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Abstract. In a previous paper, "strong" decrease properties of the truncated correlation
functions, taking into account the separation of all particles with respect to each other,
have been presented and discussed.

In this paper, we prove these properties for finite range interactions in various situa-
tions, in particular

i) at low activity for lattice and continuous systems,
ii) at arbitrary activity and high temperature for lattice systems,

iii) at RefίΦO, β arbitrary and at H = 0 for appropriate temperatures in the case of
ferromagnets.

We also give some general results, in particular an equivalence, on the links between
analyticity and strong cluster properties of the truncated correlation functions.

I. Introduction

Λ. Strong Cluster Properties of the Truncated Correlations
for Finite Range Interactions

In [1], strong cluster properties of the truncated1 correlation func-
tions, which "take into account the separation of all particles with respect
to each other", have been presented and discussed. For simplicity we
first consider lattice systems, with two-body potentials, the case of
classical continuous systems being treated in Section VI.

The strong cluster properties have then been stated in the form:

Also called connected parts or cluster functions of the correlations.
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where the sum Σ runs over all connected trees ZΓ (i.e. graphs without
closed loops) of (JV — 1) lines joining the points xl9...,xN, dt is the
length of line / and u is a positive function, decreasing at infinity, which
depends on the interaction φ, the reciprocal temperature β and the
activity z.

It was proved that, when u is integrable, these bounds yield the
existence and analyticity of all (infinite volume) correlation functions
with respect to z at all points (βθ9 z0) where they hold.

If the function u is of the form C e~*'d, (where C and χ depend on φ,
β and z), (1) takes the form:

where L^(X) is the length of tree 3~, i.e. the sum of the lengths of its lines.
In the present paper, we are going to prove, in the case of finite range

interactions and under appropriate conditions, bounds which are slightly

better: the term £ e~*'^(X) will be replaced by the unique term e~*'ί(x\

with L(X) = InfLAX) when the points xl9 ...,xN are all different from

each other; when xl9...9xN occupy only p different positions occuring
respectively Nί9...9Np times, the term obtained is Nx! ... JVP! e~* °*j{X\
The corresponding bounds are:

[The right-hand side of (3) is indeed always smaller than the right hand
side of (2) since the number of trees joining JVf points is larger than Nt!.]

Finally it is also useful, as in [1], to introduce the minimal length
L(X) of all connected trees joining xl9...9xN and possibly arbitrary
vertices yl9 ..., yk. An example of the lengths L(X) and L(X) is shown in
Fig. 1 for JV = 3:

/*3

L(X) = d1 + d2 L(X) =
Fig. 1

In view of the inequality \ L(X) ̂  L(X) ̂  L(X) which holds for all X
and N (see [1]), it is equivalent to prove (3) or:

\ΠT(Λ Y \\ < CN N f N f p~X'L(χ) (A)
\QΛ\XI> •••>XN)\ = u Mil ... lVpi e {{*)

where C and χ are independent of Λ9 X and JV.
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This is the form in which we are going to derive the bounds for lattice
gases, analogous bounds being derived in Section VI for continuous
systems.

Remark. Since the bounds (3), (4) are slightly better than (1), (2),
they also provide the analyticity of all correlation functions at all points
(/?0, z0) where they hold. We recall that decrease factors which would not
take into account the separation of all particles with respect to each other,
such as those described in Subsection B (or constants growing "faster"
than CN N1\... Np\ with N) would prevent one from deriving analyticity.

However, in the various cases where the bounds are derived in the
present paper, the analyticity with respect to z is already known or
assumed (see Subsection C) and therefore no new information about
analyticity is obtained. But it seems to us that the strong cluster properties
have their own physical interest. Besides, the combined results of [1]
and of the present paper allow (in a sense made precise later) to obtain
an equivalence between analyticity and strong cluster properties which
also seems to be an interesting result. Finally, the fact that the strong
cluster properties have been proved in certain domains reinforces the
underlying physical ideas and work is in progress to prove these
properties in more general cases.

