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Abstract. A time dependent approach to self-adjointness is presented and it is applied
to quantum mechanical Hamiltonians which are not semi-bounded. Sufficient conditions
are given for self-adjointness of Schrodinger and Dirac Hamiltonians with potentials which
are unbounded at infinity. The method is the introduction of an auxiliary operator N ^ 0
whose rate of change (commutator with the Hamiltonian) is bounded by a multiple of N.

1. Introduction

Let Jf be a Hubert space and H be a Hermitian operator acting in Jf .
That is, H is a linear transformation (defined on a dense linear subspace
9{H)Ctf and taking values in jf) such that (Hf,g} = (f,Hg) for
all / and g in 9(H).

The Schrodinger equation associated with H is i—— =Hu(t).

The initial value problem with initial condition w(0) = / has the formal
solution w(ί) = exp( — itH)f, but it is possible that the series expansion
for the exponential does not converge for sufficiently many vectors in
<2)(Ή) to determine a unitary operator exp( — itH).

The exponential of a self-adjoint operator, however, is uniquely
determined (by the spectral theorem). Thus any self-adjoint extension
of H leads to a solution of the initial value problem for the Schrδdinger
equation. The typical quantum mechanical Hamiltonian is a real
operator (that is, it commutes with some conjugation), so it has self-
adjoint extensions. The problem that remains is whether H has a unique
self-adjoint extension.

If H is the sum of (positive) kinetic energy and potential energy
terms, the Schrδdinger equation describes a particle moving in con-
figuration space under the influence of forces determined by the potential
energy. If the potential energy is unbounded below, the kinetic energy
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of the particle may increase and the potential energy decrease so rapidly
that the particle reaches a point where the potential is infinite. The
particle must then be given directions on what to do next. In this case
different "boundary conditions" (restrictions on the domain of the
adjoint operator) determine different self-adjoint extensions. The same
thing can happen if a strong repulsive force pushes the particle out to
infinity in a finite amount of time.

If the potential energy is bounded below, the kinetic energy remains
bounded and no such catastrophe can happen. Even if the potential
energy is unbounded below in a small region, the uncertainty principle
(more precisely, Sobolev inequalities) may prevent collapse. In this case,
when H is bounded below, there is at least a canonical self-adjoint
extension, if not a unique one, the Friedrichs extension. And it can be
shown in many cases that this operator is the only self-adjoint
extension [8].

There are certain situations (such as an electron in a constant electric
field) where, in spite of the fact that H is not semi-bounded, the dynamics
should be well determined. This can be shown by an analogue of an
argument in classical mechanics. Let u(t) be the solution of the Schro-
dinger equation and N be a suitable positive operator which measures
the magnitude of the momentum and the distance from a starting point.

Write the expectation of N as n(t) = (u(t\ Nw(ί)>. Then

= (u{t\ i[H, N~\ u(t)y. If the force doesn't grow too rapidly at i

one can derive an inequality ±i[H,N]^cN. This says that ±
at

\ and so n(ί)^n(0)exp(c|ί|). If the particle starts off reasonably
well localized, so that n(0) is finite, then n(t) remains finite for all t, the
particle never reaches infinity, and no catastrophe occurs. The purpose
of this note is to make this argument precise and to prove uniqueness of
the self-adjoint extension for Hamiltonian operators satisfying such an
inequality.

Our main mathematical result is Theorem 5. It states roughly that
self-adjointness for a Schrodinger operator which is bounded below
implies self-adjointness for the operator plus a potential which decreases
at most quadratically at infinity. (This new operator of course need not
be bounded below.) A typical application is given in Corollary 5.1.

The result is a consequence of a variant of an abstract theorem of
Nelson [9] on commutators and self-adjointness. The hypothesis of
Nelson's theorem is a first order estimate on a commutator. His theorem
extends a theorem of Glimm and Jaffe [6] which requires a second order
estimate on the commutator. All these authors were concerned with a
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different application of commutator theorems, to quantum fields.
In our applications only one operator is given and one must make a
suitable choice of the auxiliary operator N in order to obtain the
estimates.

Our other main contribution is a rigorous formulation of the intuitive
physical picture of the particle never moving so fast as to reach infinity
in finite time. This formulation is given in Theorems 2 and 3. However
for applications the original abstract theorem (Theorem 1) is sufficient.
We also give a new proof of this theorem and an application to Dirac
operators (Theorem 6).

