The Convergence of BPH Renormalization

Eugene R. Speer
Department of Mathematics, Rutgers University, New Brunswick, USA

Received July 30, 1973

Abstract

The convergence of the integrals defining BPH renormalized Feynman amplitudes is derived from the known additive structure of analytic renormalization.

In this paper we derive the convergence of BPH renormalization [1-3] from the known additive structure of analytic renormalization [4], providing an alternate and perhaps simpler route to this important result. We adopt without further remark the notation of $[1,4]$.

Suppose that $f(\lambda)$ is meromorphic in \mathbb{C}^{L}, with at most simple poles on varieties $\Lambda(\chi)=0, \pm 1, \pm 2, \ldots$, where for $\chi \subset\{1, \ldots L\}, \Lambda(\chi)$ $=\sum_{l \in \chi}\left(\lambda_{l}-1\right)$. For $\boldsymbol{\kappa} \in \mathbb{C}^{L}$, let \mathscr{V}^{κ} be the analytic evaluator of $[4 ; 3.4(\mathrm{~b})]$, but defined with center $\boldsymbol{\kappa}$: choosing $0<R_{1}<\cdots<R_{L} \ll 1$ to satisfy $\sum_{i<j} R_{i}<R_{j}$, and defining C_{i}^{j} as the contour $\left|\mu_{j}-\kappa_{j}\right|=R_{i}$,

$$
\mathscr{V}^{\kappa} f(\lambda)=\frac{(2 \pi i)^{-L}}{L!} \sum_{s \in S_{L}} \int_{C_{s(1)}^{\prime}} d \mu_{1} \ldots \int_{C s_{s}^{\frac{1}{(L)}}} d \mu_{L} \frac{f(\boldsymbol{\mu})}{\left(\mu_{1}-\lambda_{1}\right) \ldots\left(\mu_{L}-\lambda_{L}\right)}
$$

whenever $\left|\lambda_{l}-\kappa_{l}\right|<R_{1} . \mathscr{V}^{\boldsymbol{\kappa}} f$ is analytic at $\boldsymbol{\kappa}$.
Now let G be a Feynman graph with vertices $V_{1}, \ldots V_{m}$ and lines $\{1, \ldots L\}$. If $\hat{\mathscr{X}}$ is a set of vertex parts for $G, U=\left\{V_{1}^{\prime} \ldots V_{r}^{\prime}\right\}$ a generalized vertex, and $Q=\left\{U_{1}, \ldots U_{s}\right\}$ a partition of $U, \mathscr{T}_{Q, \hat{x}}\left(V_{1}^{\prime} \ldots V_{r}^{\prime}\right)$ is the amplitude defined for $\operatorname{Re} \lambda_{l} \gg 0$ by $\mathscr{T}_{Q, \hat{x}}\left(V_{1}^{\prime} \ldots V_{r}^{\prime}\right)=\prod_{1}^{s} \hat{X}\left(U_{i}\right) \prod_{\text {conn }} \Delta_{l}$.

Theorem 1. If $\boldsymbol{\kappa} \in C^{L}$ satisfies
then

$$
\begin{equation*}
\operatorname{Re} \kappa_{l} \geqq 1, \quad l=1, \ldots L, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathscr{V}^{\kappa} \mathscr{T}_{Q, \hat{x}}\left(V_{1}^{\prime}, \ldots V_{r}^{\prime}\right)=\sum_{R} \mathscr{T}_{R, \tilde{x}_{(Q, \hat{x})}}\left(V_{1}^{\prime}, \ldots V_{r}^{\prime}\right) \tag{2}
\end{equation*}
$$

where the $\tilde{\mathscr{X}}$'s are new vertex parts, and the sum is over partitions R of $\left\{V_{1}^{\prime} \ldots V_{r}^{\prime}\right\}$ at least as coarse as Q. Note in particular that if $Q=\{U\}$, $\tilde{\mathscr{X}}(Q, \hat{X})\left(V_{1}^{\prime} \ldots V_{r}^{\prime}\right)=\mathscr{V}^{\kappa} \hat{X}\left(V_{1}^{\prime} \ldots V_{r}^{\prime}\right)$.

Proof. As in [4, §4]. The change of center to $\boldsymbol{\kappa}$ and the extension to a generalized graph introduce only a notational difference in the proof.