B. Previous Results about Cluster Properties

The results previously proved about the decrease properties of the
truncated correlations are, as far as we know, weaker than (1) to (4);
in the case of finite range interactions, let us mention:

i) Those derived from factorization properties of the (non-truncated)
correlation functions when two (or more) clusters of points are separated
from each other, give at best:

-χ Maxd(XuX2)

\ρτ

Λ(X)\<DNe *!•** (5)

where Xl9X2 is any partition of X in two clusters, d{Xί9X2) is the
distance between Xί and X2, and where DN^N\CN.

Property (5) has been derived in [2] from the decrease of the two-
point function when there is a gap in the spectrum of the transfer matrix
and when FKG inequalities are valid.

We note that besides the fact that DN is worse than CNNt!... Np\
-χMaxd(XΊ,X2)

the decrease e x^ χ2 is also much weaker than e~χL(x): for instance
L(X)

in the case of equidistant points on a line, (5) leads to e N rather
than to e~χLix\
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ii) Property (5) has also been derived in [3] at high temperature and
arbitrary activity for lattice gases, by using the analyticity which is known
in this domain and an explicit form of the truncated functions (at low
activity).

iii) A stronger decrease of the type e~χD{X\ where D(X) is the
diameter of the configuration X has been derived in [4] for Ising ferro-
magnets at Re 17 Φ 0, and for gases with non negative interaction potential
when β > 0 and \z\ is less than the radius of convergence of the Mayer
z-expansion. It has also been proved in [1] as soon as there is a gap in
the spectrum of the transfer matrix, for sufficiently small range. This
coincides with e~χL(X) for lined up points but is still weaker otherwise.
(The constant in front of e'χD{X) is also worse than CNN1!... Np\.)

C. Results Proved in the Present Paper

The methods and results of this paper are in a large measure exten-
sions of methods and results of Ref. [3] and [4].

In Sections II to V we consider for simplicity lattice systems, the
case of continuous systems being described in Section VI.

Some basic formulae and results on the expansions of the truncated
correlations of lattice gases at low activity are described in Section II,
at the end of which we mention various equalities between truncated
functions ensuring i) that the results obtained for lattice gases imply
corresponding results for spin lattices and ii) that the results obtained at
low activity, resp. at RQH>H0, imply corresponding results at large
activity, resp. at ReH < -Ho.

In Section III, the strong cluster properties are directly derived at
low activity i) in the Kirkwood-Salzburg region \z\ <e~2βB'ϊC(β)~1

and ii) for positive potentials, when \z\ is less than the radius of conver-
gence of the Mayer z-expansion of the pressure.

In Section IV A, the strong cluster properties are derived in larger
regions of the complex z space if the functions QT

A{X) remain analytic
and satisfy the bounds |ρ^(X) |^C N N ί \ . . . Np\ in these regions for all
sufficiently large A. It is shown that these properties hold in particular
when the partition function ZΛ(β;zl9 ...,zN,z\ (where zl9...,zN are
specified activities of the points xl9...,xN) does not vanish for any
z1,..., zN, z in appropriate domains.

Using these results, the strong cluster properties are derived in
Subsection B for general potentials and arbitrary activity, at high
temperature. They are derived in Subsection C for ferromagnets i) at
RQH Φ0 and arbitrary /?, and ii) in the neighborhood of H = 0 at high
temperature. As a matter of fact they are derived, for any β > 0, in any
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complex neighborhood of H = 0 where ZΛ(β, H) does not vanish for all
sufficiently large A.

In Section V, some general results on the links between analyticity
and strong cluster properties, which extend those of Section IV A, are
described. In particular, an equivalence is obtained between i) analyticity
with respect to z plus the bound \ρτ

Λ\ <LCN Nt\ ... Np\ and ii) the strong
cluster properties.

Finally the results obtained for continuous gases are outlined in
Section VI, as already announced.

II. Preliminary Results (for Lattice Systems)

The following expansions valid at low activity for lattice gases, at
finite or infinite Λ, will be useful:

Qτ

Λ(X;β,z) = zN Σz"CΛ,n{X;β) (6)

with

cΛjx;β) = ̂ - Σ φ(x,Y;β), (7)
n\ YeΛn

φ(X;β)=Σ Wit
Γc leΓc

where Σ in (8) runs over all connected graphs Γc joining the points of X
and dι is the length of line /. For a proof of these formulae see e.g. [5].

