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Abstract. We study the action of the conformal algebra on interacting fields. On a
certain set of states the algebra is integrated to projective representations of S 1/(2, 2).
These representations are shown to be equivalent to the representations of the interpolated
discrete series of S 1/(2, 2). Using this result we give a formula for the two-point Wightman
function for arbitrary spin and dimension of the field. Finally we discuss the limit when the
dimension tends to the canonical value.

1. Notations and Summary of Results

We consider spinorial fields

*AB(X) or Φ/(x) = (-ί)^BΦA^ό(x)

and assume the existence of a unitary representation of the inhomo-
geneous proper orthochronous Lorentz group (Poincare group) satis-
fying

j 1

A'B'

with
Λ = Λ(a). (1.2)

By Λ = Λ(a) we denote the well known two-to-one homomorphism
between SL(2, Q and the proper orthochronous Lorentz group

(1.3)
X' = a ^ X γ

We assume moreover that operators Kμ and D exist that together with

£%=o, (1-4)

) \ ω μ , = 0 (1.5)
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form an algebra of the group Si/(2, 2). The commutators of these
operators with the field ΦΛ*{x) are

(1.6)

as follows from (1.1) and

— χ« Φ/(x)

_ yUlJi) A'B φ B'(χ\
^μx A B' ΨA' \X)

•ix*-k-*M*Ax)

(1.7)

(1.8)

(1.9)

by hypothesis. As a shorthand we introduce the notation Ai9 i= 1,..., 15,
for the operators Pμ, Mμv, Xμ> D so that (1.6) to (1.9) can be written as

lAi9ΦΛ\x)]=-{aiΦ)Λ*(x) (1.10)

where a{ are linear differential matrix operators to be read off Eqs. (1.6)
to (1.9). The spin transformation matrix

is

and

y(juJ2)A'B _ •_

— (ε + iη)σ\9 ε and η real vectors

(1.11)

(1.12)

This matrix behaves under complex conjugation as

UuJ2)A'B _ y(J2,Jι)B A'
μv A B' — ^μv B'A ' (1.13)

The parameter d in (1.8), (1.9), the "dimension" of the operator field,
is a priori any real number.
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In [1] we discussed "field representations of the conformal group"
(that was understood to be S (7(2, 2) for simplicity). These representations
were realized on one of the following types of spaces:

i) spaces of holomorphic (antiholomorphic) functions

over a generalized unit circle domain D ;
ii) spaces of holomorphic (antiholomorphic) functions FAB(w) over

the field theoretic forward tube domain T;
iii) spaces of distributions φAβ{^) over Minkowski space M 4 . The

domain Ό was defined as the manifold of complex 2 x 2 matrices Z with

σ0 — Z1" Z > 0 (positive definite).

We can consider the matrix elements of Z as the arguments of the
functions /. By a Cayley transformation

w = x -f iy, x,y real vectors of M 4

Z = {σo-iWyι{σo + iW) (1.14)

(using the notation (1.3) for W) T is mapped bijectively on D.
Finally φAB(x) are the boundary values of FAB{w\ say, in the sense of

tempered distributions

φAB(x)=limFAB(w) (1.15)

or in turn in the holomorphic case

FAi(w) = {2π)-2$d*pe+t>"φAi(p) (1.16a)

respectively for antiholomorphic F

FA6(W) = (2π)-η d*pe-ι>* φAi(p) (1.16b)

where ΦAB(P) is the Fourier transform of φAβ(x) in the sense of tempered
distributions and has support on the forward light cone only.

The unitary representations carried by these spaces were defined in
[1], Eqs. (41) and (53). The label n and the "dimension" d of the classical
fields are connected by

d = n-j,-j2. (1.17)

On the realization (iii) the generators of these representations are
identical with the differential matrix operators ax (1.10) if the dimensions d
are identified.
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The conformally invariant scalar product in these spaces was positive
definite if and only if (see [1], Eq. (82))

d>h+h + 2 if h-hΦO, (1.18)

l if Ji J2 = 0- ' (1.19)

The representations are unitary irreducible if (1.18), (1.19) are satisfied
and form the holomorphic (antiholomorphic) branch of the interpolated
discrete series of S (7(2, 2). This series is called nondegenerate if j x j ' 2 + 0
and degenerate if j \ -j2 = 0. There is also a most degenerate series that
appears as the limit point

l (1.20)

of the degenerate series (1.19) and is connected with free massless operator
fields as we shall see in Section 4. If n (1.17) is an integer, the representa-
tions are proper representations of S (7(2,2), if n is a multiple of four,
the representations are proper representations of SO(4, 2) (the conformal
group). If n is nonintegral we have projective representations that
possess finitely or infinitely many sheets on SU(29 2) such that on a pair
of these sheets the representation differs by a phase factor e

2πikn, k an
integer.

