k-1}(X) = 0$. If N(X) = k, then $N(Y) \leq k - 1$, and $\operatorname{tr}_{X \setminus Y} \Phi_k(X) = \operatorname{tr}_{X \setminus Y} \Phi_{k-1}(X) + \sum_{Z \supset X} \operatorname{tr}_{Z \setminus Y} \Phi_{k-1}(Z) = 0$, where we used Lemma 2.1. Finally, if N(X) > k,

we get, again applying Lemma 2.1,

$$\operatorname{tr}_{X\setminus Y} \Phi_k(X) = \operatorname{tr}_{X\setminus Y} \Phi_{k-1}(X) - \sum_{Y': Y' \subset X, N(Y') = k} \operatorname{tr}_{X\setminus (Y \cap Y')} \Phi_{k-1}(X) \,. \tag{18}$$

For $N(Y) \le k - 1$, the r.h.s. vanishes because $N(Y \cap Y') \le k - 1$. If N(Y) = k, then $N(Y \cap Y') \le k - 1$ unless Y' = Y, and all terms in the sum vanish except one which cancels the first term of the r.h.s. of (18). Therefore, (T_k) holds for all k; with k = N(X), we get $\operatorname{tr}_Y \tilde{\Phi}(X) = 0$ for all $Y \subset X$.

(iii) Calculation of $P(\tilde{\Phi})$ and $\tau_t(\tilde{\Phi})$. This is the most laborious part of the proof. $P(\tilde{\Phi})$ and $\tau_t(\tilde{\Phi})$ are well defined because $\tilde{\Phi} \in B_{e^{\xi}}$. We want to show

$$P(\beta \Phi) = P(\beta \Phi), \ \tau_t(\Phi) A = \tau_t(\Phi) A, \ A \in \mathfrak{A}$$
(19 a, b)

by establishing the following Lemmas:

Lemma 3.4. For a special Van Hove-sequence $\Lambda \rightarrow \infty$, to be defined below, we have

$$|P_{A}(\beta\tilde{\Phi}) - P_{A}(\beta\Phi)| \leq N(\Lambda)^{-1}\beta \|H_{A}(\tilde{\Phi}) - H_{A}(\Phi)\| < \beta\varepsilon \quad \text{if} \quad \Lambda \supset \Lambda_{0}(\varepsilon) \,. \quad \Box$$

Lemma 3.5. For the special sequence $\Lambda \to \infty$ of Lemma 3.4, and for any strictly local $A \in \mathfrak{B}(\mathscr{H}_{\Lambda_1})$, we have

$$\|[H_A(\tilde{\Phi}), A]^{(m)} - [H_A(\Phi), A]^{(m)}\| < \varepsilon, \quad m = 1, 2, ..., N,$$

 $if \ \Lambda \supset \Lambda_0{'}(\varepsilon,N,A). \quad \Box$

The multiple commutator $[B, A]^{(m)}$ is defined by $[B, A]^{(0)} = A$, $[B, A]^{(m)} = [B, [B, A]^{(m-1)}]$. The limits $\lim_{A \to \infty} P_A(\Phi)$ (resp. $\lim P_A(\tilde{\Phi})$, $\lim \tau_t^A(\Phi)A$, $\lim \tau_t(\tilde{\Phi})A$) are independent of the chosen sequence $A \to \infty$, hence Lemma 3.4 implies (19a). $\tau_t^A(\Phi)A$ (resp. $\tau_t^A(\tilde{\Phi})A$) can, for small t, $|t| < t_0(\Phi)$, be approximated by

$$\sum_{m=0}^{N} \frac{(it)^m}{m!} \left[H_A(\Phi), A \right]^{(m)} \left(\text{resp.} \ \sum_{m=0}^{N} \frac{(it)^m}{m!} \left[H_A(\tilde{\Phi}), A \right]^m \right),$$

uniformly in Λ (see for instance [2], Section 7.6). Therefore, Lemma 3.5 yields $\tau_t(\tilde{\Phi})A = \tau_t(\Phi)A$ for strictly local A and sufficiently small t, hence (19b).

