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Abstract. In various tabulations of such spectroscopic coefficients as the matrix
elements of tensor operators or fractional parentage coefficients, it is found that many
entries are unexpectedly zero. A survey is made of all cases that occur in the atomic /
shell and that involve the 7-dimensional vector representation of the group G2. Direct
explanations are given in terms of the group structure of the electronic configurations
that comprise the shell. The techniques used depend on a splitting of the state space into
"spin-up" and "spin-down" parts, and, for other cases, the extensive use of the methods of
second quantization. The F terms of the atomic / shell are found to split into three classes.
The separation that this classification provides for the two F terms belonging to the
irreducible representation (31) of G2 coincides with Racah's separation. An improved
separation of the H states of (31) is described.

1. Introduction

It is a curiosity of considerable interest that the theory of Racah [1]
for the atomic / shell works much better, and has a more elegant struc-
ture, than might reasonably have been anticipated. One of the manifesta-
tions of this is the frequent vanishing of matrix elements for no apparent
reason. A general survey has recently been made [2] of the kind of
methods that can be used to understand many of these results; but the
unexpected simplifications are so numerous and diverse in character
that it seems far too optimistic to hope that a single guiding principle,
if it were found, could account for all of them. In the present article an
attempt άs made to fully explain a single class of these kinds of puzzles,
namely, those that involve the seven-dimensional vector representation
of the group G2. Following the notation of Racah [1], this representation
is denoted by (10). The importance to us of (10) lies in the fact that it
describes the transformation properties of the annihilation and creation
operators of a single / particle (whether boson or fermion). It thus plays
a fundamental role in shell theory. There is the added attraction that
(10) is associated with a particularly large number of matrix elements that
are unexpectedly zero.

* Supported in part by the U.S. National Science Foundation.
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In the theory of Racah [1], operators and states are assigned the
irreducible representations of groups as labels. It can thus be seen that
the vanishing matrix elements must correspond to Clebsch-Gordan (CG)
coefficients whose values, for one reason or another, happen to be zero.
This connection does not usually get us very far, since the methods for
calculating the CG coefficients for such groups as G2 are rarely suf-
ficiently transparent to allay the feeling that a more direct approach
should exist. If, however, we take the view that the CG coefficients exist
in their own right, independent, for example, of their role in atomic shell
theory, then the analysis that follows can be regarded as showing that
fermion or boson states provide a convenient basis for exposing an
otherwise hidden structure in the CG coefficients.

2. Tensors

Consider, first of all, spinless / bosons. The tensor f> f , whose seven
components tfm (— 3 ̂  m rg 3) create the seven possible angular-momentum
states of a single boson, spans (10), as do the components bm of the
annihilation tensor b. Both fcf and b are spherical tensors of rank 3 in R3

(the group of rotations in ordinary three-dimensional space), since tfm

and bm transform like the spherical harmonics 73m and Ύfm respectively.
The decomposition law for G2->#3 is fixed by (10)-»F, where the
traditional spectroscopic notation is used for the irreducible representa-
tion of R3. (In general, we shall use the symbol L for such representa-
tions.) The representation (10) also appears when pairs of creation or
annihilation operators are coupled to a total rank of 3. That is, the three
tensors

(1)

can all be assigned the representation (10) of G2. The reason for this is
that the Kronecker square of (10) decomposes as follows [3]:

(10) x (10) = (00) + (10) + (H) + (20),

and, of all the representations on the right-hand side of this equation,
an F state only occurs in (10). Racah [1] showed that G2 can be embedded
in RΊ according to the scheme (100) ->(10), and it turns out that the
coupled tensors (1) belong to (110) of jR7, while the single annihilation
or creation operators belong to (100).

Similar statements can be made about the orbital transformation
properties of the creation and annihilation operators αt and α for /
electrons. The presence of spin slightly complicates matters, however.
Both αf and a are double tensors, possessing ranks 3 in the orbital space
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and \ in the spin space. Four kinds of non- vanishing coupled products
are now possible, namely

(rfaψ*\ (αtα)(13), (αW03', (α«)(13), (2)

where the total spin rank is placed before the total orbital rank in the
superscripts.

