Strict Convexity of the Pressure: A Note on a Paper of R. B. Griffiths and D. Ruelle

H. Roos
Institute for Theoretical Physics, Groningen, The Netherlands*

Received November 11, 1973

Abstract

Strict convexity of the pressure of a quantum lattice gas is demonstrated in [1] with the help of a trace condition. An interpretation of that condition is given, and, simultaneously, an extension of the result of [1]. In particular, it is shown that the pressure is a continuous function of the lattice gas density.

I. Introduction

It has been demonstrated by Griffiths and Ruelle [1] that the pressure $P\left(\Phi_{i}\right)$ and the time automorphisms $\tau_{t}\left(\Phi_{i}\right), i=1,2$, exist are called function of the interaction Φ. One assumption used for the case of a quantum lattice gas is the following:

$$
\begin{equation*}
\operatorname{Tr}_{Y} \Phi(X)=0 \quad \text { for all } \quad Y \subset X, \text { all finite } \quad X \subset \boldsymbol{Z}^{v} \tag{1}
\end{equation*}
$$

Here, \boldsymbol{Z}^{v} describes the (v-dimensional) lattice, Tr_{Y} denotes the partial trace. We are concerned with the interpretation of this condition which is not given in [1].

Definition 1.1. Two interactions Φ_{1} and Φ_{2} for which the pressures $P\left(\Phi_{i}\right)$ and the time automorphisms $\tau_{t}\left(\Phi_{i}\right), i=1,2$, exist are called physically equivalent if $P\left(\Phi_{1}\right)=P\left(\Phi_{2}\right)$ and $\tau_{t}\left(\Phi_{1}\right)=\tau_{t}\left(\Phi_{2}\right)$. We then write $\Phi_{1} \simeq \Phi_{2}$.

In view of Theorem 2.2 below, this definition seems to be a sensible one. It will turn out that in every class of equivalent interactions with vanishing trace, there is a unique interaction with vanishing partial traces, i.e. satisfying (1), provided a certain temperedness condition is fulfilled. This allows a generalization of the results of [1]; in particular, we can show the continuity of the pressure as a function of the lattice gas density.

II. Notations and Results

We study a quantum lattice system over \boldsymbol{Z}^{v}, with a two-dimensional Hilbert space \mathscr{H}_{x} attached to every $x \in \boldsymbol{Z}^{v}, \mathscr{H}_{X}=\bigotimes_{x \in X} \mathscr{H}_{x} . X, Y, \Lambda, \ldots$

[^0]always denote finite subsets of $\boldsymbol{Z}^{v}, N(X)$ is the number of points in X. If $Y \subset X, \mathscr{H}_{X}$ will be identified with $\mathscr{H}_{Y} \otimes \mathscr{H}_{X \backslash Y}$; and similarly, we identify $A \in \mathfrak{B}\left(\mathscr{H}_{Y}\right)$ and $A \otimes \mathbf{1}_{X \backslash Y} \in \mathfrak{B}\left(\mathscr{H}_{X}\right), \mathfrak{B}(\mathscr{H})=$ set of bounded operators on \mathscr{H}. $A \in \bigcup_{A} \mathfrak{B}\left(\mathscr{H}_{A}\right)$ is called strictly local; $\mathfrak{H}=\widehat{\bigcup_{A}} \mathfrak{B}\left(\mathscr{H}_{A}\right)$ is the algebra of observables.

The translationally covariant interaction is given by a function $X \mapsto \Phi(X) \in \mathfrak{B}\left(\mathscr{H}_{X}\right), \Phi(X)$ self-adjoint. Let $f(\xi)$ be a real valued function over $\mathbb{R}^{+}, f(\xi) \geqq 0$, then we define the f-norm of Φ by

$$
\begin{equation*}
\|\Phi\|_{f}=\sum_{X \ni 0}\|\Phi(X)\| f(N(X)) . \tag{2}
\end{equation*}
$$

The interactions Φ with $\|\Phi\|_{f}<\infty$ form a Banach space B_{f}.
For $A \in \mathfrak{B}\left(\mathscr{H}_{X}\right), Y \subset X, \operatorname{Tr}_{Y} A \in \mathfrak{B}\left(\mathscr{H}_{X \backslash Y}\right)$ denotes the partial trace, and

$$
\begin{equation*}
\operatorname{tr}_{Y} A=2^{-N(Y)} \operatorname{Tr}_{Y} A \tag{3}
\end{equation*}
$$

Writing $\operatorname{tr}_{X \backslash Y}$, we generally mean that Y is a proper subset of X. If a term tr_{6} occurs in a summation it is meant to be zero.

Lemma 2.1. If $Y, Y^{\prime} \subset X \subset Z, A \in \mathfrak{B}\left(\mathscr{H}_{Z}\right)$, then

$$
\begin{gather*}
\operatorname{tr}_{Z \backslash X} \operatorname{tr}_{X \backslash Y} A=\operatorname{tr}_{Z \backslash Y} A \tag{4a}\\
\operatorname{tr}_{X \backslash Y} \operatorname{tr}_{X \backslash Y^{\prime}} A=\operatorname{tr}_{X \backslash\left(Y \cap Y^{\prime}\right)} A \tag{4b}\\
\left\|\operatorname{tr}_{Y} A\right\| \leqq\|A\| . \tag{4c}
\end{gather*}
$$

The proof is trivial.
The Hamiltonian belonging to the interaction Φ is

$$
\begin{equation*}
H_{\Lambda}(\Phi)=\sum_{X \subset A} \Phi(X) \tag{5}
\end{equation*}
$$

The pressure and the time evolution of the system are defined by

$$
\begin{gather*}
P(\Phi)=\lim _{\Lambda \rightarrow \infty} N(\Lambda)^{-1} \log \operatorname{Tr}_{\Lambda} e^{-H_{\Lambda}(\Phi)}, \tag{6}\\
\tau_{t}(\Phi) A=\lim _{\Lambda \rightarrow \infty} \tau_{t}^{\Lambda}(\Phi) A, \tau_{t}^{\Lambda}(\Phi) A=e^{i t H_{\Lambda}(\Phi)} A e^{-i t H_{\Lambda}(\Phi)}, A \in \bigcup_{\Lambda} \mathfrak{B}\left(\mathscr{H}_{A}\right) . \tag{7}
\end{gather*}
$$

The limits are known to exist $[2,3]$ if $\Phi \in B_{f_{1}}\left(\right.$ resp. $\left.\Phi \in B_{f_{2}}\right), f_{1}(\xi)=1 / \xi$, $f_{2}=e^{\alpha \xi}, \alpha>0 . \Lambda \rightarrow \infty$ means the Van Hove limit (resp. $\Lambda \rightarrow \infty$ such that it eventually contains every finite subset of \boldsymbol{Z}^{v}).

Our main result is the following
Theorem 2.2. For every interaction Φ which satisfies
(a) $\quad \Phi \in B_{f_{3}}, f_{3}(\xi)=e^{\xi^{2}}$,
(b) $\operatorname{Tr}_{X} \Phi(X)=0$ for all $X \subset \boldsymbol{Z}^{v}$,
there exists a $\tilde{\Phi}$ such that
(i) $\tilde{\Phi} \in B_{f_{2}}, f_{2}(\xi)=e^{\alpha \xi}$,
(ii) $\operatorname{Tr}_{Y} \tilde{\Phi}(X)=0$ for all $Y \subset X$, all $X \subset \boldsymbol{Z}^{v}$,
(iii) $\tilde{\Phi} \simeq \Phi$,
(iv) $\tilde{\Phi}$ is unique. If Φ_{1} and Φ_{2} satisfy (a) and (b), then $\Phi_{1} \simeq \Phi_{2}$ if and only if $\widetilde{\Phi_{1}}=\widetilde{\Phi_{2}}$.
(v) $\Phi_{1} \simeq \Phi_{2}$ implies $P\left(\beta \Phi_{1}\right)=P\left(\beta \Phi_{2}\right)$ for all $\beta>0$, and $\varrho\left(A_{\Phi_{1}}\right)=\varrho\left(A_{\Phi_{2}}\right)$ for all translationally invariant states ϱ, where $A_{\Phi}=\sum_{X \ni 0} \Phi(X) N(X)^{-1}$ is the observable of the mean energy per site.

