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Abstract. An analysis of a family of equilibrium states is performed which, combined
with our previous work, allows to describe all translation invariant equilibrium states of
spin ¥ classical ferromagnetic systems with finite range interactions at low temperatures.
A model is described with continuously many equilibrium states for low temperatures.

The ferromagnetic systems have several special features when com-
pared with general lattice systems. In this note we exploit various
inequalities of Griffiths, Kelly, and Sherman (GKS) to analyse the way in
which the translation invariance of spin % classical ferromagnetic systems
can be broken. We also give an example of a system with continuously
many ergodic equilibrium states.

Among the equilibrium states of the systems under consideration
special role is played by the state ¢+ obtained as the limit of finite volume
states with “+” boundary conditions. The rather straightforward analy-
sis of Section3 and the information obtained in [7] show that for
a large family of ferromagnetic systems the translation symmetry can
be broken only in the manner described by formula (8): the extremal non
invariant states that enter into the decomposition are obtained from ¢*
by flipping spins at some lattice sites, and only flippings leaving invariant
the energy are allowed. At the same time the description of all translation
invariant equilibrium states is reduced to a description of all translation
invariant measures on a symmetry group of the system.

This analysis suggests that for some systems the family of all ergodic
equilibrium states (for a given temperature) can be large. This was
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presumably realized before for models with disconnected interactions.
In Section 4 we describe a (connected) model with continuously many
ergodic equilibrium- states for low enough temperatures. We finish with
some conjectures.

1. Notation. Equilibrium States

A configuration of spin % classical system on the v-dimensional

lattice is a function from Z" to {1, —1}. The set
=y, -1}7

of all configurations is made into a compact separable space by the
product topology. The function on % which to each configuration
assignes its value at the lattice site i is denoted by ¢;, and
o4=[la, Ae2,@)
ied
where Z,(Z’) is the family of all finite subsets of Z". Z 4 will denote the
set of configurations in A CZ":

%‘A={1,‘—1}A.

An interaction is defined by a subfamily 4 of Z(Z") and by a function
J on #; the elements of 4 are called bonds. We consider mainly trans-
lation invariant interactions, i.e. both the family # and the function J
are invariant under translations. We assume that J(B)=0 for all Be 4
(ferromagnetic interactions) and that
Y, J(B)< 0.
B>0
The Gibbs state in A corresponding to a configuration Y outside of A
ascribes to a configuration X in A the probability

QX(X>=Z%exp[ ¥, KB)ayX,Y) 1)

BnA=*9¢

where K(B)= fJ(B) and
zZt= Y exp[ Y K(B)ay(X, Y)} )

XeZ a BnA*9¢
Let A denote the C*-algebra of complex continuous functions on Z
and let A, be the subalgebra of A of the functions depending on the
restriction of a configuration to A only; U, is identified with €(Z ).
A probability measure on &, or, equivalently, a state of 2 is called
an equilibrium state (corresponding to K) if when restricted to 2U,,
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A finite, it is a combination of the states {o%}y:

o(f)=fek(f)a.[dY), fe,, @

where ¢4 is a measure on 2. 4. The set of all equilibrium states is
denoted by 4 ; the dependence of 4 on the interaction and the temperature
is not written explicitly. 4 is a compact space when equipped with the
w*-topology which in our case is defined by the family of functions

eoloy), AeZ(D).

A is closed under forming convex combinations. It is a Choquet simplex,
i.e. for each g € 4 there exists a (unique) measure carried by the set £(4)
of the extremal points of A with the resultant equal to o 1.

2. Inequalities and the o* State?

Let a finite system on a volume A be given, with bonds # C #(A) and
interaction J. Let ¢ be the corresponding Gibbs state:

e(X)=Z""exp BZ@ K(B) o5(X), K(B)=BJ(B).