For a potential of finite range λ, the following crucial result can be
checked in view of the definition of L(X) given in the introduction:

L(X)
CΛ,n(X;β) = 0 for all n < - N + 1. (9)

We below denote no(X) the first positive integer larger than (or
L(X)

equal to) — N + 1, and we may therefore write:
A

ρτ

Λ(X;β,z) = zN Σ ? CAιn(Xlβ). (10)

In view of a well-known isomorphism [6], analogous results hold for
spin systems, in which case ρΛ(X) is the distribution function of spin + at
all sites of X. The truncated correlation functions <σJCl... σXN}^ are related
to ρτ

Λ(X) by:

(11)
(JV>1)
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where ρ(X) = ρ(X), and X = (yl9 ...9yp) denotes the set of positions
occupied by xl9 ...9xN; ρ(X) is identical to ρ(X) if all points xί9...9xN

are different from each other. The bounds that we are going to derive
will apply to ρτ

Λ(X\ but it can be checked2 that similar bounds can also
be obtained for ρτ

Λ(X\ and therefore on <σ x i . . . σXN}τ

Λ.
Finally, the following formulae hold under the symmetry H-> —H,

where H is the magnetic field, or correspondingly z->z~1eβΛ:

ρΛ(X,H) (ί)ρΛ(X,H)

<σxl...σXNyΛ(-H) = (-ί)N<σXι...σXNyτ

Λ(H).

Therefore, the strong cluster properties in some domain will imply
analogous strong cluster properties in the domains obtained by the above
transformations.

ΠI. Strong Cluster Properties at Low Activity

A. Results in the Kirkwood-Salsburg Domain

Let C(β)= £ \e'βφix)- 1|, and r{β) = e~2βB~x Ciβ)'1 where B is

the stability constant.

Theorem 1. For \z\ < r(β), the following bound, where α is an arbitrary

real number such that 1 < α < , and A is finite or infinite, holds:

L(X)

o~2βBr(Ω\ \

\z\ (α-lf Γ r(β)

This bound is clearly a strong cluster property of type (4), with

Proof. The following inequality on the Ursell function φ holds [5]:

Σ \φ(x1,x2,...,xm;β)\^(m-ί)l--—τ. (14)
X2,' ,Xm '\P)

Since:

X2, ,XN X2," ,XN

2 This is not completely trivial in the case of identical points since QT

Λ{X) is truncated
with respect to all N variables xί9..., xN and is therefore different from QT

A{X).
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it is readily checked that:

- 1 ) ! e~2βB

i>ι ^ p ^ - (15)

Then, by using the identity:

n)\ = dk (t"°

n\

and a Cauchy formula, we get for 1 < α < —-

ntno n\ = l - α | i

The inequality (13) is readily derived from (10) by making use of this
αz

formula with t =
r(β)'

B. Results for Positive Potentials (or Antiferromagnets)

Let <%(β) be the radius of convergence of the Mayer z-expansion of
the pressure p. Then:

Theorem 2. For positive potentials, the following bounds hold at
\z\<0Z(β):

L(X)

) (16)

where α αnrf y αr^ arbitrary real numbers such that y > ί, 1 < α <

= Max \βp(β; z)\.

Proof. The following result holds (for general potentials):

[βpΛ(β,z)]z=0 (17)

(18)

where /L is finite or infinite.
Now, for positive potentials, it turns out that [7]
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and therefore:

\φ(xί,x2,...,xm,β)\ύCy^—m\. (19)

The proof of (16) then follows by the same methods as in Sub-
section A.

IV. Strong Cluster Properties Derived from Results
on the Zeroes of the Partition Function

A. General Theorems

The strong cluster properties can also be derived from formula (10)
in larger domains by making use of the following theorem inspired from
Ref. [3] and [4].

