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Abstract. Various aspects of Markov field theory are treated. We give a Fock space
description of the scalar free field with Nelson's Markov property formulated in terms of
projections. We consider conditions imposed on analytically continued Wightman distribu-
tions at Euclidean points so that a Euclidean Markov field theory will result. Euclidean
theories in higher dimensional imaginary times are considered. We show how the generalized
free field theory can be interpreted as a Markov Euclidean field theory. The spatially
cutoff linear perturbation model is solved in arbitrary space-time dimensions and the
Wightman distributions are obtained explicitly in the limit as the cutoff is removed. The
appendices contain a discussion and derivation of the Segal isomorphism and we give some
generalizations of Feynman-Kac formulas in R" and in the Fock space of Euclidean field
theory.

Introduction

Euclidean field theory techniques, particularly Nelson's Markov
property and consequent symmetry, have recently played an important
role in constructive quantum field theory (see [1-4]). These methods are
among the techniques used by Glimm and Spencer [5] to show that the
Schwinger distributions for the spatially cutoff P(φ)2 model converge
as the cutoff is removed, provided the coupling constant is sufficiently
small. They obtain the Wightman distributions by analytic continuation
and show that the corresponding relativistic quantum field theory has a
mass gap. For earlier work on the relation of Euclidean and Minkowski
field theories see Symanzik [6].

In this article we consider several aspects of Euclidean field theory.
In Section I we describe the free scalar Euclidean field and formulate
what we call the pre-Markov property of certain projections. This
property is due to Nelson [1] and implies the Markov property - we
isolate it because it does not require a probabilistic interpretation in its
formulation, and because it can be used directly in many applications of
the Markov property. Section II contains a brief discussion of the general
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problem of obtaining Euclidean quantum fields from relativistic quantum
fields and of the relationship between Wightman distributions and the
pre-Markov property.
We note that for some purposes it is natural to use a Euclidean theory
with imaginary time dimension > 1, and that the techniques of Section I
carry over immediately to any (odd) number of imaginary time dimen-
sions. We show that a generalized free scalar field does not have the
Markov property, but that additional local fields can be introduced to
recover the property.

In Section III the generalized free field construction of Section II is
motivated by a probabilistic analogy and a complementary and more
detailed construction is given.

In Section IV the results of Section I, Appendix C and the theory of
hypercontractive semigroups [7,8] are applied to the cutoff linear
perturbation model in arbitrary space-time dimensions, and the cutoff
is removed. The limiting Schwinger and Wightman distributions are
obtained explicitly. A previous treatment of the cutoff model has been
given by Friedrichs [9].

Probably the fastest and most explicit way of introducing probabilistic
methods into quantum field theory is via the Segal isomorphism [10],
by means of which Fock space is represented as L2(M, du) where (M, u)
is a probability measure space, and Wick polynomials of smeared field
operators are represented as unbounded multiplication operators.
Appendix A contains a short and explicit derivation of this isomor-
phism, together with motivational discussion (this derivation is intro-
ductory and elementary and of course no substitute for Segal's original
paper [10]). In Appendix B we have included derivations of some
generalizations of path space formulas for Markov processes in Rn,
and in Appendix C we present analogous formulas relating certain
Minkowski Fock space inner products to Nelson space inner products
(Nelson space being the Fock space associated with the free Euclidean
scalar massive field).

We are greatly indebted to Barry Simon for orientation and for showing us the embedd-
ing operator techniques which we describe in Section I and which can be used to give
operator-theoretic derivations of the formulas in Appendix C. We also thank George
Svetlichny and J. A. Swieca for many helpful discussions and observations.

I. Projections Associated with the Free Scalar Euclidean Field

In this section we briefly describe the Euclidean field theory corre-
sponding to a free scalar relativistic field theory [11, 12], then following
Nelson introduce a family of projections indexed by closed sets and
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examine some of their properties. We also consider the case of a more
general inner product.

The Wightman two-point distribution for a scalar field with mass m
in d + 1 dimensional space time is

(Ω,ψ(x)ψ{y) Ω)=A + {x-y;m2) = \dk eίk{x~y) θ{k0)δ{k2 -m2) (1.1)

The Hubert space for the free scalar field is the Fock space ^(F) built
over the real one-particle Hubert space F obtained by completing the
inner product space whose elements are equivalence classes of elements
of £f(Rd+1)9 with equivalence defined with respect to the norm given by
the inner product ( , ) M

(f,g)M = ΊidxdyΔ + (x-y)f (x)g(y). (1.2)

Since the support of the Fourier transform of A + is confined to the
hyperboloid sheet k = m2, k0 ^ 0, each equivalence class may be represented
by an element u(x)e£f(Rd); with this representation F is the Sobolev
space 3tf ~ 1 / 2 (— A + m2) in d dimensions, and we use the symbol f(x) to
denote an element of F obtaining

{4^ (1 3)

where / denotes the Fourier transform oϊF defined by

f $dxeikx /(*). (1.4)

Here the Fock space ^(K) built over a real Hubert space K [13, 10]
is the complexification of the direct sum

y y ® ' . - , (1.5)

Ω=ίeR.