Each member of the holomorphic branch of the interpolated discrete
series is characterized by us by the labels {dJ1,j2, + ) (+ for holomorphy).
The conjugate representations form the antiholomorphic branch
labelled by (dJ1,j2, —). We denote the Hubert spaces for the realization
(ii) of the representations (d, j 1 ,j2> ±) by ̂ ± (d, ) \ , ji)-

Next we implement our assumptions on the operator fields ΦA

B(x)
by the hypothesis of an invariant vacuum state

4 | 0 > = 0. (1.21)

Then we define the states

W [ Φ / W ] f |0> (1.22)

for all ψB

Λ{x) e 5^(M4). We can now formulate our main theorem:
If the constraints (1.18), (1.19) are satisfied, then the states |φ> (1.22)

form a pre-Hilbert space with a scalar product that is invariant under the
algebra {A(} and is unique up to a factor. After completion we obtain
a space Jtf?il){d,jl9j2) that can be isomorphically mapped upon
J^~(d,j1,j2) such that this isomorphism intertwines the action of A{ on
^il)(dJ1J2) with the action of the generators of S 17(2,2) on 2tf-(d,juj2)

As corollaries we obtain:
a) The algebra {At} can be integrated to a unitary irreducible,

eventually projective, representation of S 17(2,2) on {1)
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b) The Wightman two-point function is determined up to a positive
constant factor by group theory and can be derived for all d,jί9j2 as a
closed expression. Consequences of our main theorem concerning
locality are discussed in Section 5.

2. Transformation Properties of the Wave Functions

We start from the definition (1.22) and postpone the justification
of the choice ιpB

Λ(x)e ^ ( M 4 ) for the wave function and its compatibility
with conformal invariance till the end of this section. Under action of
U(y, A) (1.1) we have the transformed wave function by definition

(2.1)

Eqs. (1.1) and (1.22) imply then

TO,, A) ψB

Λ(x) = Σ DJiΛa-1-*) D%B\a) ψB.
λ\A'\x - y)). (2.2)

A'B'

Similarly we can investigate the action of the whole algebra {At} on
these states

Ai\ψ> = \afψ>. (2.3)

This yields a new representation of the algebra {A^ by linear matrix-
differential operators af that is obtained from the operators a{ (1.10) by
conjugation, transposition, and integration by parts and differs from
them by the replacements

Carrying over a notation introduced in [2] we call this representation
of the algebra {AJ the "shadow representation" (relative to the proper
representation aj).

Now we introduce the Fourier transformed wave functions by

V ( P ) = (2πΓ 2 j d*xeipx ψ/(x). (2.4)

Because of the spectrum condition the positive frequency part

Ψi+)BA(p) = θ(Po)θ(p2)ψB

Λ(p) (2.5)

contributes only to the states \ψ}. We emphasize that the corresponding
Fourier transforms ψ{+)

B*{x) do not lie in y ( M 4 ) any more in general.
We want to connect these functionstψ

i+)

B

Λ(p) with the Fourier transforms
φA

B(p) of the boundary values φA

B(x) of the antiholomorphic functions
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BFA

B(w) in the forward tube domain

Fj(w) = (2π)"2 J d*pe-ip*φA

B{p). (2.6)

We try to establish this connection by a linear mapping K of a subset
of these boundary values φ corresponding to a dense subspace of
Jtf?-(d,jίJ2) onto our wave functions ψi+\ψe&?(~M4):

φΛx) = (K-ιΨ^)Λx)
such that

or simply

afK = Kai (2.8)

for all ψ e 5^(M4). We call K the intertwining operator between the
representation and its shadow representation.