The problem for the Schrδdinger equation in the one-dimensional
case has been previously treated by examining the asymptotic behavior
of solutions of an ordinary differential equation [2; Chapter 13, §6,
Corollaries 17 and 22]. The correspondence of these results with the
time required to reach infinity in classical mechanics has been noted by
Wightman [12]. (This correspondence is not exact; some of the border-
line cases are quite delicate, due to quantum mechanical effects [10,3,4].)

The question of essential self-adjointness of the ^-dimensional
Schrδdinger operator has a long history (see [11] and the references
there). The definitive treatment is due to Kato [8] he makes use of an
inequality involving absolute values of wave functions. For the Dirac
operator Chernoff [1] has recently given an essential self-adjointness
result which has a very clear physical significance. He argues in effect
that since nothing can travel faster than the speed of light (in a rela-
tivistic theory such as the Dirac theory), it is impossible to reach infinity
in a finite time.

2. Essential Self-Adjointness and Invariant Domains

Nelson's commutator theorem has to do with the essential self-
adjointness of a Hermitian operator. If H is a Hermitian operator and
H1 is a self-adjoint extension of H, then HQHQH^CH*9 where H is
the closure and H* is the adjoint (and the inclusions are between graphs).
The operator H is said to be essentially self-adjoint if its closure H is
self-adjoint. Since then ϊί = (H)* = H*9 it follows that Hγ = H. Thus if H
is essentially self-adjoint it has a unique self-adjoint extension. (The
converse is also true.)

We denote the domain of an operator A by @(A% and if N is positive
and self-adjoint we call <3{N*) = Ά(N) (the domain of the quadratic
form of JV). The following result is closely related to a theorem of
Nelson [9].



42 W. G. Faris and R. B. Lavine

Theorem 1. Let H be a Hermit ian operator and iV^Oα positive self-
adjoint operator satisfying

(i) 2{N)Q9{H).
(ii) + ΐ[H, N~\^cN for some constant c<oo.

Then H is essentially self-adjoint.
The quadratic form inequality (ii) in the statement of the theorem

means that ±i{(Hf JV/> - (Nf Hf}} ^ c</, Nf} for all f in 2{N).

Proof. Without loss of generality we may assume that N^ί. We
use the fact that H is essentially self-adjoint provided that the range of
H — di is dense in J f whenever \d\ is sufficiently large.

Let / be orthogonal to the range of H — di. Then in particular
lm(f(H-di)N-1f} = 0. It follows that

Hence ±2d(f A T 1 / ) ^ c < / , iV" 1 /)- If 2|d| >c, this implies that f = 0.

Corollary 1.1. Let H be a Hermitian operator and N^O a positive
self-adjoint operator. Let ̂  be a core for N (a dense linear subspace of
the Hilbert space 9{N)) such that ΉC@(H). Assume that there hold
estimates

(i) | |tf/| |2^α||N/||2 + fc||/||2, /etf.
(ii) + i[H, N~\^cN (as quadratic forms on c€).

Then H is essentially self-adjoint. (In fact, even its restriction to Ή is
essentially self-adjoint.)

Proof. We have 2(N) C @{H\ by (i), and (ii) implies that
±i[H, JV] ^cN as quadratic forms on 3>(N% because both forms can
be approximated using vectors in (6. Thus Theorem 1 applies to H.

The advantage of this result over that of Nelson is that there is more
flexibility in the choice of the core. This is needed for our main application
(Theorem 5).

The following two results provide a time-dependent interpretation
of Theorem 1. They may be used together to prove uniqueness of the
self-adjoint extension.

Theorem 2. Let H and N satisfy the conditions of Theorem 1, and
let H1 be a self-adjoint extension of H. Then Ά{N) is invariant under

Proof. We must show that any solution of the Schrδdinger equation
with initial value in Ά{N) remains in 1(N) for all time. We will do this by
showing that if u(t) = exρ( — itH^u, we have the inequality <u(ί), Nu(φ
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First let u e ^{H^ and consider Nε = N(εN + l)~1. Then

-^ <tι(ί), Nεu(Φ = <u(t\ i[Hu NJ u(φ

= <(εiV + I ) " 1 u(t), i[ff, N] (εN + I ) " 1 w(ί)>

which has absolute value bounded by c(u(t), Nεu(t)}. We may integrate
the inequality to obtain <u(ί), Nεu(φ ^ <w, iVεw> exp(c|ί|).