Matrix elements of the single annihilation and creation operators
are proportional to coefficients of fractional parentage (cfp) [4]. They
have been given by Nielson and Koster [5] for all states of the atomic /
shell. It is often useful to supplement these tables with those of Nutter
and Nielson [6], where the factors making up the cfp are set out. The
matrix elements of (αtαt)(13) and (αα)(13) are directly related to certain
two-particle cfp. A complete tabulation of the latter has been made by
Donlan [7]. Nielson and Koster [5] have calculated all matrix elements
of U(k) for the atomic / shell, where U(k) is defined through the equations

These various tables can be rapidly scanned to find vanishing
matrix elements. Most of the zeros that appear can be given an immediate
explanation. A typical matrix element

where U and U' denote irreducible representations of G2, automatically
vanishes if (10) x V does not contain U in its reduction to irreducible
components. Similarly, F x L must contain L for the matrix element to
be non-zero. The tables of Wybourne [3] or of Nutter [8] enable (10) x U'
to be quickly found. The condition on L is simply that it must be possible
to form a triangle (possibly collapsed to a straight line doubled back on
itself) whose sides are of lengths L, 3, and L.

We must also bear in mind that the representations U of G2 can be
embedded in representations W of RΊ. The criteria that we applied to U
and L can be readily extended to W. An additional selection rule appears
for the operator F(3). This tensor, which possesses the group labels
(110) (10)F, forms, with F(1) and F(5), the generators of RΊ [1]. It follows
that F(3) is diagonal with respect to W. (For similar reasons, F(1) and F(5),
the generators of G2, are diagonal with respect to 17.)

We could follow the thread connecting R3, G2, and RΊ even further;
for RΊ can be embedded in the symplectic group Sp14, and this, in turn,
in C/14, and so on [9]. Zeros which depend exclusively on the properties
of these higher groups are of no immediate interest to us. In any case,
they are usually quite easy to interpret, since the relevant irreducible
representations, although of a higher dimension, possess a simpler
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Table 1. Branching rules for
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(10)

(11)
(20)
(21)
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(30)
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(40)

S
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D
D
S
P
P
S

H
G
F
D
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D

I
G
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F

H
H
H
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K
I
I
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H

L
L
K
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I2

N
M
K2 L
K L2

M N 0
M N Q

structure. For reference purposes, the L structures of those irreducible
representations U that appear in the electronic / shell are listed in
Table 1.

3. Simple Configurations

An obvious place to begin our analysis is the fermion or boson
configurations fN for small N. No matrix elements of any of the tensors
(1) and (2), taken between the states of / or /2, vanish unexpectedly.
It is, however, worth noting that the H states of f2 belong to (11) of G2,
and that (11) does not occur in the reduction of (10) x (11). Thus

(/2tf |F<3>|/2H) = 0. (4)

If standard angular-momentum techniques are used to evaluate the
matrix element - such as applying Eq. (7.1.8) of Edmonds [10] - we at
once obtain

I3 5 31 = 0. (5)
\5 3 3J v '

The vanishing of this 6-j symbol is well known. It corresponds to the
fact that the commutators [K(5), F(5)] do not contain F(3) in their
development, and this is directly related to the very existence of G2 as a
subgroup of RΊ (see Racah [11]).

The first null matrix element of the kind we are searching for occurs

in f3. It runs (f*(2i)F\V™\f3(2i)H) = 0. (6)

Other states of (21) have non-vanishing matrix elements of F(3), and so
Eq. (6) implies the vanishing of a CG coefficient for G2. After factoring
out the jR3 part, we are left with an isoscalar factor for which, in Racah's
notation,

Q ^
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This is a stronger statement than (6), since neither N nor F(3) appears.
We can deduce, for example, that no (2i)H states of fN possess any
(21) F states of fN~l as parents.

