Commun. math. Phys. 35, 253—255 (1974) © by Springer-Verlag 1974

An Application of the GHS Inequalities to Show the Absence of Phase Transition for Ising Spin Systems

C. J. Preston

Mathematical Institute, Oxford, U.K.

Received October 20, 1973

Abstract. We show that the GHS inequalities can be used instead of the Lee-Yang circle theorem to prove that there is no phase transition for the *v*-dimensional Ising model in the presence of a (non-zero) external field.

It has been shown by Ruelle [3] that there is no phase transition for the v-dimensional Ising model in the presence of a (non-zero) external field. A different proof of this result has been given by Lebowitz and Martin-Löf [2]. Both of these proofs use the Lee-Yang circle theorem and it is the object of this note to show that the result may be obtained by using the inequalities of Griffiths, Hurst and Sherman [1] rather than the circle theorem.

Let \mathscr{C} denote the finite subsets of \mathbb{Z}^{ν} and let $\Phi : \mathscr{C} \to \mathbb{R}$ be a translation invariant, attractive pair potential, thus we have

$$\Phi(\emptyset) = 0, \qquad (1)$$

$$\Phi(A+x) = \Phi(A) \quad \text{for all} \quad A \in \mathscr{C}, \ x \in \mathbb{Z}^{\vee}, \tag{2}$$

 $\Phi(A) = 0$ if $|A| \ge 3$, (where |A| denotes the cardinality of A), (3)

$$\Phi(A) \ge 0 \quad \text{if} \quad |A| = 2. \tag{4}$$

We will also assume that Φ satisfies:

$$\sum_{0 \neq x \in \mathbb{Z}^{\nu}} \Phi(\{0, x\}) < \infty , \qquad (5)$$

$$\Phi(\{0\}) + \sum_{0 \neq x \in \mathbb{Z}^{\nu}} \Phi(\{0, x\}) = 0.$$
(6)

Of course (6) just says that if we translate from "lattice gas" language to "spin" language then Φ corresponds to the Ising model in the absence of an external field.

For $\lambda \in \mathbb{R}$ let Φ_{λ} denote the potential got by adding an external field of size λ to Φ , thus

$$\Phi_{\lambda}(A) = \begin{cases} \Phi(A) + \lambda & \text{if } |A| = 1, \\ \Phi(A) & \text{otherwise.} \end{cases}$$

Let $U_{\lambda}: \mathscr{C} \to \mathbb{R}$ be the energy corresponding to Φ_{λ} , thus

$$U_{\lambda}(A) = \sum_{B \subset A} \Phi_{\lambda}(B) = \sum_{B \subset A} \Phi(B) + \lambda |A| .$$

For $\Lambda \in \mathcal{C}, \lambda \in \mathbb{R}$ let

$$P_{A}(\lambda) = \frac{1}{|A|} \log \sum_{A \subset A} \exp U_{\lambda}(A) ;$$

then if $\Lambda \uparrow \mathbb{Z}^{\nu}$ (in the sense of van Hove) we have $P_{\Lambda}(\lambda)$ converges (for all $\lambda \in \mathbb{R}$) to the pressure $P(\lambda)$. Using the FKG inequalities and the convexity of P we have the following result of Lebowitz and Martin-Löf [2]:

Proposition 1. If *P* is differentiable at $\lambda \in \mathbb{R}$ then phase transition does not occur for the interaction Φ_{λ} .

(By the absence of phase transition we mean here that there exists only one infinite Gibbs state with potential Φ_{λ} .)

By the Lee-Yang circle theorem it follows that P is differentiable at λ if $\lambda \neq 0$. We will now show that this also follows from the GHS inequalities.

Lemma 1. Let $I \in \mathbb{R}$ be an open interval and for n = 1, 2, ... let $f_n: I \to \mathbb{R}$ be convex and with $0 \leq f_n \leq 1$. Then there exists a subsequence $\{n_i\}$ such that $f_{n_i}(x)$ converges for all $x \in I$, (and if we denote the limit by f(x) then of course $f: I \to \mathbb{R}$ is also convex).

Proof. This is a well known result from real analysis.

Proposition 2. *P* is differentiable at λ if $\lambda \neq 0$.

Proof. Let $\tau: \{0, 1\}^{\mathbb{Z}^{\nu}} \to \{0, 1\}^{\mathbb{Z}^{\nu}}$ be the automorphism given by $\tau(A) = \mathbb{Z}^{\nu} - A$. Then τ induces an automorphism of the probability measures on $\{0, 1\}^{\mathbb{Z}^{\nu}}$ and it is well-known (and easily checked) that this automorphism maps Gibbs states with potential Φ_{λ} into Gibbs states with potential $\Phi_{-\lambda}$. Thus we need only consider the case $\lambda < 0$. For $\Lambda \in \mathscr{C}$ let $f_A = \frac{\partial P_A}{\partial \lambda}$; thus

$$f_A(\lambda) = \frac{1}{|A|} \sum_{x \in A} \varrho_{A,\lambda}(\{x\}),$$

254

where

$$\varrho_{\Lambda,\lambda}(\{x\}) = \frac{\sum\limits_{x \in A \subset \Lambda} \exp U_{\lambda}(A)}{\sum\limits_{A \subset \Lambda} \exp U_{\lambda}(A)}.$$

Now if $\lambda < 0$ then the inequalities of Griffiths, Hurst and Sherman [1] apply to Φ_{λ} and we thus get that $\varrho_{A,\lambda}(\{x\})$ is a convex function of λ on $(-\infty, 0)$ and hence by Lemma 1 we can find $\Lambda_n \uparrow \mathbb{Z}^{\vee}$ and a convex function $f: (-\infty, 0) \to \mathbb{R}$ such that for all $\lambda < 0$ we have both

 $f_{A_n}(\lambda) \to f(\lambda)$ and $P_{A_n}(\lambda) \to P(\lambda)$ as $n \to \infty$.

Now let $\lambda < 0$ and $\lambda_0 < \lambda$; then

$$P(\lambda) - P(\lambda_0) = \lim_{n \to \infty} \int_{\lambda_0}^{\lambda} f_{A_n}(t) dt = \int_{\lambda_0}^{\lambda} f(t) dt$$

(where the last equality follows from the dominated convergence theorem, since $0 \le f_{A_n} \le 1$). But f is convex and thus in particular continuous, hence by the fundamental theorem of calculus we have that P is differentiable on $(-\infty, 0)$.

References

- 1. Griffiths, R.B., Hurst, C.A., Sherman, S.: J. Math. Phys. 11, 790-795 (1970)
- 2. Lebowitz, J.L., Martin-Löf, A.: Commun. math. Phys. 25, 276-282 (1972)
- 3. Ruelle, D.: Ann. Phys. 69, 364-374 (1972)

Communicated by G. Gallavotti

C. J. Preston Mathematical Institute 24–29 St. Giles Oxford, U.K.