We list the inequalities that will be needed later.
If J is ferromagnetic then

o(o,08) 2 0(04) 0(0p), A,BCA. (G.1)

If ¢’ is the Gibbs state corresponding to an interaction J', not necessarily
ferromagnetic but with the same set Z of bonds as J, and if |J'(B)| < J(B)

all B, then
0'(e4) = o(ay) (G.2)

with J'(4) =0 if A + B and J'(B) = J(B) we obtain by direct computation:
0'(og) =th K(B). Therefore, by inequality (G.2),

o(d)=thK(B), all BeA. (3)

We now place ourself in the situation of Section 1 and we draw some
consequences of the inequalities.

The state oY fits into the framework above with {Bn A}, 4 as the
set of bonds and

JYB)= Y J(B)opg(Y)
BnA=B
1 See [1], [4], [6], for the notion and properties of equilibrium state.
2 For the material of this section see [8], [9], and references there; the inequality (G.2)

is given in exercise 3 of [3]. However, some proofs, in particular the use of the maximality
of o, seem to be new.
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as the interaction. It follows that the state ¢} defined by: Y;=1 all
ieZ’\A, corresponds to a ferromagnetic interaction, and that

VY(B)<J*(B), all B, all Y.

Therefore by (G.2)
ei(o)Zehloy), all Y, ACA )
and hence
0i(o)=0(c,), all ged, ACA. (5a)
By (G.1) and (3)
ox(o40p)Z 04 (04 04 (05) A, BCA, (5b)
04(og)=thK(B) Be4%, BCA. (50

If A'> A then o} restricted to A is of the form (2). Therefore by (4)
01(0)=0i(a,) forall AcCA.

It follows that ¢ (g,) converge when A — o, and it is not hard to see that
the limit defines an equilibrium state in the sense of (2). This state is
denoted by ¢*. By (5) o™ has the following properties:

0 (o) 20(o,) AeP;T), ge4, (6a)
0" (040520 (0 0" (05) A, BeZ,@), (6b)
ot (o) 2thK(B) Be®. (6¢)

0" is an extremal equilibrium state and it is invariant under any affine

transformation of Z° leaving invariant the interaction.

For a proof, suppose that ¢* = Ag, + (1 —24)g,, 0<i<1l, g, 0, € 4.
If there exists A e 2;(Z") such that g,(a,)+ 0" (d,) then by (6a) ¢,(c,)
<% (a,). Since, again by (6a), ¢,(c,) <0* (0,) we arrived at a contra-
diction proving the extremality of ¢*.

A proof of the second part of the statement comes from the ob-
servation that for any affine transformation of Z” the transform of ¢*
again satisfies (6a) and a state ¢ satisfying (6a) is obviously unique.

3. States that Agree with ¢* on the Group Generated by Bonds

It is convenient, and important for what follows, to introduce in &
a group structure by regarding {1, — 1} as an abelian group and defining
the group operation in & pointwise (elements of & are mappings from
Z’ to {1, — 1}). In this way & acquires the structure of a compact abelian
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group. The o,'s, Ae P,(Z"), are characters of Z and the mapping
Ar>a, identifies 2 (Z") (with the symmetric difference as the group
operation and the discrete topology) with the group dual to . The
subgroup of Z,(Z") generated by # is denoted by A.

The (internal) symmetry group

F={XeX 05X)=1, all BeRB)

is a closed subgroup of & and therefore compact.

For the Ising model 4 consists of all the even subsets of Z* and &
has only two elements: E with all components equal to 1, and F with all
components equal to —1.

For Ye % the translation mapping X+ X + Y is a homeomorphism
of &'; the state

fa(fy)
where fy(X)= f(X + Y) will be denoted by gy. Clearly
oy(ay) =04(Y)e(oy) . (7

It follows directly from (2) that for an equilibrium state ¢ and Ye &
9y is again an equilibrium state, and since the mapping ¢+—gy preserves
convex combinations gy is an extremal equilibrium state if ¢ is. For each
0 € 4 the mapping Yoy from & to 4 is obviously continuous. For a
measure y on & we define

0.= [ op mdy). (®)
By (7)
Qu(UA) = p(ay) 0™ (04) - 9)

Let &7 be the isotropy subgroup of ¢*:
ST T={YeS: 0y =0"}.