We start proving

Lemma 3.6.

$$H_{A}(\tilde{\Phi}) - H_{A}(\Phi) = \sum_{l=1}^{N(A)} \sum_{X: X \subset A, N(X)=l} \sum_{Z: X \subset Z \notin A} \operatorname{tr}_{Z \setminus X} \Phi_{l-1}(Z), \quad (20)$$

$$\|H_{A}(\tilde{\Phi}) - H_{A}(\Phi)\| \leq \sum_{x \in A} \sum_{Z: Z \notin A, Z \ni x} \|\Phi(Z)\| f_{0}(N(Z)). \quad \Box$$
(21)

Proof. Insertion of Definition 3.2 into

$$H_{\Lambda}(\Phi_k) = \sum_{X \subset \Lambda, N(X) > k} \Phi_k(X) + \sum_{X \subset \Lambda, N(X) = k} \Phi_k(X) + \sum_{X \subset \Lambda, N(X) < k} \Phi_k(X) ,$$

and reordering of the terms gives, for all k = 1, 2, ...,

....

$$H_{\Lambda}(\Phi_k) = H_{\Lambda}(\Phi_{k-1}) + \sum_{X: X \subset \Lambda, N(X)=k} \sum_{Z: X \subset Z \notin \Lambda} \operatorname{tr}_{Z \setminus X} \Phi_{k-1}(Z) .$$
(22)

Furthermore, due to (14), we have

$$H_{\Lambda}(\tilde{\Phi}) = \sum_{X \subset \Lambda} \Phi_{N(X)}(X) = \sum_{X \subset \Lambda} \Phi_{N(\Lambda)}(X) = H_{\Lambda}(\Phi_{N(\Lambda)}).$$
(23)

Iteration of (22) together with (23) yields (20).

By (16), the norm of (20) is bounded by

$$\sum_{l=1}^{N(\Lambda)} \sum_{X:\dots} \sum_{Z:\dots} \|\Phi(Z)\| p(N(Z); l-1) \leq \sum_{x \in \Lambda} \sum_{Z: Z \ni x, Z \notin \Lambda} \|\Phi(Z)\| r(\Lambda; Z)$$

with

$$r(\Lambda; Z) = \sum_{l=1}^{N(\Lambda)} \sum_{\substack{X: X \subset \Lambda \cap Z, N(X) = l}} p(N(Z); l-1)$$

=
$$\sum_{l=1}^{N(\Lambda)} {N(\Lambda \cap Z) \choose l} p(N(Z); l-1).$$

We have to put $\binom{n}{l} = 0$ if l > n. The estimate

$$r(\Lambda; Z) \leq \sum_{l=1}^{N(Z)} {N(Z) \choose l} p(N(Z); l-1) \leq f_0(N(Z))$$

finally proves (21).

Now let us define a special sequence $\Gamma_k \in \mathbb{Z}^v$. We choose $a \in \mathbb{Z}^v$, $a = (a^1, ..., a^v)$ and $\Lambda(a) = \{x \in \mathbb{Z}^v; -a^i \leq x^i < a^i, i = 1, ..., v\}$ in such a way that

$$\sum_{X: 0 \in X \notin A} \| \Phi(X) \| f_0(N(X)) < \frac{\varepsilon}{2} \quad \text{for} \quad A \supset A(a) .$$
⁽²⁴⁾

Definition 3.7. Let $\Lambda + x$ denote the set Λ translated by x;

$$\Gamma_1 = \Lambda(a), \ \Gamma_k = \bigcup_{x \in \mathbb{Z}^{\nu}: -a^i \leq x^i \leq a^i} (\Gamma_{k-1} + x).$$

 Γ_k consists of k^{ν} translates of $\Lambda(a)$, hence

$$N(\Gamma_k) = N(\Lambda(a))k^{\nu}.$$
⁽²⁵⁾

Furthermore, $\Gamma_k \to \infty$ in the sense of Van Hove, and $\Gamma_k \supset \bigcup_{x \in \Gamma_{k-1}} (\Lambda(a) + x)$.

This implies, due to (24) and the translation covariance of the interaction, that

$$\sum_{X:x \in X \notin \Gamma_k} \| \Phi(X) \| f_0(N(X)) < \frac{\varepsilon}{2} \quad \text{for all} \quad x \in \Gamma_{k-1}.$$
 (26)

Lemma 3.8. Let us assume $\Lambda \in \Gamma_k$ and $N(\Lambda \cap \Gamma_{k-1})/N(\Lambda) > 1 - \varepsilon_1$, then

$$\sum_{X \in \Lambda} \sum_{X: x \in X \notin \Gamma_{k}} \| \Phi(X) \| f_{0}(N(X)) < N(\Lambda) \left(\frac{\varepsilon}{2} + \varepsilon_{1} \| \Phi \|_{f_{0}} \right). \quad \Box \qquad (27)$$

Proof. We split the sum $\sum_{x \in A} = \sum_{x \in A \cap \Gamma_{k-1}} + \sum_{x \in A \cap (\Gamma_k \setminus \Gamma_{k-1})}$. To the first term, we can apply (26), the second one is bounded by $N(A \cap (\Gamma_k \setminus \Gamma_{k-1})) \cdot \|\Phi\|_{f_0} \leq N(A) \varepsilon_1 \|\Phi\|_{f_0}$, hence (27).