To understand results of this kind, we refer back to Eq. (6). Taking
the / particles to be electrons, we can factor the state space into a
"spin-up" space (space A) and a "spin-down" space (space B). If we pick
a total spin projection quantum number Ms of j, there must be two
electrons in space A and one in space B. The representation (21) can
only be formed from the product (11)^ x (10)5, where the optional
subscripts assign the representations to the appropriate spaces. (The
representation (20)^ would violate the Pauli Exclusion Principle and can
be disregarded.) Since (ii)->P + H under the reduction G2->#3 [3],
we are greatly limited in our choice of angular-momentum states for the
A and B spaces. In fact, for bra, operator, and ket, only one option is
open. Denoting the parts to be coupled in curly brackets, the structure
of the matrix element of Eq. (6) is

({(ll)Hx(10)^F|{(M)Sx(10)f}F|{(ll)/ίx(10)F}H). (8)

It is essential to write S x F for the operator rather than F x S, for the
latter would immediately give a null result in virtue of Eq. (4), when
applied to space A. However, even in the form of (8), the matrk element
is seen to be zero. We have only to use Eq. (7.1.8) of Edmonds [10] again,
and a 6-j symbol appears that is directly related, by a mere permutation
of its arguments, to the one given in Eq. (5).

Whether the reader finds the above explanation satisfying or not is,
of course, a subjective matter. But at least it is very much shorter than
actually calculating the matrix element by the standard fractional-
parentage techniques. Moreover, the device works well in other instances.
In /4, for example, we find, for no obvious reason, that

(/4(30)L|F(3)|/4(30)L')=0

for all L and L. However, if we pick Ms = 0, we find that we can form
the representation (30) only from (ii)A x (ii)B. Whether the operator is
written in the form (10)^ x (00)β or (00)̂  x (10)β, we cannot escape the
fact that (11) does not occur in the reduction of (10) x (1 1); and hence the
matrix element vanishes. For /4, the representation (30) belongs to (211)
of R7, for which some matrix elements of F(3) are non-zero. We can thus
deduce that

0, (9)

where the isoscalar factor is labelled by representations of RΊ and G2.
This relation is useful in accounting for many zeros in the tables of
matrix elements for more complex configurations of / electrons.
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4. Separation of the F States

In the electronic configuration /4, the first signs become apparent
of a remarkable classification, valid for all fN

9 of the F terms. It can be
described by first separating all the representations of G2 that contain F
terms into three classes, as follows :

I: (10)F.
II: (21)F, (31)F.

Ill: (30)F, (31)F, (40)F.
A survey of various tables [5-8] reveals the following:

a) No terms belonging to any one class possess parents or offspring
belonging to another class.

b) All matrix elements of F(3) vanish when constructed from a bra
and a ket drawn from different classes.

c) All two-electron cfp vanish when a state and its grand-parents
belong to different classes, and when, in addition, the two added electrons
are coupled to 3F.

The existence of class I can be immediately understood in terms of the
normal techniques for determining selection rules. It is the division of the
remaining F terms into classes II and III that is so remarkable and
surprising. Interestingly enough, the separation of the two F terms of
(31) into classes II and III corresponds exactly to the apparently arbitrary
separation of Racah [1]. The study of the classification thus touches on
the inner-multiplicity problem.

The key to the puzzle lies in the fact that, of all the various L terms
in fN, it is the F terms that are susceptible of a special classification.
These terms can all be produced by the action of a single creation or
annihilation operator on an S term; and S terms occur in precisely three
irreducible representations of G2, namely (00), (22), and (40). Consider,
then, the three possible pairs

at |(22)5>1 at|(40)5)l

a |(00)5>J "1(22)5)1 a|(40)S>Γ ( J

The first pair can only produce F states belonging to (10). A consideration
of (22)x(10) reveals that the second pair can only produce F states
belonging to (21) or (31) (or to a mixture of these two representations).
In a similar way, we find that the third pair can only give rise to F states
belonging to (30), (31), or (40) (or to a superposition of these three
representations). Since there are just two F states in (31), we can separate
them by defining their respective sources as (22)5 and (40)5. We thus
obtain the three classes of F states. Although the states (10) above are
the superposition of the several G2 representations belonging to a class,
the members of a class are effectively independent. This is because they
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first appear in configurations fN of different N, where their properties
can be studied in an independent manner.