The equivalence relation \simeq is defined in Definition 1.1. The requirement (a) can be weakened (compare the proof).

For a potential which does not satisfy (b) we define

$$
\begin{gather*}
\Phi^{T}(X)=\Phi(X)-\operatorname{tr}_{X} \Phi(X) \cdot \mathbf{1}_{X} \tag{8}\\
C_{A}(\Phi)=\sum_{X \subset A} \operatorname{tr}_{X} \Phi(X) \tag{9}
\end{gather*}
$$

Then we have
Proposition 2.3. (i) If $\Phi \in B_{f}$, then $\Phi^{T} \in B_{f}$,
(ii) $C_{\Lambda}(\Phi)=\operatorname{tr}_{A} H_{\Lambda}(\Phi)$,
(iii) if $\Phi \in B_{1 / \xi}$, then $\lim _{\Lambda \rightarrow \infty} N(\Lambda)^{-1} C_{\Lambda}(\Phi)=\pi(\Phi)$ exists and

$$
\begin{equation*}
P\left(\Phi^{T}\right)=P(\Phi)+\pi(\Phi), \tau_{t}\left(\Phi^{T}\right)=\tau_{t}(\Phi) \tag{10}
\end{equation*}
$$

We can generalize the result of Griffiths and Ruelle for sufficiently tempered interactions with the help of Theorem 2.2 and Proposition 2.3:

Theorem 2.4. Let us assume that $\Phi_{1}, \Phi_{2} \in B_{f_{3}}$, then the pressure $P(\Phi)$ is strictly convex between Φ_{1} and Φ_{2} if and only if Φ_{1}^{T} and Φ_{2}^{T} are not physically equivalent.

Remark 2.5. According to (ii) and (iii) of Proposition 2.3, $H_{A}\left(\Phi^{T}\right)$ $=H_{\Lambda}(\Phi)-\operatorname{tr}_{\Lambda} H_{\Lambda}(\Phi)$, and $\lim _{\Lambda \rightarrow \infty} N(\Lambda)^{-1} \operatorname{tr}_{\Lambda} H_{\Lambda}(\Phi)$ exists. In the limit $\Lambda \rightarrow \infty$, the "energy per site" is thus changed by a finite amount if we go over from Φ to Φ^{T}, independent of the state of the system. One may consider this as a physically irrelevant renormalization and consider Φ and Φ^{T} as equivalent in a wider sense. Then Theorem 2.2 implies, loosely speaking, strict convexity of the pressure as a function of the extended equivalence classes.

Let \mathscr{N}_{x} denote the particle number operator in $\mathscr{H}_{x} ; \mathcal{N}(X)=\sum_{x \in X} \mathscr{N}_{x}$. Define

$$
\begin{gather*}
p(\beta, \mu)=P\left(\beta \Phi_{\mu}\right), \quad \Phi_{\mu}(X)=\Phi(X)-\mu \delta_{1, N(X)} \mathcal{N}(X), \\
\delta_{a, b}=\text { Kronecker symbol } . \tag{11}
\end{gather*}
$$

$\left[H_{A}\left(\Phi_{\mu}\right)=H_{A}(\Phi)-\mu \mathcal{N}(\Lambda)\right.$ gives rise to the statistical operator of the grand canonical ensemble.]

It is known [4] that

$$
p^{\Phi}(\beta, \mu)=\sup \left(S(\varrho)-\beta \varrho\left(A_{\Phi}\right)+\beta \mu \varrho\left(\mathscr{N}_{0}\right)\right),
$$

where the supremum is to be taken over all invariant states ϱ over \mathfrak{A}, $S(\varrho)$ denotes the corresponding entropy. Let the supremum be reached for ϱ_{s}, then $\varrho_{s}\left(\mathscr{N}_{0}\right)$ can be considered as the equilibrium density of the system.

Proposition 2.6. If $\Phi \in B_{f_{3}}$, then $p^{\Phi}(\beta, \mu)$ is a continuous function of the equilibrium density $v^{\Phi}(\beta, \mu)=\varrho_{s}\left(\mathscr{N}_{0}\right)$.

This follows from the strict convexity of $p^{\Phi}(\beta, \mu)$ with respect to μ which, in turn, is a consequence of Theorem 2.4.

Remark 2.7. The definition of Φ^{T} and $\widetilde{\Phi^{T}}$ gives non-trivial results for classical interactions too. Our conjecture is that, for classical $\Phi_{i}, \Phi_{1}=\Phi_{2}$ if and only if $\Phi_{1}^{T} \simeq \Phi_{2}^{T}$. This would prove the strict convexity of $P(\Phi)$ for strongly tempered classical interactions by the same method as for quantum interactions. But since the class of classical interactions considered in [1] is appreciably larger, it does not seem worth proving that conjecture.

Remark 2.8. Looking through the proof of Theorem 2.2 one easily realizes that, for $\Phi_{1}, \Phi_{2} \in B_{f_{3}}$ and $\operatorname{Tr}_{X}\left(\Phi_{1}(X)-\Phi_{2}(X)\right)=0$ for all X, the equality $\tau_{t}\left(\Phi_{1}\right)=\tau_{t}\left(\Phi_{2}\right)$ already implies $P\left(\Phi_{1}\right)=P\left(\Phi_{2}\right)$. From $A_{\Phi_{1}}=A_{\Phi_{2}}$ for physically equivalent interactions, it follows that the equilibrium states $\varrho_{s}^{\Phi_{1}}$ and $\varrho_{s}^{\Phi_{2}}$, as defined by the above variational principle, coincide if $\Phi_{1} \simeq \Phi_{2}$.

III. Proofs

If $f(\xi) \geqq \bar{f}(\xi)$ for sufficiently large ξ, then $\Psi \in B_{f}$ implies $\Psi \in B_{\bar{f}}$ and $\Psi \in B_{\max (f, \bar{f})}$.

Proof of Theorem 2.2. It suffices to assume

$$
\begin{equation*}
\Phi \in B_{f_{4}}, f_{4}(\xi)=e^{\alpha \xi} \sum_{v=1}^{\xi-1} \prod_{\mu=1}^{v}\left(1+\binom{\xi}{\mu}\right) . \tag{12}
\end{equation*}
$$

With the estimate $\binom{\xi}{\mu}<2^{\xi}$ one easily gets

$$
\begin{equation*}
f_{4}(\xi) \leqq e^{\xi^{2} \ln 2+\alpha \xi} \leqq e^{\xi^{2}}=f_{3}(\xi) \quad \text { for large } \xi \tag{13}
\end{equation*}
$$

For the sake of convenience, we take $\alpha=1$ and assume $\Phi \in B_{f_{0}}, f_{0}(\xi)$ $=e^{3 \xi} f_{4}(\xi)$. Clearly, $\Phi \in B_{f_{0}}$ if $\Phi \in B_{f_{3}}$.