This estimate holds for all u in J f because ^(Hx) is dense in J f and
JVε is bounded. Now let u e Ά(N). Taking limits as β->0 gives

Theorem 3. Let H be a Hermitian operator and let N^ 0 be a self-
adjoint operator with 2{N) C @(H). Then H has at most one self-adjoint
extension H1 such that exp( — itHγ) leaves Ά(N) invariant.

Proof. We assume without loss of generality that H has a self-
adjoint extension and that N^ί. First we show that there is a unique
continuous Hermitian form h(f, g) on 1(N) such that </, Hg} = h(f, g)
for g in @)(N). Let K be a self-adjoint extension of H. Then | |X/| |
^c\\Nfl by the closed graph theorem. That is, K2^c2N2, which
implies [5] that \K\^cN. Thus |</, X^>| ^ | | |X|*/|| | | |K|*0| | <c||JVVll
• ||iV^^||. Hence the form </, Hg} extends to a continuous form on J(iV).

Next we use this form to define a Hermitian operator H which
extends //. For all g in J(JV) such that there exists u in Jf with </, w>
= ft(/, f̂), let Ĥ f = u. (The operator i ϊ is something like a Friedrichs
extension of H, but of course H need not be semi-bounded.)

Let H1 be a self-adjoint extension of H such that exp( — itH^) leaves
J(Λ0 invariant. Consider geδ = 2{H1)nΆ{N). If fe@(N), then
<f,Hig> = (Hf9g> = h(f,g), so ^e®(H) and Hg = HlG. Thus H
extends the restriction of # ! to ^.

Next observe that since S is dense in J f and Qxpi-HH^ leaves <?
invariant, ^ is a core for Hί. (This is an easy consequence of the spectral
theorem and Fourier analysis.) Since H extends Hx restricted to δ9 the
closure of H must extend Hγ. But a self-adjoint operator has no proper
Hermitian extensions. So the closure of H must equal H1. This argument
holds for any such self-adjoint extension, so all such extensions must
be equal.

3. Schrodinger Operators

In our applications of Theorem 1 the operator H is the Hamiltonian
and we must choose a suitable auxiliary operator N.

For Schrodinger operators the Hubert space is Jf = L2(\RP,dx).
The self-adjoint operators pt= —id/dxi and ^ = multiplication by Xj
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act in Jf. First we take N=p2 + q2, where p2 = — A and q2 is multi-
plication by x2. We shall often use the fact that N ̂  1. Note that the set
of finite linear combinations of Hermite functions is a core for JV, and
therefore so is the Schwartz space £f (of test functions for tempered
distributions). We shall also need to estimate various operators in
terms of N.

P r o p o s i t i o n 1. For f in @(N)9 \\p2f\\2 + \\q2f\\2^\\Nf\\2 +

Proof. It is sufficient to make the estimate for / in some nice core
of N. We use the double commutator argument of Jaffe and obtain the
quadratic form estimate

Thus we may take c = 2n.
Let v be a real measurable function on 1RM. Then p2 = — Λ and v(q)

= multiplication by v are self-adjoint operators acting in Jf = L2(IR", dx).
Set H = p2 + v(q), defined on the intersection of the domains of p2 and
v(q). If v is locally in L2, then H is densely defined and so H is a Hermitian
operator.

Theorem 4. Let v be a real continuous function on W such that
\Vv(x)\^a\x\+b for some constants a and b. Then the Schrodinger
operator H = p2 +v(q) is essentially self-adjoint.

Observe that H is real, so self-adjoint extensions exist. The only
question is that of uniqueness.

Proof. We write υ' for the gradient v' = Vv. The hypothesis of the
theorem is that v is a continuous function whose partial derivatives
dv/dxj are measurable functions, and that \υ'(x)\ ̂ a\x\ +b. It follows
that \v{x)\ 5Ξ j ax2 + b\x\ + v(0) ̂  ex2 + d.

We intend to apply Corollary 1.1, taking c€ = &? and N=p2+q2.
First we note that if fe Sf, then (1 + x2)feL2, so vfeL2. It follows that
y c ®(H).