It only remains to show that any operator Γ that transforms according
to (10) of G2 has vanishing matrix elements when it is set between any
two of the states (10) coming from different columns. The method is
identical for all cases, and we illustrate it for

((22)S|αΓα|(40)S). (11)

The operator a Ta transforms like (10) x (10) x (10). To link two S states,
we need an ,R3 scalar. However, we can easily find, from the tables of
Wybourne [3], that

(10)3 = (00)+ 4(10)+ 2(11)+ 3(20)+ 2(21)+ (30).

Of all the representations of G2 on the right-hand side of this equation,
only (00) contains an S state in its reduction [3]. But (00) cannot link (22)
to (40); and hence the matrix element (11) vanishes. We can infer that Γ,
when set between a bra belonging to class II and a ket belonging to
class III, produces a null matrix element.

5. Vanishing Isoscalar Factors for R7

The techniques introduced in the preceding section can be adapted
to account for the apparently accidental vanishing of a number of single-
particle cfp. The tables of Nutter and Nielson [6] indicate that

((221) (21)|(221) (20)+ (100) (10))-0 (12)

and also that
((221) [71(21!)[/' +(100) (10)) = 0 (13)

for the four pairs

C7[7' = (30)(20), (20) (10), (20) (30), (10) (20).

As an example, consider the last pair. The vanishing isoscalar factor
corresponds to

(/52(221)(10)|αη/43(211)(20))=0. (14)

The spins S of the electron configurations fN are represented by the
prefixed multiplicities 2S+ 1 to the irreducible representations of RΊ.
Although it is not obvious by the traditional techniques why Eq. (14)
should hold good, we have only to note that the bra is uniquely defined
(to within a multiplicative constant) by

</6 * (222) (00) I α f .



164 B.R.Judd

To produce a change of 1 in 5, the two members of the creation pair
α f α τ have to be coupled to the irreducible representations (11) or (10)
of G2, for these representations contain the states of /2 for which S= 1.
But neither representation can link (00) of/ 6 to (20) of/4. The use of the
fermion basis thus makes the vanishing of the isoscalar factor quite
transparent.

The other examples of Eq. (13), as well as Eq. (12), can be accounted
for in a precisely similar way. In all these cases, the representation (10)
of G2 belongs to (100) of RΊ. An examination of the matrix elements of
F(3) and the two-particle cfp reveal null isoscalar factors for which (10)
belongs to (110). Some can be readily understood in terms of conflicting
symmetries [12]. For example, we can deduce, from the tables of Don-
Ian [7] for the cfp of /5, that

((111)(10)|(110)(10) + (110)(10))=0. (15)

To understand this equation, we have only to observe that (111) appears
in the symmetric part of (110) x (110), whereas (10) appears in the anti-
symmetric part of (10) x (10).

It is more difficult to account for

0. (16)

This isoscalar factor appears in the two-particle cfp

It also appears in the matrix element

(/3(210)(20)|(αα)(13Hα tα)(03) |/5(lll)(00)), (17)

since the operator F(3), when acting on the ket, yields (111) (10) of /5.
Now the commutator

[(αα)(13),(αtα)(03)]

can only produce tensors of the type (aa)(lk\ where k is odd. Since the L
structure of (20) is DGI - that is, L is even - the commutator cannot
connect (20) to (00). Hence (17) is equal to

(/3(210)(20)|(αtαy°3)(ααy i 3 ) |/5(lll)(00)). (18)

We now use the fact that (αtα)(03), being proportional to F(3), is a
generator of RΊ . It can therefore only connect (210) (20) to the representa-
tions U belonging to (210), namely (11), (20), and (21). We immediately
note that (10) does not appear in this list. This is of crucial significance,
since the operator (αα)(13), when acting on (00), can only produce (10).
We can deduce that (18) is zero. It only remains for us to work our way
back and thus confirm the validity of Eq. (16).
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6. Alternative Bases

The preceding analysis accounts for all the unexpectedly null iso-
scalar factors of RΊ that contain the vector representation (10) of G2 and
which, at the same time, involve only those irreducible representations
of RΊ that occur in the electronic configurations fN. As for the G2 iso-
scalar factors, most of the apparently accidental zeros are examples of
Eq. (7) or of the special F classification described in Section 4. A few
remain to be treated, however. The two F terms of the irreducible
representation (3 1) of G2 (belonging to class II and class III respectively)
appear in the three vanishing isoscalar factors specified by