Lemma 3.1. If $\Psi \in B_{1 / \xi}$, then $\sum_{Z: Z \supset X} \operatorname{tr}_{Z \backslash X} \Psi(Z)$ exists, and

$$
\left\|\sum_{Z: Z \supset X} \operatorname{tr}_{Z \backslash X} \Psi(Z)\right\| \leqq N(X)\|\Psi\|_{1 / \xi}
$$

This follows from $\left\|\operatorname{tr}_{Z \backslash X} \Psi(Z)\right\| \leqq\|\Psi(Z)\|$ and

$$
\sum_{Z: Z \supset X}\|\Psi(Z)\|=\sum_{x \in X} \sum_{Z \ni x}\|\Psi(Z)\| N(Z)^{-1}=N(X)\|\Psi\|_{1 / \xi}
$$

Due to this Lemma, we can define a sequence of interactions Φ_{k}, $k=0,1,2, \ldots$, by

Definition 3.2. $\Phi_{0}(X)=\Phi(X)$;

$$
\Phi_{k}(X)= \begin{cases}\Phi_{k-1}(X) & \text { if } \quad N(X)<k \\ \Phi_{k-1}(X)+\sum_{Z: Z \supset X} \operatorname{tr}_{Z \backslash X} \Phi_{k-1}(Z) & \text { if } \quad N(X)=k \\ \Phi_{k-1}(X)-\sum_{Y: Y \subset X, N(Y)=k} \operatorname{tr}_{X \backslash Y} \Phi_{k-1}(X) & \text { if } \quad N(X)>k\end{cases}
$$

Because of

$$
\begin{equation*}
\Phi_{k}(X)=\Phi_{N(X)}(X) \quad \text { for } \quad k \geqq N(X), \tag{14}
\end{equation*}
$$

the sequence converges in an obvious sense to

$$
\begin{equation*}
\tilde{\Phi}(X)=\Phi_{N(X)}(X) \tag{15}
\end{equation*}
$$

We are going to show that $\tilde{\Phi}$ has the properties required in Theorem 2.2.
Remark 3.3. It is clear from the definition that Φ_{k} and $\tilde{\Phi}$ are translationally covariant. If Φ is of finite range, or if $\Phi(X)=0$ for $N(X) \geqq N_{0}$, the same holds true for Φ_{k} and $\tilde{\Phi}$.
(i) Calculation of the norm. For $k<N(X)$, we have

$$
\left\|\Phi_{k}(X)\right\| \leqq\left\|\Phi_{k-1}(X)\right\|+\sum_{Y: Y \subset X, N(Y)=k}\left\|\Phi_{k-1}(X)\right\|=\left\|\Phi_{k-1}(X)\right\|\left(1+\binom{N(X)}{k}\right)
$$

consequently, because also $k-1<N(X)$,

$$
\begin{equation*}
\left\|\Phi_{k}(X)\right\| \leqq\|\Phi(X)\| p(N(X) ; k), p(\xi ; k)=\prod_{\mu=1}^{k}\left(1+\binom{\xi}{\mu}\right) . \tag{16}
\end{equation*}
$$

Insertion of (16) into

$$
\left\|\Phi_{N(X)}(X)\right\| \leqq\left\|\Phi_{N(X)-1}(X)\right\|+\sum_{Z: Z \supset X}\left\|\Phi_{(N(X)-1)}(Z)\right\|
$$

yields

$$
\left\|\Phi_{N(X)}(X)\right\| \leqq\|\Phi(X)\| p(N(X) ; N(X)-1)+\sum_{Z: Z \supset X}\|\Phi(Z)\| p(N(Z) ; N(X)-1)
$$

hence

$$
\begin{align*}
\|\tilde{\Phi}\|_{e^{\xi}} & =\sum_{X \ni 0}\left\|\Phi_{N(X)}(X)\right\| e^{N(X)} \leqq \sum_{X \ni 0}\|\Phi(X)\| p(N(X) ; N(X)-1) e^{N(X)} \tag{17}\\
& +\sum_{Z \ni 0}\|\Phi(Z)\| \sum_{X: X \subset Z, X \ni 0} p(N(Z) ; N(X)-1) e^{N(X)},
\end{align*}
$$

where the second term is obtained by rearranging the terms of the original sum $\sum_{X \ni 0} \sum_{Z: Z \subset X}$.

Note that $p(\xi ; \xi-1) e^{\xi} \leqq f_{0}(\xi)$ and

$$
\begin{aligned}
\sum_{X: X \subset Z, X \ni 0} p(N(Z) ; N(X)-1) e^{N(X)} & \leqq \sum_{v=1}^{N(Z)-1} e^{v} p(N(Z) ; v-1)\binom{N(Z)}{v} \\
& \leqq f_{0}(N(Z)),
\end{aligned}
$$

therefore, we conclude from (17) that

$$
\|\tilde{\Phi}\|_{e^{\xi}} \leqq 2\|\Phi\|_{f_{0}}<\infty
$$

(ii) Vanishing of the partial traces. We have by assumption $\operatorname{tr}_{X} \Phi_{0}(X)$ $=\operatorname{tr}_{X} \Phi(X)=0$. Now suppose that

$$
\left(T_{l}\right): \operatorname{Tr}_{X \backslash Y} \Phi_{l}(X)=0 \quad \text { for } \quad N(Y) \leqq l, N(Y)<N(X)
$$

holds for all $l \leqq k-1$. We then show the validity of $\left(T_{k}\right)$. If $N(X)<k$, then $N(Y)<N(X) \leqq k-1$, and $\operatorname{tr}_{X \backslash Y} \Phi_{k}(X)=\operatorname{tr}_{X \backslash Y} \Phi_{k-1}(X)=0$. If $N(X)=k$, then $\quad N(Y) \leqq k-1, \quad$ and $\quad \operatorname{tr}_{X \backslash Y} \Phi_{k}(X)=\operatorname{tr}_{X \backslash Y} \Phi_{k-1}(X)$ $+\sum_{Z \supset X} \operatorname{tr}_{Z \backslash Y} \Phi_{k-1}(Z)=0$, where we used Lemma 2.1. Finally, if $N(X)>k$, we get, again applying Lemma 2.1,

$$
\begin{equation*}
\operatorname{tr}_{X \backslash Y} \Phi_{k}(X)=\operatorname{tr}_{X \backslash Y} \Phi_{k-1}(X)-\sum_{Y^{\prime}: Y^{\prime} \subset X, N\left(Y^{\prime}\right)=k} \operatorname{tr}_{X \backslash\left(Y \cap Y^{\prime}\right)} \Phi_{k-1}(X) . \tag{18}
\end{equation*}
$$

For $N(Y) \leqq k-1$, the r.h.s. vanishes because $N\left(Y \cap Y^{\prime}\right) \leqq k-1$. If $N(Y)=k$, then $N\left(Y \cap Y^{\prime}\right) \leqq k-1$ unless $Y^{\prime}=Y$, and all terms in the sum vanish except one which cancels the first term of the r.h.s. of (18). Therefore, $\left(T_{h}\right)$ holds for all k; with $k=N(X)$, we get $\operatorname{tr}_{Y} \tilde{\Phi}(X)=0$ for all $Y \subset X$.
(iii) Calculation of $P(\tilde{\Phi})$ and $\tau_{t}(\tilde{\Phi})$. This is the most laborious part of the proof. $P(\tilde{\Phi})$ and $\tau_{t}(\tilde{\Phi})$ are well defined because $\tilde{\Phi} \in B_{e} \xi$. We want to show

$$
\begin{equation*}
P(\beta \tilde{\Phi})=P(\beta \Phi), \tau_{t}(\tilde{\Phi}) A=\tau_{t}(\Phi) A, A \in \mathfrak{H} \tag{19a,b}
\end{equation*}
$$

by establishing the following Lemmas:
Lemma 3.4. For a special Van Hove-sequence $\Lambda \rightarrow \infty$, to be defined below, we have
$\left|P_{\Lambda}(\beta \tilde{\Phi})-P_{\Lambda}(\beta \Phi)\right| \leqq N(\Lambda)^{-1} \beta\left\|H_{\Lambda}(\tilde{\Phi})-H_{A}(\Phi)\right\|<\beta \varepsilon$ if $\quad \Lambda \supset \Lambda_{0}(\varepsilon)$.