Condition (1) guarantees that the vertex parts $\tilde{\mathscr{X}}(W)$ have degree less than or equal to the superficial divergence of W.

Theorem 2. Let \mathscr{R} be the standard BPH renormalization operator [1]. Then there are vertex parts $\hat{\mathscr{X}}$ such that, for any $\left\{V_{1}^{\prime}, \ldots V_{r}^{\prime}\right\}$,

$$
\begin{equation*}
\mathscr{R} \mathscr{T}\left(V_{1}^{\prime}, \ldots V_{r}^{\prime}\right)=\sum_{Q} \mathscr{V}^{\kappa} \mathscr{T}_{Q, \hat{x}}\left(V_{1}^{\prime}, \ldots V_{r}^{\prime}\right) \tag{3}
\end{equation*}
$$

the sum taken over partitions Q of $\left\{V_{1}^{\prime} \ldots V_{r}^{\prime}\right\}$.
Proof. This is the standard equivalence of two additive renormalizations; we adapt the proof of [5]. Define $\hat{\mathscr{X}}\left(V_{1}^{\prime \prime}, \ldots V_{s}^{\prime \prime}\right)$ inductively by

$$
\begin{equation*}
\mathscr{X}\left(V_{1}^{\prime \prime}, \ldots V_{s}^{\prime \prime}\right)=\sum_{Q}^{\prime} \tilde{\mathscr{X}}(Q, \hat{\mathscr{X}})\left(V_{1}^{\prime \prime}, \ldots V_{s}^{\prime \prime}\right)+\hat{\mathscr{X}}\left(V_{1}^{\prime \prime}, \ldots V_{s}^{\prime \prime}\right) \tag{4}
\end{equation*}
$$

where \mathscr{X} is the vertex part for \mathscr{R} and Σ^{\prime} is over partitions Q of $\left\{V_{1}^{\prime \prime}, \ldots V_{s}^{\prime \prime}\right\}$ into at least two sets. Assume inductively that for $s<r, \hat{\mathscr{X}}\left(V_{1}^{\prime \prime}, \ldots V_{s}^{\prime \prime}\right)$ $=\mathscr{V}^{\kappa} \hat{X}\left(V_{1}^{\prime \prime}, \ldots V_{s}^{\prime \prime}\right)$, so that (4) is

$$
\begin{equation*}
\mathscr{X}\left(V_{1}^{\prime \prime}, \ldots V_{s}^{\prime \prime}\right)=\sum_{Q} \tilde{\mathscr{X}}(Q, \hat{\mathscr{X}})\left(V_{1}^{\prime \prime}, \ldots V_{s}^{\prime \prime}\right) \tag{5}
\end{equation*}
$$

Inserting (5) [and (4) if $s=r$] into $\mathscr{R} \mathscr{T}=\Sigma \mathscr{T}_{Q, \mathscr{X}}$, rearranging, and using (2), we have

$$
\begin{equation*}
\mathscr{R} \mathscr{T}\left(V_{1}^{\prime}, \ldots V_{r}^{\prime}\right)=\sum_{Q}^{\prime} \mathscr{V}^{\kappa} \mathscr{T}_{Q, \hat{X}}\left(V_{1}^{\prime}, \ldots V_{r}^{\prime}\right)+\hat{\mathscr{X}}\left(V_{1}^{\prime}, \ldots V_{r}^{\prime}\right) \tag{6}
\end{equation*}
$$

Now apply the BPH M-operator to (6), using $M \mathscr{R}=0, M \mathscr{V}^{\kappa}=\mathscr{V}^{\kappa} M$, and $M \hat{\mathscr{X}}=\hat{\mathscr{X}}$, to find

$$
\hat{\mathscr{X}}\left(V_{1}^{\prime}, \ldots V_{r}^{\prime}\right)=-\mathscr{V}^{\kappa} M \sum_{Q}^{\prime} \mathscr{T}_{Q, \hat{X}}\left(V_{1}^{\prime}, \ldots V_{r}^{\prime}\right)
$$

Since $\left(\mathscr{V}^{\kappa}\right)^{2}=\mathscr{V}^{\kappa}, \mathscr{V}^{\kappa} \hat{\mathscr{X}}=\hat{\mathscr{X}}$; this verifies the induction assumption and, when inserted into (6), yields (3).