Theorem 3. Let 3) be an open connected complex domain in z-space
containing z = 0, such that i) ρ^X β^z) remains analytic in Sf at some
given β>0, for sufficiently large finite A and all configurations X and
ii) ρτ

A{X) moreover satisfies the bound:

\ρτ

Λ(X;β,z)\<CNNίl...Npl (20)

where C is independent of A, X and of z in Q).
Then the following strong cluster properties hold for A finite or

infinite and z in 3):

\ρτ

Λ(X;β,z)\^CN i l ' j ^ J " \t(z)\ λ (21)

where \t(z)\ < 1; t is a conformal mapping of 3) onto the interior of the
unit circle such that ί(0) = 0.

Proof. Using the conformal mapping z-+t(z), a series expansion
analogous to (10) can be written in ί-space:

ρτ

Λ(X;β,t) = tN- Σ fyΛJX;β). (22)

Owing to the analyticity of QT

Λ with respect to t in the region \t\ < 1,

v/eget\yΛJX;β)\ = ^\j^βφfi-dt\.

Using (20) and integrating over a circle of radius as near as wanted
to 1, one gets:

\γΛJX;β)\SCN'Nί\...Np\ (23)
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from which (21) immediately follows. (The limit of infinite A is obtained
as a consequence of Vitali's theorem since the convergence is known at
small |z|.)

Remark. We notice that the best value of \t(z)\ for a given z depends
on the precise domain of analyticity of QT

A{X\ β, z) with respect to z and
therefore on the reciprocal temperature β.

Besides the cases already studied in Section III, the hypotheses of
Theorem 3 can also be checked in other situations, in particular by using
the following result:

Theorem4. Let ZA(β;zu...,zN,z) be the partition function, where
zt,...,zN are specified activities of points xi9...9xN, and let 3>f

be an open complex domain in z-space such that for some β>0
ZΛ(β;zl9 . . . ,z N ,z)φ0 for sufficiently large finite A, when zίe<3\ ...9zN

Then QT

Λ(X\ β, z) is analytic in Sf! and satisfies the bound
\QA\X\ jS, z)\ < CN iV̂  ! ... Np!, where C is independent of A, and z in any
set Kc<3' whose distance to the boundary of 3f' is strictly positive, and
also of N and X if 3)1 is.

Proof. In the case when the points xί9...9xN occupy only p different
posi t ions ^ i , . . . , y p , we shall denote by zί9...9zp the corresponding
activities a t yί9 ...9yp.

T h e following formula h o l d s :

N1\...Np\ l Z ( β )

{liπγ [ Z J 4 | = α (Z l -zf1 + 1 ... (zp- zf-+ * A p

where z e § ' , and α is choosen such that the circles \zt — z| = 0 also
belong to <2ι'.

By writing ZΛ(β; zu ...,zp, z) in the form:

Λ , Z U . . . , Z P , Z - ^ Λ Zi, --,Zp,z * i Λ ' ^ 2 ' z " " Z p ' J (25)

formula (24) can also be written:

QτΛX;β,z) = ( J V , - ! ) ! ^ ! . . . ^ !

{liny ( 2 6 )

. x dz1...dzp

from which the theorem easily follows.
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B. Strong Cluster Properties at High Temperature
and Arbitrary Activity

It follows from Ref. [8], that at sufficiently high temperatures the
partition function ZΛ(β; zl9..., zN, z) of a lattice gas has no zeroes when
all activities zί,..., zN, z lie in some open domain of the complex z-space
containing the positive real axis z ^ 0. As a consequence of Theorems 3
and 4, the strong cluster properties are therefore proved in this domain.

C. Strong Cluster Properties for Ferromagnets at Re if φ θ , β Arbitrary
and at H = 0 for Sufficiently High Temperature

In view of Lee and Yang's lemma [9], ZΛ{β; Hl9...9Hp9 H\ where H,
resp. Hl9 . . .,i/ p, is the magnetic field, resp. the magnetic field at points
yl9 ...9yp9 is different from zero when Reif >0, Ref^ > 0 , . . . ,Reif p >0.