Choose k large, such that $N(\Gamma_{k-1})/N(\Gamma_k) = (k-1/k)^{\nu} > 1 - \varepsilon/2 \|\Phi\|_{f_0}$, and apply Lemma 3.8 with $\Lambda = \Gamma_k$, then

$$\sum_{x \in \Gamma_k} \sum_{X: x \in X \notin \Gamma_k} \| \Phi(X) \| f_0(N(X)) < N(\Gamma_k) \varepsilon.$$
(28)

Proof of Lemma 3.4. We note that

$$\begin{aligned} |P_A(\beta\tilde{\Phi}) - P_A(\beta\Phi)| &\leq N(\Lambda)^{-1} \|H_A(\beta\Phi) - H_A(\beta\Phi)\| \\ &= N(\Lambda)^{-1}\beta \|H_A(\Phi) - H_A(\tilde{\Phi})\| . \end{aligned}$$

Putting $\Lambda = \Gamma_k$, k sufficiently large, and using (21) and (28), we get

$$|P_{\Gamma_k}(\beta \Phi) - P_{\Gamma_k}(\beta \Phi)| < \beta \varepsilon \,.$$

Proof of Lemma 3.5. We use the same sort of estimates as in [2], Section 7.6, and the fact that

$$\|[H_{A}(\tilde{\Phi}) - H_{A}(\Phi), A]\| \leq N(\Lambda_{1}) \cdot \varepsilon \quad \text{if} \quad A \in \mathfrak{B}(\mathscr{H}_{\Lambda_{1}}),$$
⁽²⁹⁾

$$[H_{A}(\Phi), A]^{(m)} - [H_{A}(\tilde{\Phi}), A]^{(m)}$$

$$= \sum_{r=0}^{m-1} [H_{A}(\tilde{\Phi}), [H_{A}(\Phi) - H_{A}(\tilde{\Phi}), [H_{A}(\Phi), A]^{(r)}]]^{(m-r-1)}.$$
(30)

(29) is a consequence of Lemma 3.8, because only those $\Phi(X)$ and $\tilde{\Phi}(X)$ give a contribution for which $X \cap \Lambda_1 \neq \emptyset$. Working out the details is an awful task, and will be done in the appendix.

(iv) The uniqueness of $\tilde{\Phi}$ follows from an argument of Griffiths and Ruelle ([1], Section IV). Suppose there exists a Φ' such that $\operatorname{Tr}_{Y} \Phi'(X) = 0$ and $\tau_{t}(\Phi') = \tau_{t}(\Phi) = \tau_{t}(\tilde{\Phi})$, then $\Phi' = \tilde{\Phi}$. By the same argument, $\Phi_{1} \simeq \Phi_{2}$ implies $\tilde{\Phi}_{1} = \tilde{\Phi}_{2}$. The inverse is trivial. This completes the proof of Theorem 2.2.

(v) Due to the uniqueness of $\tilde{\Phi}$, we have $\tilde{\Phi}_1 = \tilde{\Phi}_2$ if $\Phi_1 \simeq \Phi_2$, and, according to (19 a), $P(\beta \Phi_1) = P(\beta \tilde{\Phi}_1) = P(\beta \tilde{\Phi}_2) = P(\beta \Phi_2)$. In the same way, it follows that, for invariant states ϱ , $\varrho(A_{\Phi_1}) = \varrho(A_{\Phi_2})$, provided we know that $\varrho(A_{\Phi}) = \varrho(A_{\tilde{\Phi}})$. Define $A_{\Phi}(A) = N(A)^{-1} \sum_{x \in A} \sum_{X \ni x} \Phi(X) N(X)^{-1}$, and consider