Lemma 3.5. For the special sequence $\Lambda \rightarrow \infty$ of Lemma 3.4, and for any strictly local $A \in \mathfrak{B}\left(\mathscr{H}_{\Lambda_{1}}\right)$, we have

$$
\left\|\left[H_{\Lambda}(\tilde{\Phi}), A\right]^{(m)}-\left[H_{\Lambda}(\Phi), A\right]^{(m)}\right\|<\varepsilon, \quad m=1,2, \ldots, N
$$

if $\Lambda \supset \Lambda_{0}{ }^{\prime}(\varepsilon, N, A)$.
The multiple commutator $[B, A]^{(m)}$ is defined by $[B, A]^{(0)}=A$, $[B, A]^{(m)}=\left[B,[B, A]^{(m-1)}\right]$. The limits $\lim _{A \rightarrow \infty} P_{A}(\Phi)$ (resp. $\lim P_{A}(\tilde{\Phi})$, $\left.\lim \tau_{t}^{\Lambda}(\Phi) A, \lim \tau_{t}(\tilde{\Phi}) A\right)$ are independent of the chosen sequence $\Lambda \rightarrow \infty$, hence Lemma 3.4 implies (19a). $\tau_{t}^{\Lambda}(\Phi) A$ (resp. $\left.\tau_{t}^{\Lambda}(\tilde{\Phi}) A\right)$ can, for small t, $|t|<t_{0}(\Phi)$, be approximated by

$$
\sum_{m=0}^{N} \frac{(i t)^{m}}{m!}\left[H_{\Lambda}(\Phi), A\right]^{(m)}\left(\operatorname{resp} . \sum_{m=0}^{N} \frac{(i t)^{m}}{m!}\left[H_{\Lambda}(\tilde{\Phi}), A\right]^{m}\right)
$$

uniformly in Λ (see for instance [2], Section 7.6). Therefore, Lemma 3.5 yields $\tau_{t}(\tilde{\Phi}) A=\tau_{t}(\Phi) A$ for strictly local A and sufficiently small t, hence (19b).

We start proving

Lemma 3.6.

$$
\begin{align*}
& H_{\Lambda}(\tilde{\Phi})-H_{\Lambda}(\Phi)=\sum_{l=1}^{N(\Lambda)} \sum_{X: X \subset A, N(X)=l} \sum_{Z: X \subset Z \nmid A} \operatorname{tr}_{Z \backslash X} \Phi_{l-1}(Z), \tag{20}\\
& \left\|H_{\Lambda}(\tilde{\Phi})-H_{\Lambda}(\Phi)\right\| \leqq \sum_{x \in \Lambda} \sum_{Z: Z \nsubseteq \Lambda, Z \ni x}\|\Phi(Z)\| f_{0}(N(Z)) . \tag{21}
\end{align*}
$$

Proof. Insertion of Definition 3.2 into

$$
H_{\Lambda}\left(\Phi_{k}\right)=\sum_{X \subset \Lambda, N(X)>k} \Phi_{k}(X)+\sum_{X \subset \Lambda, N(X)=k} \Phi_{k}(X)+\sum_{X \subset \Lambda, N(X)<k} \Phi_{k}(X),
$$

and reordering of the terms gives, for all $k=1,2, \ldots$,

$$
\begin{equation*}
H_{\Lambda}\left(\Phi_{k}\right)=H_{\Lambda}\left(\Phi_{k-1}\right)+\sum_{X: X \subset \Lambda, N(X)=k} \sum_{Z: X \subset Z \not \subset \Lambda} \operatorname{tr}_{Z \backslash X} \Phi_{k-1}(Z) . \tag{22}
\end{equation*}
$$

Furthermore, due to (14), we have

$$
\begin{equation*}
H_{\Lambda}(\tilde{\Phi})=\sum_{X \subset A} \Phi_{N(X)}(X)=\sum_{X \subset A} \Phi_{N(\Lambda)}(X)=H_{\Lambda}\left(\Phi_{N(\Lambda)}\right) \tag{23}
\end{equation*}
$$

Iteration of (22) together with (23) yields (20).
By (16), the norm of (20) is bounded by

$$
\sum_{l=1}^{N(\Lambda)} \sum_{X: \ldots} \sum_{Z: \cdots}\|\Phi(Z)\| p(N(Z) ; l-1) \leqq \sum_{x \in A} \sum_{Z: Z \ni x, Z \not \subset \nmid}\|\Phi(Z)\| r(\Lambda ; Z)
$$

with

$$
\begin{aligned}
r(\Lambda ; Z) & =\sum_{l=1}^{N(\Lambda)} \sum_{X: X \subset \Lambda \cap Z, N(X)=l} p(N(Z) ; l-1) \\
& =\sum_{l=1}^{N(\Lambda)}\binom{N(\Lambda \cap Z)}{l} p(N(Z) ; l-1) .
\end{aligned}
$$

We have to put $\binom{n}{l}=0$ if $l>n$. The estimate

$$
r(\Lambda ; Z) \leqq \sum_{l=1}^{N(Z)}\binom{N(Z)}{l} p(N(Z) ; l-1) \leqq f_{0}(N(Z))
$$

finally proves (21).
Now let us define a special sequence $\Gamma_{k} \subset \boldsymbol{Z}^{v}$. We choose $a \in \boldsymbol{Z}^{v}$, $a=\left(a^{1}, \ldots, a^{v}\right)$ and $\Lambda(a)=\left\{x \in \boldsymbol{Z}^{v} ;-a^{i} \leqq x^{i}<a^{i}, i=1, \ldots, v\right\}$ in such a way that

$$
\begin{equation*}
\sum_{X: 0 \in X \nmid A}\|\Phi(X)\| f_{0}(N(X))<\frac{\varepsilon}{2} \quad \text { for } \quad \Lambda \supset \Lambda(a) \tag{24}
\end{equation*}
$$

Definition 3.7. Let $\Lambda+x$ denote the set Λ translated by x;

$$
\Gamma_{1}=\Lambda(a), \Gamma_{k}=\bigcup_{x \in \mathbf{Z}^{v}:-a^{i} \leqq x^{x^{2}} \leqq a^{i}}\left(\Gamma_{k-1}+x\right) .
$$

Γ_{k} consists of k^{v} translates of $\Lambda(a)$, hence

$$
\begin{equation*}
N\left(\Gamma_{k}\right)=N(\Lambda(a)) k^{v} \tag{25}
\end{equation*}
$$

Furthermore, $\Gamma_{k} \rightarrow \infty$ in the sense of Van Hove, and $\Gamma_{k} \supset \bigcup_{x \in \Gamma_{k-1}}(\Lambda(a)+x)$. This implies, due to (24) and the translation covariance of the interaction, that

$$
\begin{equation*}
\sum_{X: x \in X \nsubseteq \Gamma_{k}}\|\Phi(X)\| f_{0}(N(X))<\frac{\varepsilon}{2} \quad \text { for all } \quad x \in \Gamma_{k-1} \tag{26}
\end{equation*}
$$

Lemma 3.8. Let us assume $\Lambda \subset \Gamma_{k}$ and $N\left(\Lambda \cap \Gamma_{k-1}\right) / N(\Lambda)>1-\varepsilon_{1}$, then

$$
\begin{equation*}
\sum_{x \in A} \sum_{X: x \in X \notin I_{k}}\|\Phi(X)\| f_{0}(N(X))<N(\Lambda)\left(\frac{\varepsilon}{2}+\varepsilon_{1}\|\Phi\|_{f_{0}}\right) . \tag{27}
\end{equation*}
$$

Proof. We split the sum $\sum_{x \in \Lambda}=\sum_{x \in \Lambda \cap \Gamma_{k}-1}+\sum_{x \in \Lambda \cap\left(I_{k} \backslash \Gamma_{k}-1\right)}$. To the first term, we can apply (26), the second one is bounded by $N\left(\Lambda \cap\left(\Gamma_{k} \backslash \Gamma_{k-1}\right)\right)$ $\cdot\|\Phi\|_{f_{0}} \leqq N(\Lambda) \varepsilon_{1}\|\Phi\|_{f_{0}}$, hence (27).