((21)/f|(31)F+(10)F)=0, (19a)

((40)fl|(31)F+(10)F) = 0, (19b)

((22)ff|(31)F'+(10)F) = 0. (19c)

All these equations can be accounted for in a similar way, and we shall
consider only the first in detail. We visualize the isoscalar factor of
Eq. (19 a) as being derived from the matrix element

((21)/f|α|(31)F). (20)

Now, for electronic states, (31)F can be regarded as being produced by
either αf|(22)S> or α|(22)S>. The other F state that has (22) S as its
source, namely (21)F, plays no role in the analysis owing to Eq. (7).
So the matrix element (20) is proportional to

where Y is an operator transforming according to (10) x (10). By reducing
this product, we find that a tensor of rank 5 (which is needed to connect
H to S) belongs to the irreducible representation (1 1) of G2 and, for this,
(ll)x(22) does not contain (21). Thus (20) is zero and so is the corre-
sponding isoscalar factor. The product (ll)x(22) does not contain (40)
either, and so Eq. (19b) is readily understood. By similar arguments,
Eq. (19 c) follows from the fact that (22) does not occur in the reduction
of(ll)x(40).

One null isoscalar factor cannot be so easily explained. From Nielson
and Koster's tables [5], we can deduce that

((40)fl|(40)# + (10)F)=0. (21)

All efforts to account for this equation using a fermion basis for the states
have failed. However, because all the irreducible representations of G2
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that appear in the isoscalar factor are of the type (wO), we can consider
the possibility of using a boson basis. We first note that the isoscalar
factor arises in the consideration of the matrix element

Since (b* b)(5) is a generator of G2, the matrix element above can be
thought of as being derived from

((40)5|Z|(40)5), (22)
where

The operator Z transforms according to ( l l )x(10)x( l l ) , for which we
find [3]

Of all the irreducible representations of G2 on the right-hand side of
this equation, only (40) contains an S state under the reduction G2->#3.
This, then, describes how the effective part of Z transforms under the
operations of G2 .

Turning now to the representations of RΊ, we observe that Z trans-
forms according to the triple Kronecker product

Wybourne's tables [3] can be used to reduce this to its irreducible parts:
we can then select those that contain (40) of G2. It turns out that there are
only two, namely (311) and (321). Thus the effective part of Z is a super-
position of two operators whose WUL descriptions are (311) (40) S and
(321) (40)5.

The representation (40) also appears in the bra and the ket of the
matrix element (22). For boson states, all irreducible representations of
RΊ are of the type (wOO); and (40) can only belong to (400). Putting in
the group labels, we see that the matrix element (22) becomes

((400) (40)5 1 [(311), (321)] (40)5 1 (400) (40)5) .

The final step is to work out the Kronecker products (311)x(400) and
(321) x (400). In both cases, (400) does not appear. It follows that the
matrix element vanishes and Eq. (21) is accounted for.

Strictly speaking, one subsidiary point has to be checked. This is
that not all matrix elements of (10)F vanish between the boson states
(40) L. This is easy to do, since the maximum value of L and its projection
ML correspond to the symmetrized state {////}, for which every /
boson has its maximum component. The fact that the CG coefficient
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(33130, 33) of R3 is non-zero guarantees that the state (40)Q has a non-
vanishing matrix element of (tfb)(Q\ Thus the fact that the matrix
element (22) is zero implies the validity of Eq. (21) and not the vanishing
of some special isoscalar factor of RΊ.

7. Separation of Duplicated Terms

In the classification of the states of the electronic / shell, the two
irreducible representations (31) and (40) of G2 each contain several pairs
of terms with the same L. It has already been mentioned that the F-term
separation of Section 4 coincides with the separation that Racah adopted
in his classic work on the / shell. It is natural to ask whether his other
separations can be given a similar kind of theoretical basis. This is too
large a question to be completely answered here: but the frequent
appearance of H terms in such isoscalar factors as those appearing in
Eqs. (7) and (19) suggests that perhaps analogous equations could be
used to separate the two H states of (31). For example, we can ask
whether we can consistently define the two states (31)#α and (3i)Hβ
by means of the equations