In order to construct this operator K we write the scalar product of
Jf-(dJ1,j2) in terms of the Fourier transformed boundary values
φ/(p) (see [1], Eq. (65))

(Fl9F2)d = j d*pφ1A

B(p) SiίiP) ΨiA*'(P) (2.9)

with

(jίA';j2-B\J,A'-B)DJ

A_B,,A^B(P)(p2Γ+

d-J+2θ(p0)

and the J-weight factor

vd(J) = "2^r (d + Ji +h ~ 1) id -h +J 2 - 2) (d -Λ -j2 - 3)

We remember the reader that the rf-dependent part of the normalization
of (2.9) was chosen in a way most appropriate for analytic continuation
in d [1].

It is obvious from (2.9), (2.10) that any Hubert space vector φA

B(p)
can be represented by a locally square integrable function in the open
forward light cone with at most polynomial increase at p2 = 0 and at
infinity. Let us assume for the moment that φίt2 are smooth functions.
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After a Fourier transformation

sH(x) = (2π)"4 J d4pe-ipxSJί(p) (2.12)

we have

(FuF2)d = J d*xΨl Λ*(x) J d*x!Stf(x - x')φ2A

B'(x')

In this case SU(2, 2) invariance of the scalar product implies

d> i = i , 2 , . . . 15. (2.14)

On the other hand we may use the representation (2.13) and integrate by
parts, thus shuffling at over from φ1 to the other side. This together with
(2.14) (af acts on x and depends only on x) yields

-x')φJ(x')

= ld*x'Siί,{x-x'){aiΨ)A»'{x').

Comparing (2.15) with (2.8) we learn that

Kiί'ip) = ySiί(p), 7 arbitrary +0. (2.16)

The existence of the inverse kernel K_x (restricted to the positive
frequency parts) will be derived in a moment. This inverse kernel has the
form

ίr'-^^ h-BlJ^A'-B) (2.17)
J=\jl-J2\

We see that xpi+\ ψ e «^(M4) lies inside the domain of K-1 due to the
restrictions on d (1.18), (1.19). The scalar product can be expressed by the
wave functions in the form

(φi,φ2)i=\y\-2ίd4PΨί,
(+)BA(p)S-1

6

A

BAp)ψ2'
+)A'ά'(p)- (2.18)

This scalar product is one possible conformally invariant scalar
product for the states \ψ}. According to our derivation the asserted
uniqueness of this scalar product can be traced back to the uniqueness of
invariant sesquilinear forms in dense subspaces of Jf_(djί9j2). Let us
therefore identify the scalar products
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The two-point function follows immediately

<0|Φ/(x)(Φ^'(x')) t |0> = |)-r2 S _ 1 ^ : ( x - x ' ) . (2.19)

Positivity of the two-point function follows from (2.17) and the
constraints (1.18), (1.19). Locality is discussed in Section 5. Finally we
may use this scalar product to complete the pre-Hilbert space of states

3. The Two-Point Function in General and for Some Special Types
of Fields in Particular

We have to prove still the expression (2.17) and to compute the
J-weight factor v_ M (J). In momentum space the inversion of the
convolution kernel K amounts to the inversion of the spin matrix, this
is achieved by diagonalization. The diagonal form is accomplished by
applying inverse boost matrices to all four spinor indices and then
coupling the unprimed pair, respectively the primed pair, of indices.
Covariance of the kernel under the homogeneous Lorentz group and
Schur's lemma for 5(7(2) imply that the matrix obtained in this fashion
is diagonal. After taking the inverse we decouple the spins again and
apply appropriate boosts. This yields (2.17) with the following J-weight
factor.

In the diagonal form we obtain an intermediate quantity (see [1],
Eq. (74))

μd(J)= Ϋ v d(J0(-i) 2 j l + 2 j 2(2J / + i ) | 7 l j 2 J J (3.1)
J' = \h-h\ ΌJJ

from which we obtain, by taking the inverse

jί+j2 (i L I)
V-M(J)= Σ μΛJr1(-^2h + 2h(2Jf+ί)\hJ2 J. (3.2)

J' = \ji-j2\ \JiJiJ J

By direct computation we showed that for j1=Q and jί = 1/2 and
arbitrary values for the other parameters the sum (3.2) could be per-
formed and gave

^ 2 3v-^2* Γ(d + J)Γ(d-J-l)

Moreover this expression (3.3) is easily shown to satisfy an identity

' Ϋ (2J+l)v i(J)v_1 > < l(J) = (2/1 + l) (2/2 + 1) (3.4)
J=\Jl~J2\
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for any choice of the parameters j l 9 j 2 , d that is a consequence of the
orthogonality of the matrix