If A : K^K is a bounded operator with bound ^ 1, the corresponding
bounded operator Γ{A): ^{K)^^{K') is defined as the closure of

I@A®(A®A)@ ~.

Γ preserves the properties of being an orthogonal projection, of being
unitary, and of being isometric. Let ^0(K) denote the set of elements
of 3F(K) which have only a finite number of non-zero summands in (1.4).
For each heK one defines corresponding operators a(h): ^0(K)-^^0(K),
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ψ(h) = 2~ 1/2(a(h) + a(h)+) using linearity and continuity to extend

a(h){...(fi®-®fXn> )

ί = l

In (1.6) a(h)+ in the adjoint of a(h) restricted to ^0{K). With this con-
struction ψ(f(x)), f(x)eF in the time-zero scalar relativistic quantum
field.

The corresponding Euclidean fielcl theory is obtained by replacing
A + (x, m2) by its analytic continuation to the Euclidean region

ήk ήk Pikx

 p-ω(k)s-ik x

l 2ω(k)

= (s,x)eRd+ί 2 2

The corresponding Hubert space is Jί = tF(N) where N is the one particle
Euclidean space obtained by completing the real inner product space
whose elements are in &?{Rd+1) and for which the inner product is

\dd AE(x - y, m2) f(x) g(y)

f(kO9k)g(kO9k)
(1.8)

2π W(k)

N is the Sobolev space J f ~1( — A + m2) in d+ί dimensions. N is a
representation space for the Euclidean group onRd+ί with the correspond-
ing operators u(b, R) defined by

(u(b, R) h) (x) = h(b + Rx)

for heN, he Rd+\ and Euclidean rotation R. We let Γ(w(b, R)) = U(b, R)
and for (b, R) = ((ί, 0), /) we let wf and Ut denote the corresponding unitary
operators. We have U(b,R)φ(h(x))U-1(b,R) = φ{u(b,R)h(x)) for the
Euclidean field φ{h{x%heN.

There is a natural isometric embedding j 0 :F-+N given by

UofnkO9k) = f(k). (1.10)



Euclidean Field Theory 41

The adjoint jo : N^F is given by

£^(ko,k). (1.11)

We havejo 7o = 1 :F->F and thus e0 =jojo is an orthogonal projection.
Setting jt = ujo we find

where ft0 is the single particle relativistic Hamiltonian. We let Jt = Uf Γ(/o),

E ^ l / f Γ ^ o ) ^ " 1 and have

where Ho is the free relativistic Hamiltonian.
From here on we denote the Euclidean field φ(h(s, x% heN, and the

relativistic field by ψ(f(x))9 f{x)eF; one has

ψ(f(x)) = Jo Φ(δ(s)f(x))J0 V/eF. (1.14)

We let αf denote the one-parameter family of mappings from the algebra
of time-zero field operators into the algebra of Euclidean field operators
defined [for bounded functions / and polynomials restricted to ^Ό(F)"] by

( ) ( ) (1-15)
We find

Jt

+«,{g{ψ(f(x))})Jt = g(-):^^^

Each element h of N has a corresponding tempered distribution [h]9

defined by [K] (u) = (h9(— A + m2)u)E; by supph, k Λ ί we mean the
support of [/ι]. The support of jo(f(x)) is contained in the hyperplane
s = 0 for all / e F - moreover every element of N with support in s = 0
is of the formy0(/(x)), feF. This may be shown using the fact that any
tempered distribution T with support in s = 0 is of the form

T= X an(x)δ{n\s), an(x)e^'(Rd), (1.17)
n=0

and if T is to lie in N then αn = 0, for n > 0.
Since the limit of a sequence of distributions each of which has support

in a closed set C also has support in C, the set Nc of elements of N with
support in C is a closed subspace; we let pc be the orthogonal projection
on Nc and define Pc = Γ(pc). Equivalently, Pc is the projection on the
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subspace Jίc C Jf generated by applying polynomials in φ{f\ supp/ C C,
to the vacuum. In particular we have Pis=t) = Et. The basic property [1]
of these projections is given in

Theorem 1.1. // Ci CRd+1 and C2CRd+1 are closed then

(i) PcPc = Pec (i m

(ii) p P -p p ( 1 1 8 )

where dCt and C] denote the boundary of Ct and the closure of its com-
plement, respectively.

Proof. For (i) it suffices to show that supp(pcPc f) C C for all feN,
implying PdCPcP^ = PcPc fr°m which (1.17i) follows by taking adjoints.
To show this let ve<£f(Rd+1) have support contained in C int. We have
[twice using the fact that supp((- A + m2) v) C C i n t]

LPcPσΩ (v) = {PcP<?fΛ-Δ + ™2) v)E = (PcfΛ-Δ + m2) υ)E

= (P^f,(-A + m2)v)E=lP^Π(v) = 0.

The proof of (1.18 ii) is similar.
We refer to (18.i) (which follows from (18.ii)) as the pre-Markov

property.