The strong cluster properties of the truncated correlations
(σXί ... σXN)τ

Λ at Re if > 0 and Re if < 0 follow again from Theorems 3
and 4 and from the remarks at the end of Section II.

Now the result of Section B, which is valid for general potentials also
implies the strong cluster properties for Re// arbitrary and small |Imif |,
at high temperature.

As a matter of fact, in the specific case of ferromagnets the following
more precise result is obtained: if for some β > 0, and sufficiently large A9

ZΛ(β; H) Φ 0 when H belongs to a complex neighborhood Jί of H = 0,
the strong cluster properties also hold in this neighborhood.

Proof. The result is already known at all points of Jί for which
R e i ϊ φ O (see above). Now, Theorem 3 of Ref. [10] ensures the existence
of an appropriate domain Jί' containing all points of Jί for which
Re if = 0 and such that ZΛ(β;Hl9 ...,Hp9 H) is also different from zero
for Hx,..., Hp, H in this domain.

Remark. By applying some results of Ref. [10] and [11], together
with Theorems 3 and 4, further results can also be obtained in the case
of antiferromagnets with nearest neighbor interactions, and possibly
in other situations.

V. Analyticity and Strong Cluster Properties: Further General Results

We first give a result which extends Theorem 3 of Section IV. It may
concern the gas and liquid phases and in fact applies to points (/?0, z0)
where "the correlation functions are analytically linked to the Kirkwood-
Salsburg domain".



Strong Cluster Properties 317

Theorem 5. Let (βo,zo) be a point of the real {β,z) plane. Suppose
that there exists an analytic mapping t-+(β(t% z(t)) of the unit circle \t\ < 1
in <C2 with

1) /?(0)>0, z(0) = 0

2) β(t0) = βo> z(t0) = z0 for some t0, \to\ < 1,
such that the correlations ρτ

Λ{X\ t) = ρτ

Λ{X\β(t\z(t)) extend analytically
with respect to t in the unit circle \t\ < 1 for any X = (xί,...,xN) and finite A.
Suppose that moreover the following bound holds for \t\ < 1 :

\ρτ

Λ(X;β(tlz(t))\<AN (27)

where AN is independent of £, A (and may depend on Nl9..., Np).
Then the following strong decrease is obtained for A finite or infinite:

UX)

τ ^ - - . (28)
1 lΓ

We note that this bound is a strong cluster property of type (4) if AN

is of the form C " - ^ ! . . . ^ ! .
Proof. It follows from the hypothesis that the series expansion

Qτ

Λ(X;t)= Σan{X)-f

is absolutely convergent for |ί| < 1.
For |ί| small enough (β(t), z(t)) belongs to the Kirkwood-Salsburg

domain of analyticity with respect to both variables β and z. Besides:

ρτ

Λ(X;t) = z(t)N Σ z(t)nCΛ,n(X;β(ή). (29)

Using the analyticity of CΛ>n(X; β) with respect to β in a neighbour-
hood of j5(0), and the assumptions of the theorem, we have for |ί| small
enough, and then also for \t\ < 1:

) = t» Σ ί B U « W (30)
n^no(X)

For the same reasons as in Theorem 2, it therefore follows that:

which reduces to (28) when t = t0.
Finally it seems interesting to note the following equivalence theorem:

Theorem 6. Let (/?o>
zo) be a real point of the (β,z) plane. Then the

two following properties are equivalent:
1. There exist a complex neighbourhood Θ o/]0, z 0] in complex z-space

and a constant C such that for any (finite) A and any X = (xί9 ...,xN),
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QT

A{X\ β0, z) is analytic with respect to z in Θ and satisfies:

\ρτ

Λ(X;βo,z)\<CN'N1\...NpU Vzetf. (31)

2. There exist two (positive) constants C and χ such that for any
(finite) A and any X = (xί, ...9xN), the following strong cluster property
holds for all real z e ]0, z 0 ]

\QT

A(X; β0, z)\ <CNN1\...Np\ e - ' W . (32)

Proof. The proof that 1. implies 2. is a straightforward consequence
of Theorem 3.