Since £ is Z’-invariant the same is true about %. Similarly &7 is Z'-
invariant, since ¢ is Z’-invariant. This will alow us later to consider the
action of Z' on the factor group &/ .

The function: Y-y is constant on & *-cosets. Therefore the
integral in (8) can be transformed into an integral over &/¥ 7, or,
equivalently, onto an integral over & with respect to a & " -invariant
measure. We write [ Y] g}, for the function on /& * corresponding
to Yy, and we remark that, by the definition of &%, [Y]— gy,

3 For finite systems the groups % and & are introduced in [5]. The reader will find
there a discussion of several examples.
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is an injective mapping. We write
.= [ om(d[Y]) @)

for the integral over /% * that corresponds to (8).
Let

BT ={AeP;L): 0" (0)*0}.

By (6b) 8" is a subgroup of Z,(Z"), and by (6¢) Z* > #. Therefore B
contains 4.
Let 4% be the family of the equilibrium states that agree with o*
on &:
At ={oed:9(c)=0"(a,) forall AecB}.

If ge A™ then gy e A" for each Ye ., and (8) defines an element of 47
for any p.

Theorem. All elements of A* are of the form (8). The mapping u+— @,
from normalized measures on &/9"* to equilibrium states is one-to-one,
and (8') gives the decomposition of g, into extremal elements of A. u is
L-invariant if and only if ¢, is Z*-invariant, and u is grgodic if and only
if g, 1is.

Proof. Letge A* and let

o= | o ndd
&(4)

be the decomposition of ¢ into extremal elements of 4. By (6a) g.(0,)
<¢*(g,) for all Ae 2,Z"). If Ae % then ¢(o,)=0"(0,) and therefore
the set of £ € &£(4) for which g.(0,)+ ¢ (a,) is of u-measure zero. Since
the family 2,(Z") is denumerable, g, € 4™ y-almost everywhere. Therefore
to prove the first part of the theorem it is enough to show that if
g€ 4% né&(4) then there exists Ye & such that ¢=gy .

Let ge AT n&(4) and let

o= [oydY, " =[ofdY

where dY is the normalized Haar measure on &. ge A% and g(c,) =0
if A ¢ % since
ala)=0lay) fo,(Y)dY

and ¢, is a character. Similarly ¢ (s,)=0 if A ¢ % and therefore g=g¢".
This implies, by the uniqueness of the decomposition into extremal
elements of 4, that the intersection of {9y} ycs and {0y }ycs is not empty;
i.e. there exist Y', Y” € & such that gy = gy.. Hence g =gy, Y=Y — Y".



Low Temperature Behavior of Ferromagnets 303

Since g(y, + opy; if [X]# [Y] the representation (8') gives the unique
decomposition of g, into extremal equilibrium states and therefore the
mapping ut>g, is one-to-one.

It follows from (9) that a translate of u corresponds to a translate of
0, Therefore invariant measures are in one-to-one correspondence with
invariant elements of 4*. Since the mapping u+g, is linear and bijective
this implies that ergodic measures are in one-to-one correspondence
with ergodic elements of 4*. The theorem is proved.

It was shown in [7] that for a large family of ferromagnetic systems
all the translation invariant equilibrium states at low temperatures
belong to 4*. Therefore the above theorem yields a description of all
the translation invariant equilibrium states at low temperatures for
those systems. For instance, in the case of a connected two-body inter-
action 4 contains all the even subsets of Z” ([ 7], Section 4.9) and therefore
& has only two elements: E, F. Hence, by (8), only two ergodic equilibrium
states are possible. For disconnected systems &, ¥, /%" are products
of the groups corresponding to the connected components.