Corollary 1. $\mathscr{R} \mathscr{T}\left(V_{1}, \ldots V_{m}\right)$ is holomorphic in

$$
\Omega=\left\{\lambda \mid \operatorname{Re} \lambda_{l}>1-1 / L, \quad \text { for all } l\right\}
$$

Proof. Any possible pole of $\mathscr{R} \mathscr{T}$ in Ω has the form $\Lambda(\chi)=k$, with $k \geqq 0$, and hence contains a point $\boldsymbol{\kappa}$ satisfying (1). But from (3), $\mathscr{R} \mathscr{T}$ cannot be singular at $\boldsymbol{\kappa}$; this completes the proof.

There remains only to show that this analyticity comes from the convergence of the corresponding integral. The model for the following proof is this: if $f(t)$ is C^{∞} on [0,1], and $\int t^{z-1} f(t) d t$ is analytic at $z=0$, then necessarily $f(0)=0$ [7], $f(t)=t g(t)$ with $g(t) C^{\infty}$ on [0, 1], and $\int t^{z-1} f(t) d t$ converges for $z \geqq-1$.

Theorem 3. Let

$$
\begin{equation*}
\mathscr{R} \mathscr{T}\left(V_{1}, \ldots V_{m}\right)=\lim _{\varepsilon \rightarrow 0^{+}} \int_{0}^{\infty} \ldots \int_{0}^{\infty}\left(\prod_{1}^{L} \alpha_{l}^{\lambda_{l}-1} e^{-\varepsilon \alpha_{l}} d \alpha_{l}\right) f(\boldsymbol{\alpha}, \boldsymbol{p}) \tag{7}
\end{equation*}
$$

be the usual Feynman-parametric representation, known to exist and converge for $\operatorname{Re} \lambda_{l}$ sufficiently large. Then this integral converges absolutely for $\lambda \in \Omega$.

Proof. $f(\boldsymbol{\alpha}, \boldsymbol{p})$ in (7) is an entire function of $\boldsymbol{\alpha}$ divided by a product of Symanzik d-functions for various sub and quotient graphs. For any ordering $l_{1}<\cdots<l_{L}$ of $\{1, \ldots L\}$, let $\chi_{i}=\left\{l_{1}, \ldots l_{i}\right\}$, and introduce in the region $\alpha_{l_{1}} \leqq \cdots \leqq \alpha_{l_{L}}$ scaling variables $\left\{t_{\chi_{i}}\right\}$, defined by $\alpha_{l_{i}}=\prod_{j \geqq i} t_{\chi_{j}}$. Under this scaling, each d function factors as a product of t_{χ} 's times a function non-zero in $t_{\chi} \geqq 0$, so that $\mathscr{R} \mathscr{T}$ is the $\varepsilon \rightarrow 0^{+}$limit of a sum of terms

$$
\begin{equation*}
\int_{0}^{\infty} d t_{\chi_{L}} \int_{0}^{1} \ldots \int_{0}^{1} \prod_{i<L} d t_{\chi_{i}} \prod_{1}^{L} t_{\chi_{i}} A\left(\chi_{\chi_{1}}\right)-j\left(\chi_{i}\right) g_{\varepsilon}(\boldsymbol{t}, \boldsymbol{p}) \tag{8}
\end{equation*}
$$

with g analytic in the integration region. We choose each $j\left(\chi_{i}\right)$ as small as possible, and will show that then $j\left(\chi_{i}\right) \leqq 0$; from (8), this will complete the proof.
[The scaling transformation is the local form of a global desingularization of the integration space (see e.g. [6]) and $j\left(\chi_{i}\right)$ is related to the degree of the pole of f on a certain analytic variety. From this it follows that $j\left(\chi_{i}\right)$ actually depends only on χ_{i}, not on the original ordering.]

