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Abstract. The convergence of the integrals defining BPH renormalized Feynman
amplitudes is derived from the known additive structure of analytic renormalization.

In this paper we derive the convergence of BPH renormalization
[1-3] from the known additive structure of analytic renormalization [4],
providing an alternate and perhaps simpler route to this important
result. We adopt without further remark the notation of [1,4].

Suppose that f(λ) is meromorphic in <CL, with at most simple poles
on varieties A(χ) = 0, ± 1 , ± 2,..., where for χC {1,... L}, Λ(χ)
= Σ(λι- *)• F o r κ€<EL, let TΓ* be the analytic evaluator of [4; 3.4 (b)],

but defined with center κ\ choosing 0<R1< - <RL^ί to satisfy
Σ &i < Rj> and defining C{ as the contour \μj — Kj\ = Rh

i<j

r f(λ)= Σ ί ^ i ί dμL
L ' seSL Ci(i) ^

whenever \λt — κt\ < R1. i^κf is analytic at K.
Now let G be a Feynman graph with vertices Vl9... Vm and lines

{1,... L}. If St is a set of vertex parts for G, U = {F/... F/} a generalized
vertex, and β = {L71?... 17S} a partition of 17, &~Qt&{Vl... F;) is the

s

amplitude defined for Re/lz>0 by ^Qtχ{V[ ... F/)= Π ^ ( ^ ) Π Δι-
1 conn

Theorem 1. If κeCL satisfies

t h e n R e i c ^ l , / = 1,...L, (1)

ir'^-Q,*(Ki,... v;)= Σ^i.f,fl,*)(^ί. - »?). (2)

ίfce # ' s are new vertex parts, and the sum is over partitions R of
{V[ ... V'γ) at least as coarse as Q. Note in particular that if Q — {U},

Proof. As in [4, § 4]. The change of center to K and the extension to a
generalized graph introduce only a notational difference in the proof.
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Condition (1) guarantees that the vertex parts 2£(W) have degree less
than or equal to the superficial divergence of W.

Theorem 2. Let 0ί be the standard BPH renormalizatίon operator [ i ] .
Then there are vertex parts 3C such that, for any {VI,... F/},

a<r(vί... v;)=Σ^κ^QMvύ .. ̂ h (3)
Q

the sum taken over partitions Qof {V[ ... F/}.

Proof. This is the standard equivalence of two additive renormaliza-
tions; we adapt the proof of [5]. Define 3t(V^,... F5") inductively by

W,. . . F;) = £' #(ρ, i) (VΪ, ... FS")+i{yι... v's'), (4)
Q

where 3C is the vertex part for ̂  and Σ' is over partitions Q of {Vϊ,... Fs"}
into at least two sets. Assume inductively that for s<r, 3t(V£9... Fs")

κiV^ ... Fs"), so that (4) is

t (5)

Inserting (5) [and (4) if s = r~] into &^~= Σ^QtX, rearranging, and
using (2), we have

# . . . F ; ) . (6)

Now apply the BPH M-operator to (6), using
and M # = # , to find

Since (f"κ)2 = f"κ, frKi = i\ this verifies the induction assumption
and, when inserted into (6), yields (3).

Corollary 1. St^(Vu ... VJ is holomorphic in

β = μ | R e λ I > l - l / L , for all I}.

Proof. Any possible pole of 013~ in Ω has the form Λ(χ) = k, with
fc^O, and hence contains a point K satisfying (1). But from (3), 01 ̂ Γ
cannot be singular at κ\ this completes the proof.

There remains only to show that this analyticity comes from the
convergence of the corresponding integral. The model for the following
proof is this: if /(ί) is C00 on [0,1], and J f'^fiήdt is analytic at z = 0,
then necessarily /(0) = 0 [7], f(t) = tg(t) with g(ή C°° on [0,1], and
J f~ 1f{t) dt converges for z ̂  - 1 .
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Theorem 3. Let

ar(Vu... Vm)= lim J ...J (Πα^-^-^dα^/fep) (7)
ε^° 0 0 \ 1 /

fee ί/j£ usual F eynman-paγametric representation, known to exist and con-
verge for Re λι sufficiently large. Then this integral converges absolutely
for λeΩ.

Proof. /(«, p) in (7) is an entire function of α divided by a product
of Symanzik d-functions for various sub and quotient graphs. For any
ordering lγ < ••• <lL of {1,... L}, let χ£ = {ϊ l9... /J, and introduce in the
region ah ̂  S&ιL scaling variables {tχ.}, defined by α/f = \\ tχ.. Under

this scaling, each d function factors as a product of ί̂ 's times a function
non-zero in tχ ̂  0, so that 3t?Γ is the ε->0+ limit of a sum of terms

]dtj...\ Πdh.h^-^g^P), (8)
0 0 0 i<L 1

with g analytic in the integration region. We choose each j(χt ) as small
as possible, and will show that thenj^) :gθ; from (8), this will complete
the proof.

[The scaling transformation is the local form of a global desingulariza-
tion of the integration space (see e.g. [6]) and y(χ ) is related to the
degree of the pole of / on a certain analytic variety. From this it follows
that j(χi) actually depends only on χf, not on the original ordering.]

Suppose that j(χ) > 0 for some χ, and choose χ0 to be a minimal
subset for which j(χo)>Q Changing variables to oiι=uβh l€χo-> with
]Γ βt = 1, (7) becomes the ε^O limit of
^ ° 00 00

J ... J uΛ{χo)-j{χo)du Π βιλl~ίdβι Π aι

λι-1dΰLιhεfaβ,u,p). (9)
0 Ό leχ0 lφχ0

Xo

The residue of (9) on the pole Λ(χ0) =j(χ0) - 1, which vanishes by Corol-
lary 1, is ([7])

0 0 \lφχ0 J \leχo
K(*,βΛp).

1 (10)
Xo

By choice of χ0, (10) converges absolutely if ReAj> 1 — 1/L, leχ0, and
Re A, > fcz for some kh lφχ0 (change back to t variables). We now claim

this establishes the theorem by contradiction, since then hε = uhε, with
hε analytic, so that j(χ0) was not as small as possible.
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To prove (11), choose loeχo, and change variables in (10) to yι = lnα ί ?

' Φ Xo> yι = Mβi/βiol l(ΞXo- {W Then (10) becomes

0= ί . . J Π ^ r l " ^ r + lzHM«,^,i))]ρ« (12)

with ρ(y) the Jacobean of the variable change. Taking λt = 1 4- iωl9

leχ0 — {/0}, and λt = ί +kι + iωh lφχ0, (12) states that the Fourier

transform of the continuous Lx function

vanishes. Since ρ is strictly positive, h(at, β, 0, p) = 0, q.e.d.
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