Next we observe that since v satisfies an estimate v(x)2 ̂  rx4 + s,
we have \\v(q)f\\2 ̂ r\\q2f\\ + s | | / | | 2 . Thus by Proposition 1, hypothesis
(i) of Corollary 1.1 is satisfied.

The bound on the gradient of v implies that if / e ^ , then

——(vf)eL2. Thus the following commutator calculations are justified.
OX
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The expressions occurring in the calculations are of course to be inter-
preted as quadratic forms. The result is

^ 2(p2 + q2) + p2 + (v'(q)f £ 2(p2 + q2) + p2 + 2(a2q2 + b2) S cN

for some constant c. Thus hypothesis (ii) of Corollary 1.1 is also satisfied.
The conclusion follows.

Notice that we have even shown that the restriction of H to ίf is
essentially self-adjoint, which is more than is stated in the theorem.

Theorem 4 gives the limiting case for Schrδdinger operators in the
sense that without a quadratic bound on the negative part of v the
conclusion may fail [2; Chapter 13, §6, Corollary 22]. (The particle
rushes to infinity in a finite time.) However the extensive information
available in the case n = 1 [10, 3, 4] shows that it is far from being the
sharpest condition.

Kato [8] has recently given an argument that shows that positive
potentials do not usually lead to problems with essential self-adjointness.
His basic result is that if v ^ 0 and is locally in L2, then p2 + v(q) is
essentially self-adjoint on the space of C00 functions with compact
support. The argument is based on the lemma: If / is real and / and Δf
are locally in L1, then A\f\^ A f sign f as distributions. It goes as
follows. If / is a real function in L2 which is orthogonal to the range of
P2 + v(q) + 1, then (— A + v -f 1) / = 0 in the sense of distributions. Thus
Δf = (v+ί)f is locally in L1, so by Kato's lemma Δ\f\ ^ z l / s i g n /
= ( ϋ + l ) / s i g n / = ( t ? + 1 ) | / | ^ | / | . Hence ( l - J ) | / | £ 0 . But (i-A)'1

acts on the space of tempered distributions and preserves positivity, so
| / | ^ 0 , / = 0. This proves essential self-adjointness.

Kato was able to extend this result to potentials which are unbounded
below. Our next theorem will provide an alternative method to extend
it to such potentials. The method depends only on the essential self-
adjointness result for positive potentials and not on how it was obtained.
(One can easily imagine other applications where v is not even locally
in I2)

First we make a preliminary remark about local singularities.
Certain unbounded negative potentials may be dealt with quite simply
by an extension [5] of a lemma of Davies. The lemma states that if v ^ 0
and p2 + υ(q) is essentially self-adjoint on some linear subspace #, and
if w is a real function such that (w(q))2 ^ a2(p2 + b)2, then (w{q))2

^a2(p2 +υ{q) + b)2. In particular, if the first estimate holds for some
a2 < 1, then so does the second, and so p2 + v(q) + w(q) is also essentially
self-adjoint on c€. [It follows from Sobolev inequalities that if w e IF for
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some p ^ n/2, p ^ 2 (and p > 2 when n = 4), then for all a > 0 there exists
b < oo such that the first estimate holds.]

We shall now show how one can deduce a result allowing quadratic
decrease at infinity from these results and our theory.

Theorem 5. Let v and w be real measurable functions on 1R" such that
— v(x) ^ ex2 + d and such that — w(q) ̂  ap2 + b (as quadratic forms) for
some a<\. Let H ~p2 -f v(q) + w(q). Let <€ be a linear subspace of @)(H)
which is invariant under the pk and qj. Assume that H + 2cq2 is essentially
self-adjoint on <&. Then H is essentially self-adjoint on %>.

Proof. First note that H + cq2}£(ί-a)p2 -b-d. Hence by adding
a constant to H we may ensure that H + cq2 ^ (1 — a)p2 ^ 0.

We choose N as the closure of H + 2cq2 and apply Corollary 1.1.
We must verify that \\Hf\\2 ^ | | N / | | 2 + fc||/||2 for / in if. We calculate
that

N2=H2 + Ac2 q4- + 2c(q2 H + Hq2)

j j

qj{H + cq2)qj - Acn ^H2- Acn
j

in the sense of quadratic forms on c€. (Here we have evaluated the
double commutator as in Proposition 1.) This is the required estimate
(with k = Acn).