Remark. More generally, if the inner product ( , )E is changed to the
inner product ( , ) E Q obtained by replacing (kl + k2 + mλ)~1 with

iQ
Q(k){k2

0 + k2 + m2)~n in (1.7), Q(k) a polynomial, for all heN one can
define lh]Q(u) = (h, (-A + m2f U)EQ, ue(Rd+1) and set suppQ(/z)
= supρ[/z]Q. Projections Pg can be introduced as before - they satisfy
Theorem 1, since for he5f, suppg/zC supp/z, and for heN, supp/iCC
one has that Pch = h. In this case P£ is a subspace of the space generated
by applying polynomials in φ(h), supp/i C C, to the vacuum.

The semigroup property of Qt = E0UtE0 follows from Theorem 1;
one-has

QrQt = Qt+t'. (1-19)
Proof. From the definitions of the translations Ut and projections

Et we have υt.Et = Et+t. Ur. Thus defining Cf = {xe Rd + 1\±(s-t)^0}
one finds (using E0ECf = Eo, Pc+ Et+t. = Eit+tΊ, 0 ̂  t! <Ξ t' +1)

Qt,Qt = E0UtE0UtE0 = E0Et,UtEtUtE0 (1.20)

= E0EtΈt+rUt'UtE0 = E0PCt- Pc+f Et+t>Ut+t>E0 = E0Et+t,Ut+tΈ0

= Qt'+t

Nelson [2] uses the semigroup property of Qt along with a reflection
principle to construct a positive self-adjoint Hamiltonian. In the next
section we examine briefly the question of generalizing the analysis of
this section to an arbitrary quantum field theory.
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II. Euclidean Field Theories via Analytic Continuation
and the Markov Property

In this section we mention several difficulties which occur in the con-
struction of a Euclidean field theory beginning with the Schwinger func-
tions of a relativistic theory and mimicing the Wightman reconstruction
theorem [11]. We inquire whether a satisfactory resolution of these
difficulties is sufficient to guarantee the Pre-Markov property, and find a
negative answer.

We begin with a theorem of Ruelle [14, 12] (applied in the present
context by Symanzik [6]), which states that the Wightman functions
W(zu ...,zn) corresponding to vacuum expectation values of n local
fields have extensions W(zl9 ...,zn) which are holomorphic in regions
containing all points (z l 5 ...9zn)e Cn(d+1) such that (Imzί) = (sί,0) and
( R e ( z i - z j ) ) 2 < 0 whenever si = sJ , ί φ j . Specialising to the case Re(zj)
= (0, xt) one defines Schwinger functions

S(xl9 ...9xJ=W(xl9 ...9xn)

in the subset of Rw( d + 1 ) in which no two arguments coincide.
Since the Wightman functions are translation invariant hence func-

tions only of the difference variables (zt — zβ, and finitely covariant under
Lorentz transformations, and since an Euclidean rotation of the xf is
equivalent to a (real or complex) Lorentz transformation of the xf's,
the Schwinger functions are invariant under Euclidean translations
and finitely covariant under Euclidean rotations.

In order to use the Wightman reconstruction theorem it is necessary
first to find tempered distributions corresponding to the Schwinger func-
tions. For free scalar fields the extension can be made uniquely if one
demands that the Schwinger distribution is not more singular than the
Schwinger function. For generalised free fields with spectral measures

00

dρ(m2) with j (1 + m 2 ) " 1 dρ(m2) = oo and for Wick polynomials :ψn:(x)
o

of free fields (with d>\) the problem is more complicated, and is formally
analogous to that of constructing Green's functions from Wightman
functions.

For free and generalized free fields these problems can be solved by
introducing higher (odd-) dimensional imaginary times, using

\ - ( « + l ) / 2 -j

(k(

0

2))2 + k2 + m2) =C{n).t2

l

i=i / ]/k2
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Given a positive tempered measure dρ(m2) with support in [ε, oo),ε>0
one can always pick n = n(ρ) so large that the integral

\-(n

^όV + ̂  + m2 dρ(m2)
0 \i=ί I

converges. Similarly one can always pick n(d,N) such that the Wick
polynomial :φN:(s1, ...,sn, x) of a free Euclidean field, raφO, (in n
imaginary- time dimensions and d space dimensions, n odd) is an
operator-valued tempered distribution. The embedding and projection
techniques of Section I carry over to any finite (odd) number of imaginary
time dimensions and formal perturbation-theoretic integrals converge
in higher imaginary-time dimensions.

Beyond existence of the Schwinger distributions one needs the
analogue of the Wightman positivity axiom. Symanzik has shown that
this follows from plausible assumptions in his framework [6]. In any case,
supposing that this program has been carried through and that a Euclidean
field theory with fields φa{x) and Hubert space JίE constructed, the
question arises of formulating, and analyzing the pre-Markov property.
As in the free field case we let Pc denote the orthogonal projection on the
subspace Jίc C JίE generated by polynomials in fields smeared with func-
tions with support in C, noting that for this to be a valid definition the
set of allowed smearing functions must be sufficiently large.

We turn now to a specific example in which these steps can be carried
out explicitly.