4. A Non-Denumerable Family of Ergodic Equilibrium States

The system is three-dimensional. The bonds are the translates of the
following ones:

B;={0,e;,e3,e,+e3}, By={0,e1,e3,e;+e3}, B3={0,e;,e;,e1+e,}
where e; =(1,0,0), e, =(0, 1,0), e;=(0,0, 1); B, is pictured below

We put J(B)=1, all Be #. Let for neZ, F, denotes the configuration
that is — 1 at the lattice sites belonging to the plane: x, =n, and +1 at
all other sites. Since intersections of the bonds with such planes are even
F,e &, all neZ. The subgroup & of & generated by {F,} is isomorphic
to the group of configurations of a one-dimensional lattice system with |
the action of Z* on & reduced to the action of Z on the later.

For low enough temperatures the group &* has at most two elements :
E,F (E;=+1,F,=—1 forallieZ3).

For a proof it is enough to show that #* contains all the Ising type
bonds for low enough temperatures. Since #* is invariant under
rotations and translations, as ¢* is, it is enough to show that {0, e;} € ™.
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This, in turn, will be deduced from the existence of the spontaneous
magnetization in the Ising model.

Let # be the set of bonds of # that are not contained in
{xeZ?:x;21}U{xeZ?:x<0},and let J=J|4. If §* is the “ +” state
corresponding to the interaction J then by the GKS 1nequalities

0" (6)26%(c,) forall AePT).

Let A,={xeZ?®:0<x;<n, i=1,2,3}. A configuration X in A, can be
identified with (X,, X;, ..., X,) where X; is a configuration in
Al={xeZ*:0<x;<n,i=1,2}. If A is a sum of a subset, say 4,, of
the plane x, =0 and of the translate of 4, by e; then

)= Y 04(Xo, X))
Xo.X1

“exp|p Z~ op(Xo, X1)
Be%#

BnA,*0

B Z~ op(Xo, X1)| -
Be%

BnAn*0

/Z exp

Xo0.X1

Furthermore
04(Xo+ X1, Xp) = 04,(Xo)

and therefore performing the change of variables

(Xo, X)) (Xo + Xy, Xy)

we obtain
or(0)=Y o(X)expB Y 05,(Xo) /z expf Y 0z(Xo).
Xo Be% Xo Be%
BnA,*0 BnA,¥0

The right hand side here is equal to the expectation value of g, in the
“+” state of the two-dimensional Ising model in A?. Putting 4 = {0, e,}
and passing to the limit as n— co we see that ¢ * (5o ., is bounded from
below by the spontaneous magnetization of the two-dimensional Ising
model, and therefore is not zero at low enough temperatures.

For the model under consideration the family of ergodic equilibrium
states at low enough temperatures is non-denumerable.

According to the theorem of the preceeding section it is enough to
show that the family of ergodic (under the action of Z3) measures on
F/F* is non-denumerable. Since ¥ D F and & * C {E, F} it is enough
to find a non-denumerable family of Z and F-invariant measures on %.
Such family of measures is provided by the one-dimensional Ising model
if the temperature is varied. Another (denumerable) family of examples
is obtained from invariant measures concentrated on the Z-orbits of the
periodic elements of &#. In these examples p has finite support.
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Whereas it is not hard to vary and to multiply examples like the
one above, even for the models discussed in [7] we do not have a de-
scription of %, or #*, at low temperatures. By the GKS inequalities
#* increases with the inverse temperature. For high temperatures
A"+ = since the state 97 of Section 3 vanishes on g, A ¢ %, and the
equilibrium state is for high temperatures unique. We conjecture that
F* stabilizes at low temperatures, and that the limits as T—O of trans-
lation invariant equilibrium states are given by invariant measures on
F/F* where #7 is the (temperature independent) group corresponding
to low temperatures.
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