(3.5)

We propose therefore that (3.3) is correct for arbitrary j x .
Using then the standard integral

-x2 + iεx°T» ( 3 ' 6 )

we obtain from (2.12) and (2.17) after some algebra

S-1 AΛ'(X) = l.ι_Jl iεχoy*Ah-!?*ΛX) < 1 7 )
It is most remarkable that the J-weight factor drops out after the Fourier
transformation and after performing all the differentiations stemming
from DJ

A_R A_B(P) in (2.17). The summation over J can then be per-
formed and leads to (3.7). This extraordinary simple expression shows
that the spinor notation is most appropriate for this problem.

Nevertheless we will sketch briefly how explicit two-point functions
can be obtained for symmetric traceless tensor fields and 2(2j+ ^-com-
ponent fields a la Weinberg [3]. The latter include Dirac spinors as
well as Maxwell tensor fields F μ v . Both kinds of fields admit local parity
transformations.

Symmetric traceless tensors of rank N are equivalent with spinor
N

fields with JΊ =j2 = — . We introduce them by

^μiμi.-μΛ^^ tΛBμιβ2...βNΦBA(X) (3.9)

with an auxiliary vector k. We define in addition the field

Φ{k,x)=ΣDJAB(K)ΦBA^)- (3.10)
AB

It suffices obviously to give the two-point function

(3.11)

However, it is much easier to evaluate (3.11) with k = kf and to gain
back the information lost by another method.
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For k = k! we have

V Dj

BA(K) Dj, >(K)S_ •/ /(/?)

^ ' β ' ^ , f χ2 . 9 V 7,1 V 9 (3.12)

= £ (xx(kp) x (k2p2)N v ( p )+ N θ(po)

with

In coordinate space we have analogously

<0|Φ(fc, * ) * * ( * , 0)| 0>

] . (3.13)

= \J\'2 Σ βΛkx)
v = 0

with

The expressions (3.12) respectively (3.14) are then compared with an
expansion of the two point function into covariants (say for JV = 2 and
coordinate space)

<0|Φ μ i μ a (x)Φ μ i μ i (0) |0>

μ/ίgμ2μ/2 + gμίμ/2gμ2^)(xY (3.16)

It turns out that, if vanishing of the trace of the tensor fields is taken
into account, comparison of (3.14) with (3.16) is sufficient to determine
the residual coefficients A, B, C,... in (3.16).

One obtains classical 2(2/+ l)-comρonent fields [3] by taking the
direct sum of a field φA(x) with a field χA{x\ transforming as (/, 0) and
(0,y), respectively. If both are considered as boundary values of anti-
holomorphic functions in the forward tube, they can be made to carry
a pair of inequivalent (!) representations with the same dimension
d>j+ 1 of the degenerate discrete series.

In bispinor notation



Conformal Invariance 159

and

Φ{x) = Φ\x)β, (3.20)

the scalar product can be written (see [1], Eqs. (73), (79))

j i ) jj d m ( m Γ

- m2) Φ(p) πU)(p) Φ(p).

Let us consider then an operator field Φ(x), Φ(x) = Φ^(x)β, and the states

|ψ> = j <i4x Φ(x)|0> f(x), Ψ e y(M4). (3.22)

We assume that a unitary parity operator R exists such that

RΦ(x)R-1=ηpβΦ(x°, -x) (3.23)

Then parity invariance requires that for both parts

(3.24)

the normalization of the Wightman function (2.16) is identical

l r + l 2 = |y-l 2 = M 2 (3.25)

The two-point function assumes then the form

4 2 x 2 + i ε x 0 ] - ί ί " / . (3.26)

4. The Canonical Dimension Limit

For the sake of definiteness we consider a field ΦΛ(x) transforming
as (0, j) under the homogeneous Lorentz group. We want to study the
limit d\j+ί. In order to perform this limit we specify some dense sub-
space of 34?_(d,0J) that is invariant under the action of the generators
of SU(2,2) and is unchanged if d varies at least in one realization. An
appropriate space for our purpose is the space 3P corresponding to
antiholomorphic polynomials over D,

' = F
the corresponding / is a 1

polynomial in zjj, ij = 1,2J '

Since the generators of SU(2,2) act on polynomials over D as linear
differential operators with polynomial coefficients, & is in fact invariant
domain for the generators. The normalization of the scalar product (2.9)
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was introduced such that for the constant polynomials over D the
norm is independent of d. Continuing the discrete series in d from the
values originally proposed by Graev [4] to the extended domain (1.18),
(1.19), this definition made sure that the space 0> remained a dense sub-
space of the Hubert space Jf_(d, 0,j).