Suppose that $j(\chi)>0$ for some χ, and choose χ_{0} to be a minimal subset for which $j\left(\chi_{0}\right)>0$. Changing variables to $\alpha_{l}=u \beta_{l}, l \in \chi_{0}$, with $\sum_{\chi_{0}} \beta_{l}=1$, (7) becomes the $\varepsilon \rightarrow 0$ limit of

$$
\begin{equation*}
\int_{\substack{0 \\ \sum_{\chi_{0}} \beta_{l}=1}}^{\infty} \ldots \int_{0}^{\infty} u^{\Lambda\left(x_{0}\right)-j\left(x_{0}\right)} d u \prod_{l \in \chi_{0}} \beta_{l}^{\lambda_{l}-1} d \beta_{l} \prod_{l \notin \chi_{0}} \alpha_{l}^{\lambda_{l}-1} d \alpha_{l} h_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}, u, \boldsymbol{p}) \tag{9}
\end{equation*}
$$

The residue of (9) on the pole $\Lambda\left(\chi_{0}\right)=j\left(\chi_{0}\right)-1$, which vanishes by Corollary 1, is ([7])

$$
0=\left.\int_{\substack{0 \\ \sum_{0} \beta_{l}=1}}^{\infty} \ldots \int_{0}^{\infty}\left(\prod_{l \notin \chi_{0}} \alpha_{l}^{\lambda_{l}-1} d \alpha_{l}\right)\left(\prod_{l \in \chi_{0}} \beta_{l}^{\lambda_{l}-1} d \beta_{l}\right)\right|_{A\left(\chi_{0}\right)=j\left(\chi_{0}\right)-1} h_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}, 0, \boldsymbol{p}) .
$$

By choice of χ_{0}, (10) converges absolutely if $\operatorname{Re} \lambda_{l}>1-1 / L, l \in \chi_{0}$, and $\operatorname{Re} \lambda_{l}>k_{l}$ for some $k_{l}, l \notin \chi_{0}$ (change back to t variables). We now claim that

$$
\begin{equation*}
h_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}, 0, \boldsymbol{p})=0 ; \tag{11}
\end{equation*}
$$

this establishes the theorem by contradiction, since then $h_{\varepsilon}=u \boldsymbol{h}_{\varepsilon}$, with $\boldsymbol{h}_{\varepsilon}$ analytic, so that $j\left(\chi_{0}\right)$ was not as small as possible.

To prove (11), choose $l_{0} \in \chi_{0}$, and change variables in (10) to $y_{l}=\ln \alpha_{l}$, $l \notin \chi_{0}, y_{l}=\ln \left(\beta_{l} / \beta_{l_{0}}\right), l \in \chi_{0}-\left\{l_{0}\right\}$. Then (10) becomes

$$
\begin{equation*}
0=\int_{\mathbb{R}^{L-1}} \ldots \int \prod_{l \neq l_{0}} e^{\left(\lambda_{l}-1\right) y_{l}} d y_{l}\left[\beta_{l_{0}}^{j(x)+|x|-1} h_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}, 0, \boldsymbol{p})\right] \varrho(y) \tag{12}
\end{equation*}
$$

with $\varrho(y)$ the Jacobean of the variable change. Taking $\lambda_{l}=1+i \omega_{l}$, $l \in \chi_{0}-\left\{l_{0}\right\}$, and $\lambda_{l}=1+k_{l}+i \omega_{l}, l \notin \chi_{0}$, (12) states that the Fourier transform of the continuous L_{1} function

$$
\left(\prod_{l \notin \chi_{0}} \alpha_{l}^{k_{l}}\right) \beta_{l_{0}}^{j(x)+|x|-1} h_{\varepsilon}(\boldsymbol{\alpha}, \boldsymbol{\beta}, 0, \boldsymbol{p}) \varrho
$$

vanishes. Since ϱ is strictly positive, $h(\boldsymbol{\alpha}, \boldsymbol{\beta}, 0, \boldsymbol{p})=0$, q.e.d.

References

1. Hepp, K.: Commun. math. Phys. 2, 301 (1966)
2. Bogoliubov, N. N., Parsiuk, O. S.: Acta. Math. 97, 227 (1957)
3. Parasiuk, O. S.: Ukr. math. J. 12, 287 (1960)
4. Speer, E. R.: Commun. math. Phys. 23, 23-36 (1971); 25, 336 (1972)
5. Hepp, K.: Commun. math. Phys. 14, 67 (1969)
6. Boyling, J. B.: Nuovo Cimento 53, 351 (1968)
7. Gelfand, I. M., Shilov, G.E.: Generalized functions, Vol. I. New York: Academic Press 1964

Eugene R. Speer
Department of Mathematics
Rutgers University
New Brunswick, N. J. 08903, USA