$$\begin{split} \left\| A_{\mathbf{\Phi}}(\boldsymbol{\Lambda}) - A_{\tilde{\mathbf{\Phi}}}(\boldsymbol{\Lambda}) \right\| &\leq \left\| A_{\mathbf{\Phi}}(\boldsymbol{\Lambda}) - N(\boldsymbol{\Lambda})^{-1} H_{\boldsymbol{\Lambda}}(\boldsymbol{\Phi}) \right\| + \left\| A_{\tilde{\boldsymbol{\Phi}}}(\boldsymbol{\Lambda}) - N(\boldsymbol{\Lambda})^{-1} H_{\boldsymbol{\Lambda}}(\boldsymbol{\Phi}) \right\| \\ &+ N(\boldsymbol{\Lambda})^{-1} \left\| H_{\boldsymbol{\Lambda}}(\boldsymbol{\Phi}) - H_{\boldsymbol{\Lambda}}(\tilde{\boldsymbol{\Phi}}) \right\| \,. \end{split}$$

If we choose $\Lambda = \Gamma_k$, k sufficiently large, the third term on the r.h.s. will be small due to (21) and (28). Note that we can replace $f_0(\xi)$ by $1/\xi$ in Lemma 3.8 and in (28). Application of (28) to

$$\left\|A_{\phi}(\Lambda) - N(\Lambda)^{-1} H_{\phi}(\Lambda)\right\| = N(\Lambda)^{-1} \left\|\sum_{x \in \Lambda} \sum_{X: x \in X \notin \Lambda} \Phi(X) N(X)^{-1}\right\|$$

and to the corresponding expression with $\tilde{\Phi}$ then shows that $||A_{\Phi}(A)| - A_{\tilde{\Phi}}(A)|| < 3\varepsilon$, hence $|\varrho(A_{\Phi}(A)) - \varrho(A_{\tilde{\Phi}}(A))| < 3\varepsilon$ with arbitrarily small ε . Due to the invariance of ϱ , we have $\varrho(A_{\Phi}(A)) = \varrho(A_{\Phi})$, and therefore $\varrho(A_{\Phi}) = \varrho(A_{\tilde{\Phi}})$. This completes the proof of Theorem 2.2. *Proof of Proposition 2.3.* (i) and (ii) are simple consequences of Lemma 2.1. Notice that

$$H_A(\Phi^T) = H_A(\Phi) - C_A(\Phi) \cdot \mathbf{1}_A ; \qquad (31)$$

due to (i), $P(\Phi)$ and $P(\Phi^T)$ exist, hence

$$\begin{split} P(\Phi) - P(\Phi^T) &= \lim_{\Lambda \to \infty} N(\Lambda)^{-1} (\log \operatorname{Tr}_{\Lambda} e^{-H_{\Lambda}(\Phi)} - \log \operatorname{Tr}_{\Lambda} e^{-H_{\Lambda}(\Phi^T)}) \\ &= \lim_{\Lambda \to \infty} N(\Lambda)^{-1} C_{\Lambda}(\Phi) \equiv \pi(\Phi) \end{split}$$

exists. This proves the first part of (10), the second one is a trivial consequence of (31) and the definition of τ_t .

Proof of Theorem 2.4. Let us suppose $\Phi_1, \Phi_2 \in B_{f_0}, 0 \leq \alpha \leq 1$, then $\Phi = \alpha \Phi_1 + (1 - \alpha) \Phi_2 \in B_{f_0}$ and

$$\Phi^T = \alpha \Phi_1^T + (1 - \alpha) \Phi_2^T , \qquad (32)$$

$$C_A(\Phi) = \alpha C_A(\Phi_1) + (1 - \alpha) C_A(\Phi_2), \qquad (33)$$

$$\widetilde{\Phi^{T}} = \alpha \, \widetilde{\Phi_{1}^{T}} + (1 - \alpha) \, \widetilde{\Phi_{2}^{T}} \,, \tag{34}$$

because all operations involved are linear. Thus we have

$$P(\Phi) = P(\alpha \Phi_1^T + (1 - \alpha) \Phi_2^T) - \alpha \pi(\Phi_1) - (1 - \alpha) \pi(\Phi_2)$$

= $P(\alpha \widetilde{\Phi}_1^T + (1 - \alpha) \widetilde{\Phi}_2^T) - \alpha \pi(\Phi_1) - (1 - \alpha) \pi(\Phi_2).$ (35)

If $\Phi_1^T \rightleftharpoons \Phi_2^T$, then we know from Theorem 2.2 that $\widetilde{\Phi_1^T} \ddagger \widetilde{\Phi_2^T}$, hence, according to [1],

$$P(\alpha \widetilde{\Phi_1^T} + (1-\alpha) \widetilde{\Phi_2^T}) > \alpha P(\widetilde{\Phi_1^T}) + (1-\alpha) P(\widetilde{\Phi_2^T}).$$