Choose k large, such that $N\left(\Gamma_{k-1}\right) / N\left(\Gamma_{k}\right)=(k-1 / k)^{v}>1-\varepsilon / 2\|\Phi\|_{f_{0}}$, and apply Lemma 3.8 with $\Lambda=\Gamma_{k}$, then

$$
\begin{equation*}
\sum_{x \in I_{k}} \sum_{X: x \in X \nmid \Gamma_{k}}\|\Phi(X)\| f_{0}(N(X))<N\left(\Gamma_{k}\right) \varepsilon \tag{28}
\end{equation*}
$$

Proof of Lemma 3.4. We note that

$$
\begin{aligned}
\left|P_{A}(\beta \tilde{\Phi})-P_{\Lambda}(\beta \Phi)\right| & \leqq N(\Lambda)^{-1}\left\|H_{\Lambda}(\beta \Phi)-H_{\Lambda}(\beta \tilde{\Phi})\right\| \\
& =N(\Lambda)^{-1} \beta\left\|H_{\Lambda}(\Phi)-H_{A}(\tilde{\Phi})\right\|
\end{aligned}
$$

Putting $\Lambda=\Gamma_{k}, k$ sufficiently large, and using (21) and (28), we get

$$
\left|P_{\Gamma_{k}}(\beta \tilde{\Phi})-P_{I_{k}}(\beta \Phi)\right|<\beta \varepsilon
$$

Proof of Lemma 3.5. We use the same sort of estimates as in [2], Section 7.6, and the fact that

$$
\begin{align*}
& \left\|\left[H_{\Lambda}(\tilde{\Phi})-H_{\Lambda}(\Phi), A\right]\right\| \leqq N\left(\Lambda_{1}\right) \cdot \varepsilon \text { if } A \in \mathfrak{B}\left(\mathscr{H}_{\Lambda_{1}}\right), \tag{29}\\
& {\left[H_{\Lambda}(\Phi), A\right]^{(m)}-\left[H_{\Lambda}(\tilde{\Phi}), A\right]^{(m)}} \tag{30}\\
& \quad=\sum_{r=0}^{m-1}\left[H_{\Lambda}(\tilde{\Phi}),\left[H_{\Lambda}(\Phi)-H_{\Lambda}(\tilde{\Phi}),\left[H_{\Lambda}(\Phi), A\right]^{(r)}\right]\right]^{(m-r-1)} .
\end{align*}
$$

(29) is a consequence of Lemma 3.8, because only those $\Phi(X)$ and $\tilde{\Phi}(X)$ give a contribution for which $X \cap \Lambda_{1} \neq \emptyset$. Working out the details is an awful task, and will be done in the appendix.
(iv) The uniqueness of $\tilde{\Phi}$ follows from an argument of Griffiths and Ruelle ([1], Section IV). Suppose there exists a Φ^{\prime} such that $\operatorname{Tr}_{Y} \Phi^{\prime}(X)=0$ and $\tau_{t}\left(\Phi^{\prime}\right)=\tau_{t}(\Phi)=\tau_{t}(\tilde{\Phi})$, then $\Phi^{\prime}=\tilde{\Phi}$. By the same argument, $\Phi_{1} \simeq \Phi_{2}$ implies $\widetilde{\Phi}_{1}=\widetilde{\Phi_{2}}$. The inverse is trivial. This completes the proof of Theorem 2.2.
(v) Due to the uniqueness of $\tilde{\Phi}$, we have $\tilde{\Phi}_{1}=\tilde{\Phi}_{2}$ if $\Phi_{1} \simeq \Phi_{2}$, and, according to (19a), $P\left(\beta \Phi_{1}\right)=P\left(\beta \tilde{\Phi}_{1}\right)=P\left(\beta \tilde{\Phi}_{2}\right)=P\left(\beta \Phi_{2}\right)$. In the same way, it follows that, for invariant states $\varrho, \varrho\left(A_{\Phi_{1}}\right)=\varrho\left(A_{\Phi_{2}}\right)$, provided we know that $\varrho\left(A_{\Phi}\right)=\varrho\left(A_{\tilde{\Phi}}\right)$. Define $A_{\Phi}(\Lambda)=N(\Lambda)^{-1} \sum_{x \in \Lambda} \sum_{X \ni x} \Phi(X) N(X)^{-1}$, and consider

$$
\begin{aligned}
\left\|A_{\Phi}(\Lambda)-A_{\tilde{\Phi}}(\Lambda)\right\| \leqq & \left\|A_{\Phi}(\Lambda)-N(\Lambda)^{-1} H_{\Lambda}(\Phi)\right\|+\left\|A_{\tilde{\Phi}}(\Lambda)-N(\Lambda)^{-1} H_{\Lambda}(\tilde{\Phi})\right\| \\
& +N(\Lambda)^{-1}\left\|H_{\Lambda}(\Phi)-H_{\Lambda}(\tilde{\Phi})\right\|
\end{aligned}
$$

If we choose $\Lambda=\Gamma_{k}, k$ sufficiently large, the third term on the r.h.s. will be small due to (21) and (28). Note that we can replace $f_{0}(\xi)$ by $1 / \xi$ in Lemma 3.8 and in (28). Application of (28) to

$$
\left\|A_{\Phi}(\Lambda)-N(\Lambda)^{-1} H_{\Phi}(\Lambda)\right\|=N(\Lambda)^{-1}\left\|\sum_{x \in \Lambda} \sum_{X: x \in X \nsubseteq A} \Phi(X) N(X)^{-1}\right\|
$$

and to the corresponding expression with $\tilde{\Phi}$ then shows that $\| A_{\Phi}(\Lambda)$ $-A_{\tilde{\Phi}}(\Lambda) \|<3 \varepsilon$, hence $\left|\varrho\left(A_{\Phi}(\Lambda)\right)-\varrho\left(A_{\tilde{\Phi}}(\Lambda)\right)\right|<3 \varepsilon$ with arbitrarily small ε. Due to the invariance of ϱ, we have $\varrho\left(A_{\Phi}(\Lambda)\right)=\varrho\left(A_{\Phi}\right)$, and therefore $\varrho\left(A_{\Phi}\right)=\varrho\left(A_{\tilde{\Phi}}\right)$. This completes the proof of Theorem 2.2.

Proof of Proposition 2.3. (i) and (ii) are simple consequences of Lemma 2.1. Notice that

$$
\begin{equation*}
H_{\Lambda}\left(\Phi^{T}\right)=H_{\Lambda}(\Phi)-C_{\Lambda}(\Phi) \cdot \mathbf{1}_{\Lambda} \tag{31}
\end{equation*}
$$

due to (i), $P(\Phi)$ and $P\left(\Phi^{T}\right)$ exist, hence

$$
\begin{aligned}
P(\Phi)-P\left(\Phi^{T}\right) & =\lim _{\Lambda \rightarrow \infty} N(\Lambda)^{-1}\left(\log \operatorname{Tr}_{\Lambda} e^{-H_{\Lambda}(\Phi)}-\log \operatorname{Tr}_{\Lambda} e^{-H_{\Lambda}\left(\Phi^{T}\right)}\right) \\
& =\lim _{\Lambda \rightarrow \infty} N(\Lambda)^{-1} C_{\Lambda}(\Phi) \equiv \pi(\Phi)
\end{aligned}
$$

exists. This proves the first part of (10), the second one is a trivial consequence of (31) and the definition of τ_{t}.