Consider a scalar generalized free field with Wightman two-point
function given by

(Ω, ψ(x) ψ(y) Ω) = $A + (x-y; m2)dρ(m2). (2.2)

The corresponding Euclidean two point function is

$AE(x-y;m2)dρ(m2) (2.3)

and the Hubert space and Euclidean field can be constructed as in
Section I, making everywhere the substitution

{k2 + k2 + m2)-ι-+\{k2 + k2 + m2yγdρ{m2) (2.4)

Nelson's semi-group property (1.20) can be checked directly, since the
projection E0 = P(s=0} can be calculated explicitly (e.g. using the natural
embedding of the subspace of the relativistic Hubert space which is
generated by time zero fields). One finds that with this construction a
necessary condition for the Markov property to hold is that dρ(m2)
oc δ(m2 — ml). (This is of course to be expected, since for more general dρ
the time zero fields do not generate the Hubert space.)
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At first glance it might appear that the same restrictive analysis should
apply to the two-point function of an arbitrary Euclidean theory with
the Markov property. However we have used a property of free and
generalized free fields not to be expected in general: if JΓE is decom-

i - l

posed as £ @Nψ, where N{$ is the orthogonal complement of N^" 1 )

' 7 = 1
00 GO

in the subspace generated by elements of the form J~J φ(fj)njΩ, £ KjύU

then in the preceding example PcN
One expects that a theory as simple as the generalized free field should

have an associated Euclidean theory whith the Markov property; such
an interpretation can be given at least in the case

dQ{m2)= Σ \ai\
2δ(m2-mf).

To give it we introduce additional independent free fields ψi(x\
(• = mf) ψi(x) = 0, and express

ψ(x)= Σ k | ^ (x) . (25)
i=ί

Now the Euclidean field theory corresponding to the family {ipj of
independent free fields can be constructed as in Section 1, and if we let
Pc denote the projection onto the subspace generated by applying
polynomials in the φi(fi), supp/) C C, to the vacuum, then the Markov
property holds, and Nelson's construction of the relativistic Hamil-
tonian [2] goes through.

The procedure for a general spectral measure dρ(m2) is clear. One
introduces a family of local (and relatively local) fields

indexed by characteristic functions χ of open intervals (including (— ε, oo))
in R, with

lax(f), aχ\g)+-\ = 2" "\dQ{m2) χ(m2) γ!{m2)\dx dyf(x) g{y) A + (x-y;m2)

ax(f)Ω = 0

and constructs the corresponding Euclidean theory with fields φχ(hχ)
and Hubert space. Pc is then the projection on the subspace generated
by applying polynomials in φχ(hχ\ supp^C C, to the vacuum. Here the
appropriate space of smearing functions hχ for φχ is identifiable with the
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completion of the space generated by {aχ(u)+ Ω\ue Sf(Rn+d)}, n being an
imaginary-time dimension appropriate to dρ(m2).

From this example we conclude that in order to obtain the Markov
property it is important to pick a sufficiently large set of local relativistic
quantum fields with which to construct the Euclidean theory. In the
next section this last construction will be related to a standard con-
struction in probability theory and then carried out in more detail.

III. The Generalized Free Field as a Markov Euclidean Field

Before considering the generalized free field we first consider two
Brownian motion diffusion processes with different diffusion constants
which take place in Ω1 = Rm and Ω2 = Rn respectively. Let Pί{xι,yί9t)
(xi> )>i e ^ m ) a n d Pi(xi, y2> *) (Xi > yi e Rn) be the transition density func-
tions for the processes. The processes give rise to the semi-groups 7\(ί)
and T2(t) in L2{Rm) and L2(Rn) defined by

(Ti(t) ft) (xd = jPi(xh yh t) My,) dut(yd.

One way to form a new process is to consider the product process defined
on ΩίxΩ2 where the transition density function for the product process
is taken to be the product Pi(*i,.yi,0 P2(*2> J>2>0 The semigroup
associated with the product process is the direct product of the semi-
groups 7\(ί) and T2(ή on the Hubert space L2{Rm)®L2(Rn).

If we consider the direct sum Hubert space L2 = L2(Rm)®L2(Rn)
then we can define a new semigroup Γ 1 ( ί )0Γ 2 ( ί ) : : : T(ί) on L2. The
semigroup T(t) is the semigroup associated with what we will call the
disjoint union of the processes. Let Ω = Ωί V Ω2 be the disjoint union
of Ω1 and Ω2. We define the transition density function P(x, y, t) where
x, y e Ω to be

10 if x and y are in different components

PiOc M) if x,yeΩi

p2(x,y,t) if x,yeΩ2.

Then T(t) is given by

(T(t) f)(x) = $P(x,y9t) f{y)du(y)

where U{Γ) = U1{ΓCΛΩ1) + U2{ΓCΛΩ2) for ΓCΩ.