Insertion into (35) gives immediately

$$P(\Phi) > \alpha P(\Phi_1) + (1 - \alpha) P(\Phi_2).$$

On the other hand, if $\Phi_1^T \simeq \Phi_2^T$, then we have $\widetilde{\Phi_1^T} = \widetilde{\Phi_2^T} = \widetilde{\Phi_1^T}$ and

$$P(\Phi) = P(\Phi^T) - \pi(\Phi) = \alpha P(\Phi_1) + (1 - \alpha) P(\Phi_2).$$

Proof of Proposition 2.6. We have to show the strict convexity of $P(\beta \Phi_{\mu})$ with respect to μ . Φ_{μ} is given by $\Phi_{\mu}(X) = \Phi(X) - \delta_{1,N(X)} \mathcal{N}(X)$. It follows by a straightforward computation that

$$\begin{split} \Phi^T_{\mu}(X) &= \Phi^T(X) - \mu \delta_{1,N(X)} \big(\mathcal{N}(X) - \frac{1}{2} \mathbf{1}_X \big) \,, \\ \Phi^{\widetilde{T}}_{\mu}(X) &= \Phi^{\widetilde{T}}(X) - \mu \delta_{1,N(X)} \big(\mathcal{N}(X) - \frac{1}{2} \mathbf{1}_X \big) \,. \end{split}$$

Hence $\mu_1 \neq \mu_2$ implies $\widetilde{\Phi}_{\mu_1}^T \neq \widetilde{\Phi}_{\mu_2}^T$, and we can apply the previous theorem.

Acknowledgement. This work was initiated by discussions with M. Winnink, whom I wish to thank. Furthermore, I am grateful to N. M. Hugenholtz and M. Winnink for their kind hospitality.

Appendix: Proof of Lemma 3.5

Let us consider Eq. (30) with $A \in \mathfrak{B}(\mathscr{H}_{A_1})$. It suffices to show that each term on the r.h.s. is bounded in norm by $C \cdot \varepsilon$ if $\Lambda = \Gamma_k \supset \Gamma_{k_0}$, where k_0 is chosen large enough such that

$$\Lambda_1 \subset \Gamma_{k_0 - N - 1} . \tag{A1}$$

The constant C may also depend on N and Λ_1 . We insert $H_A(\Phi) = \sum_{X \in A} \Phi(X)$, resp. $H_A(\tilde{\Phi}) = \sum_{Y \in A} \tilde{\Phi}(Y)$, resp. the expression of Eq. (20) into (30). To shorten the notation, we write (for fixed Λ):

$$\sum_{(X, p)} = \sum_{p} \sum_{X: X \subset \Lambda, N(X) = p} = \sum_{X \subset \Lambda},$$

furthermore

$$\sum_{p_1} = \sum_{p_1,\dots,p_r=1}^{N(A)}, \qquad \sum_{(X_1,p_1)} = \sum_{(X_1,p_1)}\dots\sum_{(X_r,p_r)}.$$

We put s = m - r - 1, the indices *i* and *j* run from 1 to *r* and from 1 to *s*, respectively. Then we get

$$\begin{bmatrix} H_{A}(\tilde{\Phi}), [H_{A}(\Phi) - H_{A}(\tilde{\Phi}), [H_{A}(\Phi), A]^{(r)}] \end{bmatrix}^{(s)} = \sum_{p_{t}} \sum_{l} \sum_{q_{j}} \sum_{(X_{i}, p_{t})} \sum_{(X, l)} \sum_{Z: X \in Z \notin A} \sum_{(Y_{j}, q_{j})} [\tilde{\Phi}(Y_{s}), [\dots [\tilde{\Phi}(Y_{1}), [-\operatorname{tr}_{Z \setminus X} \Phi_{l-1}(Z), \cdot [\Phi(X_{r}), [\dots [\Phi(X_{1}), A] \dots]].$$
(A2)