The proof that 2. implies the analyticity of the correlation functions
in a complex neighbourhood of ]0, z 0] is a consequence of [1]. We give
here a direct derivation which yields at the same time the bound (31);
as a matter of fact a stronger result will be obtained, namely that the
bound (32) at a real point (/?, z) implies an analogous bound in some
complex neighbourhood in z of this point.

We start from the formula, for real points (/?, z):

(33.

which is obtained from (24).
Besides, we have the two following inequalities:

L(X,Y)^(l-ε)L(X) + εL{xl9Y) with 0<ε<l (34)

and

M1\...Mq\^2"+nN1\...Np\nι\...nr\ (35)

where the Mh Nj and nk are respectively the numbers of identical points
of (X, Y), X and Y.

These inequalities, together with (32), lead to:

\QT

A{X, Y; β,z)\ g(2C')NiV1!... Np\ e-{1-ε)χLm(2C)nn1!... n,!,

(36)

Since the bound (4) is better than the bound (1), we can use the result
of [1] on the integrals of the right-hand side of (1), and the Eqs. (33)
and (36) yield:

/βftX- /U)
\ z )

where ^(ε) depends only on ε [and (β0, z 0)].

N1!...iV.!e-(1-«>*I m p i 2 - n! (37)
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Now (29) implies for \z' -z\< —^—, z e ]0, z0]
Λ(ε)

which is the stronger result announced. It clearly implies property 1. of

Theorem 4, with 0 = I J Wz;—^—-), where J Ί z ; — ^ — ) is the disk
2e]δiZ0] \ A(ε)J \ A(e)/

of center z and radius —rrv in complex z-plane.
A(ε)

VI. The Strong Cluster Properties for Continuous Systems

In this section, we outline how the Theorems 1-3, 5, 6 apply also,
with slight modifications, for continuous systems with stable potentials.

Eqs. (6) and (8) to (10) hold again for continuous systems with (7)
replaced by

CΛJX;β)=-\\φ(X,Y;β)dY (39)

and now:
C(β)= J \e-βΦix)-ί\dx.

IR V

Let us introduce a partition of IRV by the cells of any given lattice, and
consider the following averaged truncated correlation functions:

ρτ{xu . . . ,x n )= f ρΓCVi, ...,?„) <PXl0>i)... φxjy1)dy1 ...dyn (40)

where φXi, ( ι= 1, ...,n) is the characteristic function of the cell indexed
by xt e Z\

Theorems ί and 2 now apply to the functions QT

A{X\ /?, z).
Theorems 3, 5 and 6 apply both to QT

Λ(X\ β, z) and QT

A{X\ β, z).
As a matter of fact, more general test functions can be used in (40).

Then the results still hold, with Nίl ... Np\ replaced by a multiplicity
factor depending on the support of the test function.

VII. Conclusion

As a conclusion, we would like to mention the following questions:
1. Theorem 6 states the equivalence between the strong cluster

properties and analyticity with respect to z, plus the bounds Iρ^POl
< CN N1! ... Np!. We do not know as yet whether this last condition
can be removed.
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2. In paper [1], strong cluster hypotheses on "generalized" truncated
functions have also been introduced and have been shown to imply
analyticity with respect to β and possibly other coupling constants.
Some converse assertions seem to be true, but there are some problems
which are being studied.

3. Concerning possible proofs of strong cluster properties when
analyticity is not already known or assumed, and which would therefore
give new information on analyticity, we do not know as yet what are the
actual possibilities in this domain.

4. In a recent work [12], J. L. Lebowitz and O. Penrose have shown
that if ZΛ(β, z) φ 0 for all sufficiently large A and z in an open connected
region 3) which contains z = 0, then decrease properties of the type
mentioned in (5) (or of the type e~χD) follow for all z in S)\ this is obtained
by proving the existence of a gap of the transfer matrix. This result seems
related in some way to Theorems 3, 4.

5. A coming paper will treat the case of infinite range potentials.

We are very grateful to Professors G. Gallavotti, J. Lascoux, E. H. Lieb, J. Slawny
and more particularly J. L. Lebowitz and D. Ruelle for helpful discussions or corre-
spondence.
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