In Minkowski space the two point function of the generalized free
field is given by

WάG(x, y) = (2πyd\Θ(j)0)δ{p2 - m2) *-<*•<*-» ddp dρ(m2) (3.1)

which determines the scalar product in FG, the direct integral of single
particle spaces Fλ(λ = m2) and the Fockification #G = #r(FG) is the
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Hubert space associated with the generalized free field. In (3.1) dρ(m2)
is a positive measure polynomially-bounded at infinity with support in
m2 e [0, oo). Before discussing the case of an arbitrary generalized free
field consider the special case where the measure has the form dρ(m2)
= δ{m2 — m\) + δ(m2 — m\). Here we are in analogy with the direct sum
of Markov processes. Then FG = F1 + F2 and in Euclidean space
NG = N1+N2. We can embed FG in NG by embedding Ft in Nt i.e. define
fa ' FG-+NG by fa :(fl9 f2)->(fί(x) δ(s- a), f2(x) δ(s- a)). The norms in FG

and NG are given by | / | ? σ = |/ 1 | J 1 + | / 2 | | 2 where \f& = (&&) and
M3vG

 = lwilίvi + l̂ 2lίv2 where K l i ^ f e r c j ) . We now introduce field
operators in the Fockifications ^(FG) and ^{NG). In #XFG) we define
aι{f)9aj(f)+ and ψί(f) = (ai(f)-hai(f) + )/(2)^2 i = 1, 2 where operators
with different indices commute. In #"(iVG) we define the operators
bi(f)9bi(f)+ and φi{f) = {bi(J) + bi{f)+W12 i = l , 2 where operators

with different indices commute. Then we have

WGM(x, y) = (β, y>i(
and

As in Section I we define for any closed set S the orthogonal projection
Ps = Pis®P2s: NG^>NG where pis are the projections associated with the
mass πii. Note that PiSNι is the closed subspace of Nt generated by
elements of Nt with support in S.

Then Theorem 1.1 is valid for ps and its Fockification Ps. Now
considering the case of arbitrary dρ(m2) we define NG = §Nλdρ(λ),
PG — \Px dρ(λ) with JίG and PG their Fockifications, respectively. We have

Theorem 2.1. Eqs. (1.1) αrarf (1.2) are t a/id wiί/i p and P replaced by
p G and PG.

IV. Linear Perturbation Model and the Infinite Volume Limit

We consider the spatially cutoff Hamίitonian Hg = H0 + λ\g'(x)ψ(x)ddx
d

where g(x)/λ = g'(x) = χι(x) the characteristic function of ]j[ [ — li9 ZJ. Let

V^wio)' We are interested in the limit Z-> 00. Even though the interaction
V is not a lower-bounded polynomial it still satisfies the hypothesis for
hypercontractive semigroups, such as Ve LP for some p > 2 and e~tV EL1

for all ί > 0 (see [7, 8]). This is easily seen by the explicit computation in Q
space or Segal space associated with Fock space. We have

nn\
( ' }
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Similarly using the Segal isomorphism for the Euclidean Fock
space we find

\φ(f)\2n = (ωφ(f)2nω) = (2n)\\f\2/2nn\
( ' j

Thus Hg = H0 + λV is essentially self-adjoint on Fock space and is
lower-bounded. In fact using the field-theoretic Feynman-Kac formula
(see Appendix C) and letting Eι = infsp(Ht) we have

-Et= lim T-
T-> oo

= lim T -
T->oo

λ2π2

= lim ——lχh(χ9s)l(-A+m2Γ1χh](x9s)d?xds
Γ-+ oo j

where υ(x9 s) = λu(s) χt(x) and u is the characteristic function of [O, T].
Thus we find

oo p-m2t Λt

0

Now we consider the infinite volume limit. We take the limit in the
Schwinger distributions in Nelson space to obtain Euclidean invariant
distributions. From Appendix C we consider the !, T-»oo limit of
Sl(xί, sl9...9xn9sn) where h = χτ(s) g(x) and χτ is the characteristic func-
tion of [ - T, T]. Thus

Sl(f1,s1, ...,/„, sj = —
(r,Λ 0 — λShΦ(x,s)ddxds \

{ω, e ω)E

and by (4.2) we see that (4.3) is well-defined since the exponential is in
all LP{QE\ (1 ̂ p < oo) and so is φ(fl9 sj... φ(fn9 sn) ω.

We smear (4.2) in the s variables and write with Ft e C$(Rd+ λ)

Fx,..., Fn) = (ω, φ(Fx)... φ(Fn) e-Shω)E/(ω, e~Shω)E. (4.4)

Eq. (4.4) can be evaluated explicitly to give

Sϋ(F 1 , . . . J F π )= 3"
λ... dλn

(ω, eΣiλίφ{F^e-λShω)E/(ω, e~λShω)

(4.5)

Thus Sl{Fί,..., Fn) is a polynomial in λ with coefficients given by finite
products of (Fh Fj)E and (Fh h)E. Taking the /J —> 1 limit and using the fact
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that

and

and that the above when /z->l becomes [(-zl + m2) x 1] (s, x) = 1/ra2

we find

lim(h,F)E=[i-\ jF(xsS)
m m

and the limit Schwinger distributions are

Thus

S2(xl9sl9x29s2)=Wi+U] λ2

and for a general n we have

By an analytic continuation we obtain the Poincare invariant Wightman
distributions

Wn(x1,t1...xn90=[Ω9 m m
Ω .