Proof of Theorem 2.4. Let us suppose $\Phi_{1}, \Phi_{2} \in B_{f_{0}}, 0 \leqq \alpha \leqq 1$, then $\Phi=\alpha \Phi_{1}+(1-\alpha) \Phi_{2} \in B_{f_{0}}$ and

$$
\begin{align*}
\Phi^{T} & =\alpha \Phi_{1}^{T}+(1-\alpha) \Phi_{2}^{T} \tag{32}\\
C_{\Lambda}(\Phi) & =\alpha C_{\Lambda}\left(\Phi_{1}\right)+(1-\alpha) C_{\Lambda}\left(\Phi_{2}\right), \tag{33}\\
\widetilde{\Phi^{T}} & =\alpha \widetilde{\Phi_{1}^{T}}+(1-\alpha) \widetilde{\Phi_{2}^{T}}, \tag{34}
\end{align*}
$$

because all operations involved are linear. Thus we have

$$
\begin{align*}
P(\Phi) & =P\left(\alpha \Phi_{1}^{T}+(1-\alpha) \Phi_{2}^{T}\right)-\alpha \pi\left(\Phi_{1}\right)-(1-\alpha) \pi\left(\Phi_{2}\right) \\
& =P\left(\alpha \widetilde{\Phi_{1}^{T}}+(1-\alpha) \widetilde{\Phi_{2}^{T}}\right)-\alpha \pi\left(\Phi_{1}\right)-(1-\alpha) \pi\left(\Phi_{2}\right) \tag{35}
\end{align*}
$$

If $\Phi_{1}^{T} \not \not \Phi_{2}^{T}$, then we know from Theorem 2.2 that $\widetilde{\Phi_{1}^{T}} \neq \widetilde{\Phi_{2}^{T}}$, hence, according to [1],

$$
P\left(\alpha \widetilde{\Phi_{1}^{T}}+(1-\alpha) \widetilde{\Phi_{2}^{T}}\right)>\alpha P\left(\widetilde{\Phi_{1}^{T}}\right)+(1-\alpha) P\left(\widetilde{\Phi_{2}^{T}}\right)
$$

Insertion into (35) gives immediately

$$
P(\Phi)>\alpha P\left(\Phi_{1}\right)+(1-\alpha) P\left(\Phi_{2}\right) .
$$

On the other hand, if $\Phi_{1}^{T} \simeq \Phi_{2}^{T}$, then we have $\widetilde{\Phi_{1}^{T}}=\widetilde{\Phi_{2}^{T}}=\widetilde{\Phi^{T}}$ and

$$
P(\Phi)=P\left(\Phi^{T}\right)-\pi(\Phi)=\alpha P\left(\Phi_{1}\right)+(1-\alpha) P\left(\Phi_{2}\right)
$$

Proof of Proposition 2.6. We have to show the strict convexity of $P\left(\beta \Phi_{\mu}\right)$ with respect to $\mu . \Phi_{\mu}$ is given by $\Phi_{\mu}(X)=\Phi(X)-\delta_{1, N(X)} \mathcal{N}(X)$. It follows by a straightforward computation that

$$
\begin{aligned}
& \Phi_{\mu}^{T}(X)=\Phi^{T}(X)-\mu \delta_{1, N(X)}\left(\mathscr{N}(X)-\frac{1}{2} \mathbf{1}_{X}\right), \\
& \widetilde{\Phi}_{\mu}^{T}(X)=\widetilde{\Phi}^{\widetilde{T}}(X)-\mu \delta_{1, N(X)}\left(\mathscr{N}(X)-\frac{1}{2} \mathbf{1}_{X}\right) .
\end{aligned}
$$

Hence $\mu_{1} \neq \mu_{2}$ implies $\widetilde{\Phi_{\mu_{1}}^{T}} \neq \widetilde{\Phi_{\mu_{2}}^{T}}$, and we can apply the previous theorem.

Acknowledgement. This work was initiated by discussions with M. Winnink, whom I wish to thank. Furthermore, I am grateful to N. M. Hugenholtz and M. Winnink for their kind hospitality.

Appendix: Proof of Lemma 3.5

Let us consider Eq. (30) with $A \in \mathfrak{B}\left(\mathscr{H}_{\Lambda_{1}}\right)$. It suffices to show that each term on the r.h.s. is bounded in norm by $C \cdot \varepsilon$ if $\Lambda=\Gamma_{k} \supset \Gamma_{k_{0}}$, where k_{0} is chosen large enough such that

$$
\begin{equation*}
\Lambda_{1} \subset \Gamma_{k_{0}-N-1} \tag{A1}
\end{equation*}
$$

The constant C may also depend on N and Λ_{1}. We insert $H_{A}(\Phi)$ $=\sum_{X \subset A} \Phi(X)$, resp. $H_{\Lambda}(\tilde{\Phi})=\sum_{Y \subset A} \tilde{\Phi}(Y)$, resp. the expression of Eq. (20) into (30). To shorten the notation, we write (for fixed Λ):

$$
\sum_{(X, p)}=\sum_{p} \sum_{X: X \subset A, N(X)=p}=\sum_{X \subset A}
$$

furthermore

$$
\sum_{p_{i}}=\sum_{p_{1}, \ldots, p_{r}=1}^{N(\Lambda)}, \quad \sum_{\left(X_{i}, p_{i}\right)}=\sum_{\left(X_{1}, p_{1}\right)} \ldots \sum_{\left(X_{r}, p_{r}\right)}
$$

We put $s=m-r-1$, the indices i and j run from 1 to r and from 1 to s, respectively. Then we get

$$
\begin{align*}
& {\left[H_{\Lambda}(\tilde{\Phi}),\left[H_{\Lambda}(\Phi)-H_{\Lambda}(\tilde{\Phi}),\left[H_{\Lambda}(\Phi), A\right]^{(r)}\right]\right]^{(s)}} \\
& =\sum_{p_{i}} \sum_{l} \sum_{q_{j}} \sum_{\left(X_{i}, p_{l}\right)} \sum_{(X, l)} \sum_{Z: X \subset Z \nmid A} \sum_{\left(Y_{j}, q_{j}\right)}\left[\tilde{\Phi}\left(Y_{s}\right),\left[\ldots \left[\tilde{\Phi}\left(Y_{1}\right),\left[-\operatorname{tr}_{Z \backslash X} \Phi_{l-1}(Z),\right.\right.\right.\right. \\
& \quad \cdot\left[\Phi\left(X_{r}\right),\left[\ldots\left[\Phi\left(X_{1}\right), A\right] \ldots\right] .\right. \tag{A2}
\end{align*}
$$

Let us define $S_{1}=\Lambda_{1}, S_{i+1}=S_{i} \cup X_{i}, i=1, \ldots, r-1, S=S_{r} \cup X_{r}, T_{1}=S \cup X$, $T_{j+1}=T_{j} \cup Y_{j}, j=1, \ldots, s-1$. We may restrict the summations to those X_{i}, X and Y_{j} for which $X_{i} \cap S_{i} \neq \emptyset, X \cap S \neq \emptyset, Y_{j} \cap T_{j} \neq \emptyset$. [Notice that $\operatorname{tr}_{Z \backslash X} \Phi_{l-1}(Z) \in \mathfrak{B}\left(\mathscr{H}_{X}\right)$.] These restricted summations will be denoted by $\sum_{\left(X_{i}, p_{t}, S_{i}\right)}=\sum_{\left(X_{1}, p_{1}, S_{1}\right)} \cdots \sum_{\left(X_{r}, p_{r}, S_{r}\right)}$, etc.