To check the other condition we must estimate ι [ # , JV]. We have

± i [ H , i V ] = ± i [ p 2 , 2cq2~\ = ± Ac(p - q + q - p ) ^ Ac(p2 + q 2 )

for some k sufficiently large. This is the other estimate.

Corollary 5.1 [8]. Let v and w be real functions such that v(x)
^ — bx2 — c and is locally in L2, and such that w is in LP for some p ^ n/2,
p ^ 2 (p>2 when n=A). Then H = p2 + v(q) + w(q) is essentially self-
adjoint.

Proof. Let 9S consist of the C00 functions with compact support.
Then by the cited results N = H + 2cq2 =p2+ (v(q) + 2cq2) + w(q) is
essentially self-adjoint on ^ .

It follows from the fact that w{q)2 ^a2(p2+b)2 that -w(q)S-\w{Q)\
^ a(p2 + b) [5]. Thus the quadratic form estimate is also satisfied. So we
have proved that H is essentially self-adjoint on the space of C°° functions
with compact support.

Notice that this corollary is much better than Theorem 4; in particular
there is no condition on the derivative of v. However it uses more
machinery.
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4. Dirac Operators

Let Jf = L2(lR3,dx;<E4'), the space of square integrable functions
on 1R3 with values in <C4. The quantum mechanical operators pt and qj

act in Jf in the natural way. The free Dirac operator α p + β is a self-
adjoint operator acting in Jf. Here α 1 ? α2, α3, and jβ are certain 4 by
4 Hermitian matrices. They act on <C4 and hence on Jf in the obvious way.
The matrices α,- have the property that if fceIR3, then (α k)2 = k2. It
follows immediately that ®(α -p + β) = 3>{u. - p) = ®(|p|).

Let t; be a real measurable function on IR3. Then v(q) is a self-adjoint
operator acting in Jf. If i; is locally in L2, then H = oc p + β + v(q) is a
(densely defined) Hermitian operator. This is the Dirac Hamiltonian.

As in the case of the Schrodinger Hamiltonians it is immediate that
self-adjoint extensions of H exist. In fact H is real with respect to the
conjugation J which reverses the direction of time. (This is defined as
follows. There exists a 4 by 4 matrix τ such that ταf = — αf τ and τβ = βτ.
The conjugation J is given by J f — τf. It is easy to see that H commutes
with J.)

Theorem 6. Let v be a real continuous function on IR3 such that
\Vv(x)\ Sa exp(/c|x|) for some constants a and k. Then the Dirac operator
H = α p + β -f v (q) is essentially self-adjoint.

Proof. The potential υ also satisfies an exponential bound \v(x)\
^ |ι;(0)| +α/kexp(fc|x|). So this time we choose N as the closure of the
operator p2 +w(q), where w(x) = exp(2fc|x|). Since w^O, it follows from
Kato's theorem cited above that N is a positive self-adjoint operator
and that the space of C00 functions with compact support is a core ^
for JV. It is clear that # c0(fiΓ). We now apply Corollary 1.1. Since β is
bounded, it is sufficient to work with H = α ° p -f v(q) and verify the two
hypotheses.

For the first we need only a trivial first order estimate, since
H2 ^2(p2 + υ{q)2)^c(p2 + w(q)) + d = cN+ dSaN2+b.

We now show that the other hypothesis is also satisfied, that is, that
± i[H, JV] g cN as quadratic forms on (€. We write υ' = Vv and compute

±i\H9 JV] = ±/{[α p, w(β)] + Ng),p 2 ]}

= ± {α w(q) - (p - υ'(q) + υ'(q) p)} g |W{q)\ + p2 + {υ\q))2

p 2 + a2 w(q) ^ c(p2 + w(q)) = cJV .

Thus we have established that H is essentially self-adjoint on the space of
C00 functions with compact support.

Even though this result allows exponential growth, it is not the
sharpest result one would expect for the Dirac equation. In fact
Chernoff [1] has shown using hyperbolicity that for smooth υ no growth



48 W. G. Faris and R. B. Lavine

restrictions at infinity are needed. (He has remarked to us that his result
holds for arbitrary continuous v, since any continuous function is the
sum of a smooth function and a bounded function.)

We thank Professor Charles McCarthy for helpful comments.
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