Let us define $S_1 = A_1, S_{i+1} = S_i \cup X_i, i = 1, ..., r - 1, S = S_r \cup X_r, T_1 = S \cup X$, $T_{j+1} = T_j \cup Y_j, j = 1, ..., s - 1$. We may restrict the summations to those $X_{i}, X \text{ and } Y_{j} \text{ for which } X_{i} \cap S_{i} \neq \emptyset, X \cap S \neq \emptyset, Y_{j} \cap T_{j} \neq \emptyset. \text{ [Notice that } \operatorname{tr}_{Z\backslash X} \Phi_{l-1}(Z) \in \mathfrak{B}(\mathscr{H}_{X}).\text{] These restricted summations will be denoted by } \sum_{\substack{X_{i}, p_{i}, S_{i} \\ (X_{i}, p_{i}, S_{i})}} = \sum_{\substack{(X_{i}, p_{i}, S_{i}) \\ We estimate the norm of (A 2) by taking the norms of the terms of terms of$

r.h.s., using $\|\operatorname{tr}_{Z\setminus X} \Phi_{l-1}(Z)\| \leq \|\Phi(Z)\| 2^{(l-1)N(Z)}$. This gives

$$\begin{split} &\| \left[H_{A}(\tilde{\Phi}), \left[\dots \left[\dots \right]^{(r)} \right] \right]^{(s)} \| \\ &\leq 2^{m} \|A\| \sum_{p_{i}} \sum_{(X_{i}, p_{i}, S_{i})} \prod_{i=1}^{r} \|\Phi(X_{i})\| \sum_{l} \sum_{(X, l, S)} \sum_{Z: X \in Z \notin A} \|\Phi(Z)\| 2^{(l-1)N(Z)} \quad (A 3) \\ &\cdot \sum_{q_{j}} \sum_{(Y_{j}, q_{j}, T_{j})} \prod_{j=1}^{S} \|\tilde{\Phi}(Y_{j})\| . \end{split}$$

We evaluate the sums starting with the q_{j} - and Y_{j} -summations. We use the same arguments as in Section 7.6 of [2], with

$$\begin{split} N(S_i) &\leq N(\Lambda_1) + \Sigma p_i, \qquad N(S) \leq N(\Lambda_1) + \Sigma p_i, \\ N(T_j) &\leq N(\Lambda_1) + \Sigma p_i + l + \Sigma q_i, \\ &\prod_{j=1}^s N(T_i) \leq (N(\Lambda_1) + \Sigma p_i + l + \Sigma q_j)^s \leq s \, ! \, e^{N(\Lambda_1) + l} \, \Pi \, e^{p_i} \, \Pi \, e^{q_j}, \end{split}$$

with the result

$$\sum_{q_j} \sum_{(Y_j, q_j, T_j)} \prod_{j=1}^s \|\tilde{\Phi}(Y_j)\| \leq s \, ! \, e^{N(A_1)} \, e^l \, \Pi \, e^{p_i} (\|\tilde{\Phi}\|_{e^{\tilde{s}}})^s \,. \tag{A4}$$

For s = 0, (A 4) is to be replaced by $1 \le e^{N(A_1)} e^l \prod e^{p_1}$. The next step is to consider

$$\sigma(X_{1},...,X_{r}) \equiv \sum_{l} \sum_{(X,l,S)} \sum_{Z:X \in Z \notin A} \|\Phi(Z)\| 2^{(l-1)N(Z)} e^{l}$$

$$\leq \sum_{x \in S} \sum_{Z:Z \notin A, Z \ni x} \|\Phi(Z)\| \sum_{l=1}^{N(A)} \sum_{X:X \in Z, N(X)=l} 2^{(l-1)N(Z)} e^{l} \qquad (A5)$$

$$\leq \sum_{x \in S} \sum_{Z:Z \notin A, Z \ni x} \|\Phi(Z)\| f_{0}(N(Z)).$$

Now let us take $\Lambda = \Gamma_k$, with a fixed $k \ge k_0$ [k_0 as defined in (A 1)], and try to apply Lemma 3.8 to the r.h.s. of (A 6). This is possible for those X_1, \ldots, X_r , for which $S = \Lambda_1 \cup X_1 \cup \cdots \cup X_r$ fulfills

(S):
$$N(S \cap \Gamma_{k-1})/N(S) > 1 - \varepsilon/2 \|\Phi\|_{f_0}$$
.