The question arises of how the space 0> looks in the other realizations.
In realization (iii) the boundary values φA(x) of functions of 0> are
infinitely differentiate with a certain power decrease at infinity. Their
Fourier transforms φA(p) can be explicitly calculated. In fact, let

ZΛ J ZJΛ Z99

N=Σnu

and use (see [1], Eq. (50))

By means of the inverse Fourier transformation (3.6) and a shift of the
integration contour x° -> x° + i one obtains

d M - » r / δ

dp2

(4.4)

+ N)Γ(d+j + N-

with

The most singular term on the light cone p2=0 can then be written

(4.6)
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with

ωA{p) = e~">πN

A{p) (4.7)

where πA(p) is an inhomogeneous polynomial of pμ of degree N

This singular part of φΛ{p) tends to the limit

ΦoA{p)= lim Φing(p)
d^j+i (4.9)

= 2πΣDAB(P)ωB(p)δ(p2)θ(p0)
B

whereas the remainder of φA(p) stays finite everywhere in the light cone.
This limiting value φo

Λ{p) represents the positive frequency part of a
classical spinorial zero mass field. Its Fourier transform satisfies
d'Alemberf s equation

If we go over to a helicity basis we can eliminate the 2/ superfluous
components

UP) = Σ D{A(B(p) u(p)-') ωA(p) (4.11)
A

where B(p) is a boost along the third axis

)

and u(p) rotates the vector (p°,0,0,|p|) into (po,p\p2,p3) = (j>°,p)

(p)-1=P^ (4.13)

If 9 and φ are the polar angles for p we may choose for example

n = (sin φ, — cos φ, 0).
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It follows

and
Σ DJAB(P) ωB{p) = Σ DiMP) B(p)) χλ(p)
B λ

Moreover, due to (4.13)

so that with

(4.18)
da \ *Λ 2 κ

we can formulate a second field equation for φA(x) = 0

Finally we have the scalar product expressed by the helicity com-
ponent

2(2/)!

d lim i (φ'sing, φsing)d = π j <Γp δ(p2) θ(p°) φ) Xj(p). (4.20)

For more details on spinorial zero mass fields we refer the reader to
Weinberg [5].

Now we know [6] that such spinor fields φo

Λ(x) (precisely: the
positive frequency parts) carry an irreducible unitary representation of
S (7(2,2) of the most degenerate discrete series with the invariant scalar
product (4.20) and with generators, that are obtained from at as the
limit d\j+ί. The properties required for the dense subspace, namely
invariance and ^-independence, are needed for this limit of the a{.
Therefore the singular parts φsing{x) span an invariant subspace in this
limit. On the other hand it is known [7] that for the canonical dimension
d=j+i the operator field ΦA(x) with transformation properties (1.6)
to (1.9) is a free massless field whose one-particle states carry just the
unitary representation of the most degenerate discrete series discussed
above. The intertwining operator, finally, has a singular form in this
limit. The positive frequency part ψ{χ\x) of the wave function is connected
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with φo

A{x) by

(4.21)

with (take γ as independent of d)

A ^ θ(Po) (4.22)

This singular operator cannot be inverted.
The functions χj(p) (4.11) with ωA(p) as in (4.7), (4.8) form a complete

set of functions in the Hubert space with the scalar product (4.20).
Using an orthogonal basis of antiholomorphic polynomials in realization
(i) that reduces the representation of the most degenerate discrete series
of 5(7(2, 2) with respect to its maximal compact subgroup ([1], Eqs. (43),
(44)) one can reproduce the orthogonal basis of generalized Laguerre
functions on the light cone (called "canonical basis" in Ref. [6], see
Eq. (4.4)). Therefore completion with respect to the scalar product norm
(4.20) yields the whole Hubert space.