We estimate the norm of (A 2) by taking the norms of the terms of the r.h.s., using $\left\|\operatorname{tr}_{Z \backslash X} \Phi_{l-1}(Z)\right\| \leqq\|\Phi(Z)\| 2^{(l-1) N(Z)}$. This gives

$$
\left\|\left[H_{A}(\tilde{\Phi}),\left[\ldots[\ldots]^{(r)}\right]\right]^{(s)}\right\|
$$

$$
\begin{equation*}
\leqq 2^{m}\|A\| \sum_{p_{i}} \sum_{\left(X_{i}, p_{i}, S_{i}\right)} \prod_{i=1}^{r}\left\|\Phi\left(X_{i}\right)\right\| \sum_{l} \sum_{(X, l, S)} \sum_{Z: X \subset Z \nmid A}\|\Phi(Z)\| 2^{(l-1) N(Z)} \tag{A3}
\end{equation*}
$$

$$
\cdot \sum_{q_{j}} \sum_{\left(Y_{j}, q_{j}, T_{j}\right)} \prod_{j=1}^{s}\left\|\tilde{\Phi}\left(Y_{j}\right)\right\|
$$

We evaluate the sums starting with the q_{j} - and Y_{j}-summations. We use the same arguments as in Section 7.6 of [2], with

$$
\begin{gathered}
N\left(S_{i}\right) \leqq N\left(\Lambda_{1}\right)+\Sigma p_{i}, \quad N(S) \leqq N\left(\Lambda_{1}\right)+\Sigma p_{i} \\
N\left(T_{j}\right) \leqq N\left(\Lambda_{1}\right)+\Sigma p_{i}+l+\Sigma q_{i} \\
\prod_{j=1}^{s} N\left(T_{i}\right) \leqq\left(N\left(\Lambda_{1}\right)+\Sigma p_{i}+l+\Sigma q_{j}\right)^{s} \leqq s!e^{N\left(\Lambda_{1}\right)+l} \Pi e^{p_{i}} \Pi e^{q_{j}}
\end{gathered}
$$

with the result

$$
\begin{equation*}
\sum_{q_{J}} \sum_{\left(Y_{j}, q_{j}, T_{j}\right)} \prod_{j=1}^{s}\left\|\tilde{\Phi}\left(Y_{j}\right)\right\| \leqq s!e^{N\left(\Lambda_{1}\right)} e^{l} \Pi e^{p_{l}}\left(\|\tilde{\Phi}\|_{e \xi}\right)^{s} . \tag{A4}
\end{equation*}
$$

For $s=0,(\mathrm{~A} 4)$ is to be replaced by $1 \leqq e^{N\left(\Lambda_{1}\right)} e^{l} \Pi e^{p_{1}}$.
The next step is to consider

$$
\begin{align*}
\sigma\left(X_{1}, \ldots, X_{r}\right) & \equiv \sum_{l} \sum_{(X, l, S)} \sum_{Z: X \subset Z \nmid \Lambda}\|\Phi(Z)\| 2^{(l-1) N(Z)} e^{l} \\
& \leqq \sum_{x \in S} \sum_{Z: Z \nmid \Lambda, Z \ni x}\|\Phi(Z)\| \sum_{l=1}^{N(\Lambda)} \sum_{X: X \subset Z, N(X)=l} 2^{(l-1) N(Z)} e^{l} \tag{A5}\\
& \leqq \sum_{x \in S} \sum_{Z: Z \nmid \Lambda, Z \ni x}\|\Phi(Z)\| f_{0}(N(Z)) .
\end{align*}
$$

Now let us take $\Lambda=\Gamma_{k}$, with a fixed $k \geqq k_{0}$ [k_{0} as defined in (A 1)], and try to apply Lemma 3.8 to the r.h.s. of (A 6). This is possible for those X_{1}, \ldots, X_{r}, for which $S=\Lambda_{1} \cup X_{1} \cup \cdots \cup X_{r}$ fulfills

$$
(\mathrm{S}): \quad N\left(S \cap \Gamma_{k-1}\right) / N(S)>1-\varepsilon / 2\|\Phi\|_{f_{0}}
$$

We define

$$
\chi\left(\Lambda^{\prime} ; X_{1}, \ldots, X_{r}\right)= \begin{cases}1 & \text { if } S=\Lambda^{\prime} \cup X_{1}, \ldots, X_{r} \text { satisfies }(\mathrm{S}), \tag{A6}\\ 0 & \text { otherwise }\end{cases}
$$

Then we have by application of Lemma 3.8

$$
\begin{equation*}
\sigma\left(X_{1}, \ldots, X_{r}\right) \chi\left(\Lambda_{1} ; X_{1}, \ldots, X_{r}\right)<N(S) \cdot \varepsilon<e^{N\left(\Lambda_{1}\right)} \prod_{i} e^{p_{1}} \cdot \varepsilon \tag{A7}
\end{equation*}
$$

furthermore,

$$
\begin{gather*}
\sigma\left(X_{1}, \ldots, X_{r}\right)\left(1-\chi\left(\Lambda_{1} ; X_{1}, \ldots, X_{r}\right)\right) \leqq N(S)\|\Phi\|_{f_{0}}\left(1-\chi\left(\Lambda_{1} ; X_{1}, \ldots, X_{r}\right)\right) \\
\leqq e^{N\left(\Lambda_{1}\right)} \prod_{i} e^{p_{t}}\|\Phi\|_{f_{0}}\left(1-\chi\left(\Lambda_{1} ; X_{1}, \ldots, X_{r}\right)\right) . \tag{A8}
\end{gather*}
$$

Combining Eqs. (A4) through (A8) with (A 3), we get

$$
\begin{equation*}
\left\|\left[H_{A}(\tilde{\Phi}),\left[\ldots\left[H_{A}(\Phi), A\right]^{(r)}\right]\right]^{(s)}\right\| \leqq \sigma_{1}+\sigma_{2} \tag{A9}
\end{equation*}
$$

$$
\begin{gather*}
\sigma_{1}=C_{s, m} \sum_{p_{i}} \sum_{\left(X_{i}, p_{i}, S_{i}\right)} \prod_{i=1}^{r}\left\|\Phi\left(X_{i}\right)\right\| e^{2 p_{i}} \cdot \varepsilon, \tag{A10}\\
\sigma_{2}=C_{s, m}\|\Phi\|_{f_{0}} \sum_{p_{i}} \sum_{\left(X_{i}, p_{i}, S_{i}\right)} \prod_{i=1}^{r}\left\|\Phi\left(X_{i}\right)\right\| e^{2 p_{t}}\left(1-\chi\left(\Lambda_{1} ; X_{1}, \ldots, X_{r}\right)\right), \tag{A11}\\
C_{s, m}=s!e^{2 N\left(\Lambda_{1}\right)}\left(\|\tilde{\Phi}\|_{\left.e^{\xi}\right)^{s}} \cdot 2^{m} A .\right. \tag{A12}
\end{gather*}
$$

For $r=0$ we have to put $\prod_{i=1}^{r} \cdots=1$, furthermore, $\chi\left(\Lambda_{1} ; X_{1}, \ldots, X_{r}\right)=1$ because $\Lambda_{1} \subset \Gamma_{k-N-1}$ and (S) is fulfilled, hence $\sigma_{2}=0$.