((31)ffα|(31)F +(10)F) = 0, (23 a)

0, (23b)

0, (23 c)

((3i)Hβ\(30)F +(10)F)=0, (23d)

((3i)Hβ\(40)F +(10)F)=0. (23 e)

The arguments that were used to explain Eq. (19) can be readily adapted
to confirm that this is indeed possible. In fact, we can show that equiv-
alent definitions of Ha and Hβ are provided by the equations

((31)Hα|(22)S + (l

Unfortunately, the two states (31)/fα and (3i)Hβ are not orthogonal
to each other. As they stand, they are unsuitable as replacements for
Racah's pair. We can nevertheless improve on Racah's separation by
taking (3i)Ha and its orthogonal companion (31)/fα'. In place of the
single equation
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which Racah used to define the first H state of his pair, we have the two
Eqs. (23 a) and (23 b). Moreover, it turns out (for reasons that need not
be discussed here) that

((31)flαΊ(22)H+(10)F)=0,

(10)F)=0.

Thus the state (31)#α' is also involved in a pair of unexpectedly null
isoscalar factors, since the product (22) x (10) contains (31) in its reduc-
tion [3]. By reducing the number of parents that the two H states possess,
we facilitate the calculation of the matrix elements of operators of physical
interest. Of course, Racah's separation has become so well established
that it is now too late to make changes of this kind; but it is interesting
to see that alternative separations, had they been considered, would have
simplified the analysis somewhat.

More systematic methods are available for separating duplicated
terms. Perhaps the most obvious one is to diagonalize an operator X
formed from the generators of G2. This topic is beyond the scope of the
present article, but it is worth noting that the separation of the two F
terms of (31) into class II and class III ensures that several operators have
vanishing matrix elements between the two. For example, it is easy to
see that

It is often convenient to take, for X, operators that are scalar with
respect to R3', for then their diagonalization automatically restricts
attention to one value of L at a time. To separate the duplicated terms
of (31) and (40), it is necessary to consider multiple products of the
type FM, where n is at least 4, and V stands for either F(1) or F(5). One
particular linear combination of the products VVVV transforms
according to (44) S, and it turns out that the diagonalization of this
operator within the F states of the irreducible representation (31) yields
precisely the pair (31)F and (31)F. A correspondingly simple result does
not obtain for the H states, however. It is hoped to pursue this subject
in a subsequent article.

8. Concluding Remarks

The analysis presented above provides reasonably direct explana-
tions for all the unexpectedly null isoscalar factors that involve the vector
representation (10) of G2 and that, at the same time, implicitly appear
in the various tables [5-7] of spectroscopic coefficients for the electronic
/ shell. This restriction to / electrons has limited our attention to the
simpler irreducible representations of G2. As we proceed to represen-
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tations of higher dimensionality, we might expect to find analogues
of such Eqs. as (7) or (12). A natural way to extend the analysis would
be to consider the bases provided by the nuclear / shell. The existence
of both spin and isospin considerably enlarges the range of the representa-
tions W and U. For /12, for example, we find such representations as
W= (444) and U = (80). Extensions to configurations as complex as /12

make it much more important to have a satisfactory way of resolving the
multiplicity problem, for we cannot hope to progress very far with the
properties of the CG coefficients if the states themselves are not well
defined.

It should be stressed that the apparently accidental vanishing of CG
coefficients involving the representation (10) of G2 constitutes only a
fraction of all such cases. The result of our analysis for just one species of
zeros suggests that the techniques at present at our disposal are adequate
for the purposes we have put them to. All the null coefficients can be
understood without preambles of too elaborate a kind. However, we
cannot completely rule out the possibility that some structure in the /
shell remains to be discovered. For example, we might ask whether the
three classes of F terms, introduced in Section 4, correspond to three
irreducible representations of some group. If we actually count the states
in each class (including the spin multiplicities), we find that the dimen-
sions of these hypothetical representations are 144, 76, and 56. These
numbers do not suggest any very useful group, although we could
formally construct trivial direct products such as the unitary triple
product £/144x UΊ6x C/56, of course. Such groups add nothing to our
understanding of the / shell. Whether more fruitful groups exist is a
matter for speculation.
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