Appendix A

The Segal Isomorphism

We give a short derivation and discussion of the Segal isomorphism.
Given a countable set of elements fh i= 1,2,... we consider the real
inner product space S with basis elements

a(fίι)
+a(fi2)

+...a(fin)
+Ω

i = 1,2 ... w = 0 , l , 2 , . . .
(A.1)
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and inner product ( , ) defined on basis elements by

(a(fiy...a(fίn)
+Ω, a(fh)

+...a(fjXΩ)

= δnm Σ ^i,,,) J W . , . |
permπ

and extended to S by linearity. In (A.I) elements in which (a(fi)+) occur
in different order are not distinguished. We also use an equivalent
labelling of basis elements, setting

a(fh)
+ ...a(fin)

+Ω= Π H O T ' O (A.3)
ί = l

where each nt is the number of times (α(/i)+) occurs on the left side of
(A.3); with this labelling (A.2) becomes

Π WdΎ'Q, Π WJ)ΎΩ) = Π (».)! K.*, • (A 4)
i=l j=ί I i =1

With the norm and topology given by the inner product, the completion
S of S is a separable real Hubert space.

Next we consider three specific realisations of this scheme.

(i) Fock Space Realisation. Take the {/J to be an orthonormal basis
for a real separable Hubert space K, and consider S as embedded in
the Fock space 1F(K\ identifying each basis element (a(fi^)+)... (a(fin)

+)Ω
with the corresponding vector

0 0 \l/2

Π(*«!)) (OΘOΘ ΘSym(/ i l®/ i 2®-..®/JΘO0 .)ί(A.5)

where
permπ

In this realisation the closure and complexifϊcation of S is,

(ii) Infinite Tensor Product Realisation. In this realisation (introduced
primarily for motivation), we consider S as contained in Y\ ® hh the

£ = 1 , 2

von Neuman (complete) tensor product of Hubert spaces [15], where for
each factor ht we take L2(R,dx). Here and below we abuse notation
slightly, letting (R, dx) denote the real line with Lebesgue measure, and
letting (R,π~1/2e~χ2dx) denote the measure space (R, u) where the
w-measurable sets are R itself and the Lebesgue measurable sets, and
where u(A) is the Lebesgue integral π ~ 1 / 2 j dxe~xg. The basis element

A
00

Π {{a(fd+)nιΩ) is identified with the vector f ] ® ((πf ! ) 1 / 2 Ψn), where
ί = l £ = 1 , 2 . . .
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ΨHι is the Πith harmonic oscillator eigenfunction,

ψni(x) = π-
ι/42-ni/2{nί\yi/2Hnι(x)e-χ212; (A.7)

here Hn(x) denotes the nth Hermite polynomial. The closure and com-
plexification of <S in this realization is the ((Ψo, Ψo, ...)-adic) incomplete
tensor product il^ 0 '^ 0""^,-. In this realisation the subspace SN generated

N

by basis elements of the form Y[ ((a(fi))+)nιΩ, Πi = 1,2,..., has a natural
i=l

identification with the space of functions L2(RN,dNx). Thus one may

identify Π((α(/ ί )) + )" 1 O,w i >N = 0, with Ψ(nι_tnN)eL2(RN,dNx) where
i= 1

^nι,n2,...,nJxu...,xN)= Y\Ψnι(Xi) (A.8)
i= 1

It is not possible to extend this identification to all of S — as a function of
00

countably many real variables Y\ (π~~1/4 e~x?/2) vanishes identically. In
i=ί

our third realisation this difficulty will be overcome and elements of S
will be (equivalence classes of) functions of countably many real variables.
In order to explain this we first recall several properties of the one-
dimensional harmonic oscillator.

On the dense domain DcL2(R,dx) consisting of finite linear com-
binations of Hermite functions

we define the lowering operator A acting on Ψm by AΨm = (m)ll2Ψm_1

and A is extended to D by linearity. The closure of A \ D is an operator
which we also denote by A. The adjoint A+ (the raising operator) of A
also has the name domain as the closure of A and on D is given by
linearity from A+ Ψm = (m+ ί)ll2Ψm+ί. Furthermore

A[D = {x + d/dx)/(2)1/2,

A+[D = (x-d/dx)/(2)1/2, (A.9)

Ψn = (n\Γ1/2A+Ψ0.

As the Hamiltonian H of the one-dimensional harmonic oscillator (with
the ground state energy subtracted) we take the closure of H f D and
on D,H is defined by linearity from HΨn = nΨn, n = 0,1,. . . which can
also be written as HΨn = - 2~1{d2/dx2 - x2 + 1) Ψn. We note also that
x = (A + A+)/(2)ί/2.



52 M. O'Carroll and P. Otterson

Now consider the unitary mapping U:L2(R,dx)->L2(R,π~ll2e~χ2dx)
defined by (Uf) (x) = π 1 / 4e*2 / 2 f(x). Defining H' =UHU~\a=UAU~\
a+ = UA+ U~\ ψ'n=UΨn, one obtains

H'ΐD=-(ί/2)(d2

x-2xdx) (A. 10)

α[^D = 2 - 1 / 2 ( d x ) , a+tD = 2~1/2 (2x-dx).