We define

$$\chi(\Lambda'; X_1, \dots, X_r) = \begin{cases} 1 & \text{if } S = \Lambda' \cup X_1, \dots, X_r \text{ satisfies (S)}, \\ 0 & \text{otherwise}. \end{cases}$$
(A 6)

Then we have by application of Lemma 3.8

$$\sigma(X_1, \ldots, X_r) \chi(\Lambda_1; X_1, \ldots, X_r) < N(S) \cdot \varepsilon < e^{N(\Lambda_1)} \prod_i e^{p_i} \cdot \varepsilon \qquad (A7)$$

furthermore,

$$\sigma(X_1, ..., X_r) \left(1 - \chi(\Lambda_1; X_1, ..., X_r) \right) \leq N(S) \|\Phi\|_{f_0} \left(1 - \chi(\Lambda_1; X_1, ..., X_r) \right)$$

$$\leq e^{N(\Lambda_1)} \prod_i e^{p_i} \|\Phi\|_{f_0} \left(1 - \chi(\Lambda_1; X_1, ..., X_r) \right).$$
(A8)

Combining Eqs. (A4) through (A8) with (A3), we get

$$\| \left[H_A(\tilde{\Phi}), \left[\dots \left[H_A(\Phi), A \right]^{(r)} \right] \right]^{(s)} \| \leq \sigma_1 + \sigma_2 , \qquad (A9)$$

Strict Convexity of the Pressure

$$\sigma_1 = C_{s,m} \sum_{p_i} \sum_{(X_i, p_i, S_i)} \prod_{i=1}^r \| \boldsymbol{\Phi}(X_i) \| e^{2p_i} \cdot \varepsilon, \qquad (A \ 10)$$

$$\sigma_2 = C_{s,m} \|\Phi\|_{f_0} \sum_{p_i} \sum_{(X_i, p_i, S_i)} \prod_{i=1}^r \|\Phi(X_i)\| e^{2p_i} (1 - \chi(\Lambda_1; X_1, \dots, X_r)), \quad (A \ 11)$$

$$C_{s,m} = s \,! \, e^{2N(\Lambda_1)} (\|\tilde{\Phi}\|_{e^{\xi}})^s \cdot 2^m A \;. \tag{A 12}$$

For r = 0 we have to put $\prod_{i=1}^{r} \dots = 1$, furthermore, $\chi(\Lambda_1; X_1, \dots, X_r) = 1$ because $\Lambda_1 \subset \Gamma_{k-N-1}$ and (S) is fulfilled, hence $\sigma_2 = 0$.

We can estimate σ_1 by the same method as in (A4):

$$\sigma_1 \leq C_{s,m} r \,! \, e^{N(A_1)} (\|\Phi\|_{e^{3\,\xi}})^r \cdot \varepsilon \,. \tag{A13}$$

This equation also holds for r = 0.

For $r \ge 1$, let us write

$$\sigma_2 = C_{s,m} \|\Phi\|_{f_0} \Sigma(r; \Lambda_1; \Gamma_k) \tag{A14}$$

with

$$\Sigma(r; \Lambda'; \Gamma_k) = \sum_{p_i} \sum_{(X_i, p_i, S_i)} \prod_{1}^{r} \|\Phi(x_i)\| e^{2p_i} (1 - \chi(\Lambda'; X_1, \dots, X_r)), \quad (A \ 15)$$

 $S_1 = A', S_i = A' \cup X_1 \cup \cdots \cup X_{i-1}, i = 2, \dots, r, A' \in \Gamma_k, X_i \in \Gamma_k$. We shall show by induction that

$$\Sigma(r;\Lambda';\Gamma_k) \leq e^{N(\Lambda')+r-1} N(\Lambda')^r \prod_{\varrho=0}^r (\varrho!) (\|\Phi\|_{f_0})^{r-1} \varepsilon \quad \text{if} \quad \Lambda' \in \Gamma_{k-r-1}.$$
(A16)

Because of $\Lambda_1 \subset \Gamma_{k-N-1}$, Eqs. (A9)–(A16) finally yield

$$\begin{split} \| \left[H_{A}(\tilde{\Phi}), \left[H_{A}(\Phi) - H_{A}(\tilde{\Phi}), \left[H_{A}(\Phi), A \right]^{(r)} \right] \right]^{(s)} \| &\leq C \cdot \varepsilon \\ C &= N \, ! \, e^{3N(A_{1})} \left(2 \| \Phi \|_{e^{3\xi}} \| \tilde{\Phi} \|_{e^{\xi}} \right)^{N} \| A \| \\ &+ \prod_{\varrho=0}^{N} \left(\varrho \, ! \right) e^{3N(A_{1})} \left(2 e N(A_{1}) \| \tilde{\Phi}_{e^{\xi}} \| \Phi \|_{f_{0}} \right)^{N} \| A \| , \end{split}$$

which is the desired estimate.