5. Causality and Finite Conformal Transformations

If we use Eqs. (2.19), (3.7) for the Wightman function, the vacuum
expectation value of the commutator or anticommutator can be given
immediately. In order to obtain a causal distribution (with support
inside the light cone in coordinate space) we must require

a) that the normalization constant \y\2 of the Wightman two-point
function is the same for

<0|Φ(x)Φ f(0)|0> and (0\Φή[(x)Φ(0)\0)

b) that the connection between spin and statistics is the usual one

where the upper sign refers to the anticommutator and the lower one to
the commutator.

Of course for hermitean fields assumption a) is super-fluous.
If and only if both conditions are fulfilled by assumption or otherwise,

we obtain the following expression
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Since sign:xo(;x2)+μ is meromorphic in μ with simple poles at μ = 1,2, 3 ...,
we see that (5.1) defines a finite nonvanishing distribution for all d in the
domain (1.18), (1.19).

The causal Green's function is under the same conditions a) and b)
as above and using analytic regularization in d for its definition

It is meromorphic in d with poles of first order only at the points d = k
+ 2 —)γ —j2, /c = 0, 1, 2, ... with residues [8]

_l_ J-2J! + 2j2 +1 uι-2 n%)22~2h~2h~2Dh \X)Dh, (X)

(-D») f c s, , (5.3)

' k\(k+l)\ ^

In the domain (1.18), (1.19) the points where d —jx —j2 is integral and the
representation of S (7(2,2) is a proper one all belong to poles of the causal
Green's function.

Under finite conformal transformations our states transform as in
(2.1), (2.2) in the special case of inhomogeneous Lorentz transformations.
The transformation behaviour under finite dilations and special con-
formal transformations has still to be investigated. Of course it can be
guessed from (2.3) as

β -1x) (5-4)

for a dilation g, and

Tgψ(+)

B

A(x) = σ(u,x)d-j'-ji-*

• Σ D>lA.{ao + XU) DjjB.(σ0 + XV) Ψ(+) / ' ' M
A'B'

with

x'μ = σ(u, x)~x (xμ + x2 uμ)

σ(u, x) — 1 + lux + u2 x2

for a special conformal transformation g. However, these Eqs. (5.4), (5.5)
have a priori only a formal meaning and in order to say precisely what
they mean we have to go into more details.

First we look for a dense subspace of JfL (dJίJ2) with smooth func-
tions as boundary values φA

B(x) that is invariant under finite conformal
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transformations. Going back to realization (i) we find such space by
considering all antiholomorphic functions over T> that are continuous
still at the boundary. Let us denote this space by #. The space corre-
sponding to polynomials (Section 4) is certainly a subspace of # but
is not invariant under finite conformal transformations, since polynomials
go over into rational functions with singularities outside D. This and the
invariance of ^ is proved by an inspection of the transformation formula
[1], Eq. (29) using the constraint

Dtf-CC = E (5.7)

following from [1], Eq. (25).
Then we consider the antiholomorphic continuation GB

A(w) of the
wave functions ψi+)

B

A(x) into the forward tube T

GB

A\w) = f KJi',(w - x') φ/\x') d4x>, (5.8)

ψ{ + )

B

A\x) = lim GB

Λ(w). (5.9)
y-+0

One can show that for any w e T and φ corresponding to F of # the
integral (5.8) converges absolutely. In the estimate the supremum of
Σ \/AB\2 o v e r t n e Shilov boundary of D appears that is finite for our

AB

space. Using the invariance of ^ we may then replace φ by Tgφ and com-
pute the corresponding transformed function TgG explicity. This gives
expressions for TgG analogous to (5.4), (5.5) with x replaced by w in the
algebraic factors σ(u, x) and Dh>2(...). Finally we go to the limit y-+0.
Then (5.4) and (5.5) are obtained in a weak limit sense and for elements ψ
corresponding to F of #. Of course we can extend the definition of
finite conformal transformations onto the whole Hubert space of states

lv>>
In any case it is crucial that finite transformations are defined only

for the positive frequency part of wave functions as in (5.4), (5.5). There-
fore we are unable to define finite conformal transformations with our
methods for the whole operator field in the sense UgΦ(x)Ug~

ί. This
is the explanation for the known inconsistencies between local field
theory and finite conformal transformations [9,10] not to appear in
our case. This situation has in fact already been described by Swieca and
Volkel [10], who study free massless fields in spaces of arbitrary dimen-
sions. We have extended their result here in that we prove a similar
situation to occur for interacting fields in Minkowski space.
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