We observe that x = 2" 1 / 2 (α + α+) and defining : x " : - 2 " " / 2 £ (a+)man~m

m=0

find (e.g. noting Ψiι = {n\yί/22~n/2 :xn:Ψf

0, and arguing inductively that
: xn: is a polynomial) that

:xn: = 2-nHn(x). (A. 11)

Since ^ W = 1 (^ *s introduced solely to achieve this) the product
00

Y\ Ψi(x) is a non-zero function of countably many real variables for

each sequence (nί,n2, ..) of integers with finite sum; if L2(R,dx) is
replaced by L2(R,π~ll2e~χ2dx) and Ψn by Ψ'n in the second realisation,
the difficulty encountered under (A.8) disappears. This leads to our third
realisation.

(iii) L2 (Gaussian Measure Space). In this realisation we identify the
00 00

basis element Π {(a{f>>ni)Ω with the function ["] ((nf) ! ) 1 / 2 Ψ'ni{{x^)eL2(M,u)
i=ί i = l

where the probability measure space (M, w) is the product of probability
00

measure spaces Y[ (Xί,Ui) taking (R, π~1/2e~χ2dx) for each factor
i=ί

(Xi9 Ui). The collection of w-measurable sets of M is the σ-algebra generated
by elementary sets, i.e. sets of the form B = B1xB2x...BnxRxRx...

n

with each Bt ^-measurable, and for such a set B, u(B) is f\ u^B^. These

requirements guarantee existence and uniqueness of the countably
additive measure u [16].

In this realisation the closure of S is clearly a closed subspace of
L2(M,u); we now show that it coincides with L2(M,u). Since linear
combinations of the Ψ'n are dense in L2(R, π~1/2e~χ2 dx), it suffices to
show that every characteristic function in L2(M, u) can be approximated
by finite linear combinations of products of characteristic functions
of elementary sets. Thus it is enough to show that every w-measurable
set A is elementary approximatable, i.e., that for any ε > 0 there exists
corresponding finite union T of elementary sets with u(AA T)<ε where
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A AT is the symmetric difference between A and T. This can be shown by
applying a corollary of the monotone class theorem [17] to the ring
generated by elementary sets. The corollary states that in a finite measure
space (M, u) any w-measurable set A can be approximated arbitrarily
closely in measure by elements of any ring which generates the ajgebra
of M-measurable sets. Thus in this realisation we can identify S with
L2(M,w).

Anticipated by the notation, we introduce linear operators a(fi)+,
N

β(/Λ •' Π (Φ(fi)Yi:> acting from S to S, and defined by linearity from

i = l I i = l

«(Λ) (f ί WiV'O] = »* Π a(fd + i" 'δ k>Ω (A.12)

-.limn- = π ( Σ (",f)(«(/i))
+<--mi>(α(/ί)

ί=l i=ί \mf = 0 \miJ

The a(fi) and α(/ f )
+ satisfy the commutation relations (on S)

[et/i)+, «(/^)+] = 0 •

[α(/ i),α(/J.)
+] = «5i.,.

In the first realisation the α(/f), #(/;)+ give the Fock representation of
the canonical commutation relations (see e.g. [18]); in the third realisa-
tion thay are the lowering and raising operators ah at. The Wick poly-

N

nomials : Y[ φ(fi)nί: are the usual Wick polynomials in the first realisa-
i = l

tion, and in the third realisation they are (by (A. 11)) simply Hermite
polynomials.

The natural correspondances between these realisations can clearly
be implemented by unitary operators- the correspondence between
case (i) and (iii) is the Segal isomorphism.

Nelson's interpretation of the free scalar Euclidean field is obtained
by using the creation-annihilation operator expression (1.6) to identify
Jί with L2 (Gaussian Measure Space), defined above.

Appendix B

Generalizations of the Feynman-Kac formula

In this appendix we derive some formula for transformed Markov
processes. We will consider the processes associated with the transition



54 M. O'Carroll and P. Otterson

density functions, measures and path space measures given by

dμίx = path space measure j=\

2) p2(x,y,t)= Π (1 - β - 2 ω ' ) - 1 / 2 exp [ ~ ω ^ ~ ! 2 Γ X j ) +ωyj
j=i I ι e

dv2 = Y\\ — I e~ωx*dvί9 dμlx = path space measure.

The semigroups associated with processes 1 add 2 will be denoted by
e~Hlt and e~Hlt where the Fourier transform of e~Hίt is multiplication
by e~Dp2t on L2{R\ dvx) and έΓ H 2 ί is multiplication by e-

{ni + '"+nn)t on
the Hermite polynomial HWl(x1)ffΠ2(x2)...HΛn(x l l). For both processes 1
and 2 the non-continuous functions have measure zero. We have

Theorem A.I. Let V:Rn-+Rbe continuous, V^ C > - oo. Ht+V is
self-adjoint. Then for f,ge Lί(Rn

9dvί)nL2(Rn,dvi), ί > 0

J/(jc0) /ι,0 ^ ( x o ) = (/, ^ " ί ( H ί + n ff)ι (B.I)
where

-fV{x(τ))dτ

lixo = \e o g(χ(t))dμixo. (B.2)

-r/π/ Σ ( ( ( ) M ) )

Proof. We have / l j (0 = lira Iixo = lim J e m = ' gf(x(t)) dμ ί x o .