We can estimate σ_{1} by the same method as in (A4):

$$
\begin{equation*}
\sigma_{1} \leqq C_{s, m} r!e^{N\left(\Lambda_{1}\right)}\left(\|\Phi\|_{e^{3 \xi}}\right)^{r} \cdot \varepsilon \tag{A13}
\end{equation*}
$$

This equation also holds for $r=0$.
For $r \geqq 1$, let us write

$$
\begin{equation*}
\sigma_{2}=C_{s, m}\|\Phi\|_{f_{0}} \Sigma\left(r ; \Lambda_{1} ; \Gamma_{k}\right) \tag{A14}
\end{equation*}
$$

with

$$
\begin{equation*}
\Sigma\left(r ; \Lambda^{\prime} ; \Gamma_{k}\right)=\sum_{p_{i}} \sum_{\left(X_{i}, p_{t}, S_{i}\right)} \prod_{1}^{r}\left\|\Phi\left(x_{i}\right)\right\| e^{2 p_{t}}\left(1-\chi\left(\Lambda^{\prime} ; X_{1}, \ldots, X_{r}\right)\right), \tag{A15}
\end{equation*}
$$

$S_{1}=\Lambda^{\prime}, S_{i}=\Lambda^{\prime} \cup X_{1} \cup \cdots \cup X_{i-1}, i=2, \ldots, r, \Lambda^{\prime} \subset \Gamma_{k}, X_{i} \subset \Gamma_{k}$. We shall show by induction that

$$
\begin{align*}
& \Sigma\left(r ; \Lambda^{\prime} ; \Gamma_{k}\right) \\
& \leqq e^{N\left(\Lambda^{\prime}\right)+r-1} N\left(\Lambda^{\prime}\right)^{r} \prod_{\varrho=0}^{r}(\varrho!)\left(\|\Phi\|_{f_{0}}\right)^{r-1} \varepsilon \quad \text { if } \quad \Lambda^{\prime} \subset \Gamma_{k-r-1} . \tag{A16}
\end{align*}
$$

Because of $\Lambda_{1} \subset \Gamma_{k-N-1}$, Eqs. (A 9)-(A 16) finally yield

$$
\begin{gathered}
\left\|\left[H_{A}(\tilde{\Phi}),\left[H_{A}(\Phi)-H_{A}(\tilde{\Phi}),\left[H_{A}(\Phi), A\right]^{(r)}\right]\right]^{(s)}\right\| \leqq C \cdot \varepsilon, \\
C=N!e^{3 N\left(\Lambda_{1}\right)}\left(2\|\Phi\|_{e^{3 \xi}}\|\tilde{\Phi}\|_{\left.e^{\xi}\right)^{N}}\|A\|\right. \\
+\prod_{\varrho=0}^{N}(\varrho!) e^{3 N\left(\Lambda_{1}\right)}\left(2 e N\left(\Lambda_{1}\right)\left\|\tilde{\Phi}_{e^{\xi}}\right\| \Phi \|_{f_{0}}\right)^{N}\|A\|,
\end{gathered}
$$

which is the desired estimate.
It remains to prove (A 16). Take $r=1$ and $\Lambda^{\prime} \subset \Gamma_{k-2}$, then $\chi\left(\Lambda^{\prime} ; X_{1}\right)=1$ if $X_{1} \subset \Gamma_{k-1}$, i.e. $1-\chi\left(\Lambda^{\prime} ; X_{1}\right)$ is certainly zero unless $X_{1} \nsubseteq \Gamma_{k-1}$, thus

$$
\begin{aligned}
\Sigma\left(1 ; \Lambda^{\prime} ; \Gamma_{k}\right) & \leqq \sum_{p_{1}} \sum_{X_{1}: N\left(X_{1}\right)=p_{1}, X_{1} \cap \Lambda^{\prime} \neq \emptyset, X_{1} \Varangle \Gamma_{k-1}}\left\|\Phi\left(X_{1}\right)\right\| e^{2 p_{1}} \\
& \leqq \sum_{x \in \Lambda^{\prime}} \sum_{X_{1}: x \in X_{1} \dagger \Gamma_{k-1}}\left\|\Phi\left(X_{1}\right)\right\| e^{2 N\left(X_{1}\right)} .
\end{aligned}
$$

We can apply Lemma 3.8 since $\Lambda^{\prime} \subset \Gamma_{k-2}$ and $e^{2 \xi} \leqq f_{0}(\xi)$, getting

$$
\Sigma\left(1 ; \Lambda^{\prime} ; \Gamma_{k}\right)<N\left(\Lambda^{\prime}\right) \frac{\varepsilon}{2}<e^{N\left(\Lambda^{\prime}\right)} N\left(\Lambda^{\prime}\right) \varepsilon
$$

i.e. (A 16) holds for $r=1$. Let us suppose its validity for $r-1$ and assume $\Lambda^{\prime} \subset \Gamma_{k-r-1}$. Notice that $\chi\left(\Lambda^{\prime} ; X_{1}, \ldots, X_{r}\right)=\chi\left(\Lambda^{\prime} \cup X_{1} ; X_{2}, \ldots, X_{r}\right)$, therefore,

$$
\begin{equation*}
\Sigma\left(r ; \Lambda^{\prime} ; \Gamma_{k}\right)=\sum_{p_{1}} \sum_{\left(X_{1}, p_{1}, S_{1}\right)}\left\|\Phi\left(X_{1}\right)\right\| e^{2 p_{1}} \Sigma\left(r-1 ; \Lambda^{\prime} \cup X_{1} ; \Gamma_{k}\right) \tag{A17}
\end{equation*}
$$

We split the X_{1}-summation into two parts: one part with $X_{1} \subset \Gamma_{k-r}$ so that we can use (A16) in estimating $\Sigma\left(r-1 ; \Lambda^{\prime} \cup X_{1} ; \Gamma_{k}\right)$, and a second one with $X_{1} ₫ \Gamma_{k-r}$ to which we again apply Lemma 3.8 (with Γ_{k} replaced by Γ_{k-r}) using

$$
\Sigma\left(r-1 ; \Lambda^{\prime} \cup X_{1} ; \Gamma_{k}\right) \leqq(r-1)!e^{N\left(\Lambda^{\prime}\right)+N\left(X_{1}\right)}\left(\|\Phi\|_{e^{3 \xi}}\right)^{r-1}
$$

(In the first part, the factor $N\left(\Lambda^{\prime} \cup X_{1}\right)^{r-1}$ appearing in the bound of $\Sigma\left(r-1 ; \Lambda^{\prime} \cup X_{1} ; \Gamma_{k}\right)$ is to be replaced by $\left(N\left(\Lambda^{\prime}\right)+N\left(X_{1}\right)\right)^{r-1}$ $\leqq N\left(\Lambda^{\prime}\right)^{r-1}\left(1+N\left(X_{1}\right)\right)^{r-1} \leqq N\left(\Lambda^{\prime}\right)^{r-1}(r-1)!e^{1+N\left(X_{1}\right)}$. This gives
$\Sigma\left(r ; \Lambda^{\prime} ; \Gamma_{k}\right) \leqq N\left(\Lambda^{\prime}\right)\|\Phi\|_{f_{0}} \cdot e^{N\left(\Lambda^{\prime}\right)+r-1} N\left(\Lambda^{\prime}\right)^{r-1}(r-1)!\prod_{0}^{r-1}(\varrho!)\left(\|\Phi\|_{f_{0}}\right)^{r-2} \cdot \varepsilon$
$+N\left(\Lambda^{\prime}\right) \frac{\varepsilon}{2} \cdot(r-1)!e^{N\left(\Lambda^{\prime}\right)}\left(\|\Phi\|_{f_{0}}\right)^{r-1}$
$\leqq N\left(\Lambda^{\prime}\right)^{r} e^{N\left(\Lambda^{\prime}\right)+r-1}(r-1)!\prod_{0}^{r-1}(\varrho!)\left(\|\Phi\|_{f_{0}}\right)^{r-1}\left(1+\frac{1}{2}\right) \varepsilon$,
which is the bound of (A 16) if we replace $1+\frac{1}{2}$ by $r>1+\frac{1}{2}$. This completes the proof of Lemma 3.5.

References

1. Griffiths, R.B., Ruelle, D.: Commun. math. Phys. 23, 169 (1971)
2. Ruelle, D.: Statistical mechanics. Amsterdam: W. A. Benjamin Inc. 1969
3. Robinson, D. W.: Commun. math. Phys. 7, 337 (1968)
4. Lima, R.: Commun. math. Phys. 24, 180 (1972)

Communicated by G. Gallavotti

H. Roos

Institut für Theoretische Physik der Universität D-3400 Göttingen, Bunsenstr. 9
Fed. Rep. of Germany

[^0]: * On leave of absence from the Institut für Theoretische Physik, Universität Göttingen, Fed. Rep. of Germany.