It remains to prove (A 16). Take r = 1 and $\Lambda' \subset \Gamma_{k-2}$, then $\chi(\Lambda'; X_1) = 1$ if $X_1 \subset \Gamma_{k-1}$, i.e. $1 - \chi(\Lambda'; X_1)$ is certainly zero unless $X_1 \notin \Gamma_{k-1}$, thus

$$\begin{split} \mathcal{E}(1;\Lambda';\Gamma_k) &\leq \sum_{p_1} \sum_{X_1:N(X_1) = p_1, X_1 \cap \Lambda' \neq \emptyset, X_1 \notin \Gamma_{k-1}} \| \Phi(X_1) \| e^{2p_1} \\ &\leq \sum_{x \in \Lambda'} \sum_{X_1:x \in X_1 \notin \Gamma_{k-1}} \| \Phi(X_1) \| e^{2N(X_1)}. \end{split}$$

We can apply Lemma 3.8 since $\Lambda' \subset \Gamma_{k-2}$ and $e^{2\xi} \leq f_0(\xi)$, getting

$$\Sigma(1;\Lambda';\Gamma_k) < N(\Lambda')\frac{\varepsilon}{2} < e^{N(\Lambda')}N(\Lambda')\varepsilon,$$

i.e. (A 16) holds for r = 1. Let us suppose its validity for r - 1 and assume $A' \in \Gamma_{k-r-1}$. Notice that $\chi(A'; X_1, ..., X_r) = \chi(A' \cup X_1; X_2, ..., X_r)$, therefore,

$$\Sigma(r; \Lambda'; \Gamma_k) = \sum_{p_1} \sum_{(X_1, p_1, S_1)} \| \Phi(X_1) \| e^{2p_1} \Sigma(r-1; \Lambda' \cup X_1; \Gamma_k).$$
(A17)

We split the X_1 -summation into two parts: one part with $X_1 \in \Gamma_{k-r}$ so that we can use (A 16) in estimating $\Sigma(r-1; \Lambda' \cup X_1; \Gamma_k)$, and a second one with $X_1 \notin \Gamma_{k-r}$ to which we again apply Lemma 3.8 (with Γ_k replaced by Γ_{k-r}) using

$$\Sigma(r-1; \Lambda' \cup X_1; \Gamma_k) \leq (r-1)! e^{N(\Lambda') + N(X_1)} (\|\Phi\|_{e^{3\xi}})^{r-1}$$

 $\begin{aligned} & (\text{In the first part, the factor } N(\Lambda' \cup X_1)^{r-1} \text{ appearing in the bound of } \\ & \Sigma(r-1; \Lambda' \cup X_1; \Gamma_k) \text{ is to be replaced by } (N(\Lambda') + N(X_1))^{r-1} \\ & \leq N(\Lambda')^{r-1} (1 + N(X_1))^{r-1} \leq N(\Lambda')^{r-1} (r-1)! e^{1 + N(X_1)}.) \text{ This gives} \\ & \Sigma(r; \Lambda'; \Gamma_k) \leq N(\Lambda') \| \Phi \|_{f_0} \cdot e^{N(\Lambda') + r-1} N(\Lambda')^{r-1} (r-1)! \prod_{0}^{r-1} (\varrho!) (\| \Phi \|_{f_0})^{r-2} \cdot \varepsilon \\ & + N(\Lambda') \frac{\varepsilon}{2} \cdot (r-1)! e^{N(\Lambda')} (\| \Phi \|_{f_0})^{r-1} \\ & \leq N(\Lambda')^r e^{N(\Lambda') + r-1} (r-1)! \prod_{0}^{r-1} (\varrho!) (\| \Phi \|_{f_0})^{r-1} (1 + \frac{1}{2}) \varepsilon \,, \end{aligned}$

which is the bound of (A 16) if we replace $1 + \frac{1}{2}$ by $r > 1 + \frac{1}{2}$. This completes the proof of Lemma 3.5.

References

- 1. Griffiths, R.B., Ruelle, D.: Commun. math. Phys. 23, 169 (1971)
- 2. Ruelle, D.: Statistical mechanics. Amsterdam: W. A. Benjamin Inc. 1969
- 3. Robinson, D. W.: Commun. math. Phys. 7, 337 (1968)
- 4. Lima, R.: Commun. math. Phys. 24, 180 (1972)

Communicated by G. Gallavotti

H. Roos Institut für Theoretische Physik der Universität D-3400 Göttingen, Bunsenstr. 9 Fed. Rep. of Germany