This follows using the dominated convergence theorem since V is
t M

-JF(x(τ))dτ -tin Σ K(x((mί)/«))

continuous and thus e ° = lim g m - 1 μf a.e. and
λl-->00

μ i f 0 0 ^ β | C | ί and \g(x(ή)\ίμ.<co. However Iixo is a cylinder

function so that

By the Trotter product formula

so there exists a subsequence nk such that

lim
k->oo
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However since lim I?XQ = IiXo for each x0 we have that the sequence

itself converges a.e. vΓ such as

lim le-t/nH*e-t/nVγg(x0) = e-t(Έ:τψ)g(x) a.e. v,
* o

so that J/(x0) Iixo dviixo) = (/, e^Hi + V) g)t.
Our next theorem gives a formula for the mean value of certain

products. We have

Theorem B.2. a) With V,f,g, as in Theorem B.I and FjeLco(Rn)
j= 1, . . . , n ί o > 0 , t1 >0, ...,tn>0 then

\f{u)Iiudu{u) (B.3)

where

b) For ί = 2,Ω^ί let E2 = inϊsp(H2 + V). Let H2R = H2 + V-E2

and assume Ω2 is an eigenvector of H2-\-V with Ω2>0 a.e. and E2 has
multiplicity 1. Then for 0<t1<t2<--<tn<Twe have

= lim
(Ω,e-2TH>Ω)2

(B.7)

= lim

- S V(x(τ))dτ

T))F2(x(Γ+t2))...e ° dμ2u

- j V(x(τ))dτ

? ° dμ2u

. (B.8)

Proof of a). Write

ίo + ίi
))dτ - J F(x(τ))dτ

F2(x(t0 + t,))...

*o ίo + ί

- ί V(x(τ))dτ - J

o n

S V(x(τ))dτ
e <°+-+<~->

and write each integral as a limit of Riemann sums to give a cylinder
function which when evaluated yields

j/ίo... nn _ Γίg - to/no Ht β - to/no V\n0 p /^- tn/nn Hi g- tn/nn V\nn "̂j ί^\
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Taking the n0... nn -> oo limit using the Trotter product formula gives

..e-t»iH* + V)g]{u) a.e. v,.

Finally taking the inner product with / given us the result.

Proof of b). Eq. (B.7) follows from (B.8) since lim e " u H 2 R Ω = Ω2 (Ω2, Ω)2
u—• oo

Ω2(Ω2, Ω)2 as verified from the spectral theorem and Ω2 > 0 a.e. implies
(Ω, Ω2) > 0 so that {Ω, e~2THlΩ) + 0 for large T. In (B.3) and (B.4) change
to the primed variables defined by

t — t1 4- T t — t1 t1 t — T t1

so that

then drop the primes to get

i n n

2T

- J V(x(τ))dτ
dμ2u.

Now divide (B.9) by (Ω, e~2 ™2 Ω)2 and multiply by 1 - e2TE2/e2TEl to get
(recalling H2R = H2- E2) the equality of (B.7) and (B.8).

Appendix C

Generalizations of Feynman-Kac Formulas
in Relatίvistίc Quantum Field Theory

In this appendix we give two formulas relating Fock space inner
products and Nelson space inner products (see [4, 5]). These relations
are analogous to those of appendix B. One has (see [4]).

Generalized Nelson symmetry: For a0 < aγ < •• < an91 > 0

where
n ai ί/2

Y= Σ ί ••Pι(ψ(x)Y dx and F « = f :P,{ψ(x)):dx
i=ί α f _ i - ί / 2

and Pi is linear or a lower-bounded polynomial in two dimensional space-
time. As a special case of (C. 1) for a1 = 1/2, a = —1/2 and a2 = = an = 0
we obtain the Nelson symmetry formula

( Ω , e Ω )

t ι/2 (C2)
- J J :P(φ(x,s))dxds

= (ω,e ° i/2 ω)
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which is analogous to (B.I). Also one has analogous to Theorem B.2
the following:

a) For 0 < ί0 < tx... < tn we have

o n

- J Vsds

•e ° ω)
where

1/2 1/2

Ht = H0+ f :P(ψ(x)):dx and Vs= J :P(φ(x,s)):dx.
-1/2 -1/2

b) For 0 < ί 1 < ί 2 < ί w < Γ

= lim

= lim

1/2

where Ht = H0+ j : P(φ(x)): dx, Eι = inίsp (H^ HR = Hι- Ex and Ωz is
-1/2

the eigenvector for Ht with eigenvalue E .̂ Also

{ω F l i φ { f l h ) ) J

(ω,e

F2(ψ(f.

fi))e-(t

(!

*n {Φ (fn •>
1/2 T

-1/2 -T

' ((hiv βi'k ήΎ Λ

I PΛ

ω)

ω)

lim e-
uiHι~El)Ω = (Ωl9 Ω) Ωι. (C.4)

u~* oo

We remark that the second line of (C.3) follows from the first line using
(C.4). Eq. (C.4) follows if Ex has multiplicity one and it is not necessary
that Ex be an isolated eigenvalue.
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