Commun. math. Phys. 34, 131 – 134 (1973) © by Springer-Verlag 1973

On a Question of André Verbeure

J. F. Gille*

Centre de Physique Théorique, C.N.R.S. Marseille, Cedex 2, France

Received April 6; in revised form May 1, 1973

Abstract. We show that a non discrete state of van Hove's Universal Receptacle in the fermion case is not unitarily equivalent to any quasi-free state.

We wish to consider the following question of A. Verbeure which arose during an informal seminar given by J. Manuceau and myself concerning local gauge's implementation.

The question was: Are all the states constructed in Van Hove's Universal Receptacle unitarily equivalent to the quasi-free states? We shall show that the answer to the question is negative.

I. Introduction

Let $\mathscr{A} \equiv \overline{\mathscr{A}(H,s)}$ denote the C.A.R.-algebra. (H,s) is a real separable Hilbert space and \mathscr{A} is generated by the elements $B(\psi), \psi \in H$ with the property that:

see [1].

$$[B(\psi), B(\varphi)]_+ = 2s(\psi, \varphi) I_+$$

We shall call the states (representations) of Van Hove's Universal Receptacle (V.H.U.R.), the states (representations) of \mathscr{A} constructed as follows ([2, 3]).

Let

$$H = \bigoplus_{k \in \mathbb{N}} H_k, \quad H_k = \llbracket \psi_k^1, \psi_k^2
bracket$$
 $\pi_k(B(\psi_k^j)) = \sigma^j, \quad \sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & -i^j \\ i & 0 \end{pmatrix}$

 π_k is a *-representation of $\mathscr{A}_k \equiv \overline{\mathscr{A}(H_k, s)}$ into $\mathscr{H}_k = \mathbb{C}^2$. Let us define π , a representation of \mathscr{A} into $\mathscr{H} = \bigotimes_{k \in \mathbb{N}} \mathscr{H}_k$

$$\pi(B(\psi_k^j)) = \bigotimes_l^{k-1} \sigma_l^3 \otimes \sigma_k^j \otimes \bigotimes_l^{\infty} I_{l+1}^k I_l,$$

$$\sigma_l^3 = \sigma^3 = -i \sigma^1 \sigma^2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad I_l = I_{\mathbb{C}^2}$$

* Centre National de la Recherche Scientifique.

We shall write $\pi = \bigotimes_{k=N}^{\infty} \pi_k$. See [4].

Let Ω_k be a unitary vector in \mathscr{H}_k , $\Omega_k = \begin{pmatrix} \alpha_k \\ \beta_k \end{pmatrix} \in \mathbb{C}^2$ and $\Omega = \bigotimes_{k \in \mathbb{N}} \Omega_k$, $\mathscr{H}^{\Omega} = \bigotimes_{k=\infty}^{\infty} \mathscr{H}_{k}, \ \pi_{\Omega}(x) = \pi(x) | \mathscr{H}^{\Omega} \quad \forall x \in \mathscr{A}. \text{ For any decomposable } \Omega \text{ such}$ that Ω_k 's are unitary the state $\omega_{\Omega} = (\Omega | \pi_{\Omega}(\cdot) \Omega)$ will be called V.H.U.R.state relating to decomposition $(H_k)_{k \in \mathbb{N}}$.

Definition 1.1. A representation π_{Ω} (a state ω_{Ω}) is discrete if and only if $\sum_{k=1}^{\infty} x_k(1-x_k) < +\infty$ with $x_k = |\alpha_k|^2$.

Definition 1.2. A quasi-free state of \mathscr{A} is a state ω_A fully defined by the operator A on H, such that

$$\omega_A(B(\psi) B(\varphi)) = s(\psi, \varphi) + is(A\psi, \varphi)$$

(see [1, 5]...).

Moreover, if A obeys $A^2 = -1$, then ω_A is a pure state (= Fock state) [1].

II. Proposition

Statement. For any non discrete V.H.U.R.-state ω_{α} , there does not exist any quasi-free state of \mathscr{A} which is unitarily equivalent to ω_{Ω} .

Proof. Let ω_K be a pure quasi-free state of \mathscr{A} , $(\mathscr{H}_K, \pi_K, \Xi_K)$ the corresponding Gelfand troika. $\forall x \in \mathscr{A}, \ \omega_K(x) = (\Xi_K | \pi_K(x) \Xi_K).$

We may construct $(\mathscr{H}_K, \pi_K, \Xi_K)$ as follows:

A collection of two-dimensional spaces F_j exists with $KF_j = F_j$ such that $H = \bigoplus_{j \in \mathbb{N}} F_j$. Let $F_j = [\varphi_j^1, \varphi_j^2]$ and $\pi_j(B(\varphi_j^l)) = \sigma^l$, l = 1, 2, $\mathscr{H}_{K} = \bigotimes_{i \in \mathbb{N}}^{\mathscr{U}(\Xi)} \mathscr{H}_{j}, \mathscr{H}_{j} = \mathbb{C}^{2} \text{ and } \Xi_{K} = \bigotimes_{i \in \mathbb{N}} \Xi_{j}, \ \Xi_{j} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ or } \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ for } \omega_{K} \text{ is quasi-}$

free [6]

From [7, 8], $\omega_{\mathbf{K}} = \int_{\Gamma} E_{\gamma}(\cdot) d\mu_{\mathbf{K}}(\gamma)$ where $\mu_{\mathbf{K}}$ is a Borel measure of mass one on $\Gamma = \{0, 1\}^{\mathbb{N}}$ equipped with product topology. States E_{γ} are extremal states constructed from vectors $\Omega = \bigotimes_{i \in \mathbb{N}} \begin{pmatrix} \alpha_j \\ \beta_i \end{pmatrix}$ where $\gamma = (\gamma_j)_j$, $\gamma_j = |\alpha_j|$ and $\gamma_j = 0$ or 1. Here μ_K is concentrated on γ where $\Xi_j = \begin{pmatrix} \Xi_j^2 \\ \Xi^2 \end{pmatrix}$ $\gamma_i = \Xi_i^1 = 0$ or 1.

Let $\hat{\mu}_K$ denote the measure on Γ which corresponds with π_K in the Gårding-Wightman classification [9]. If X is a Borel set in Γ

$$\hat{\mu}_{K}(X) = \sum_{m_{1}}^{\infty} 2^{-m} \mu_{K}(X + \delta^{m}), \text{ where } \{\delta^{m}\}_{m \in \mathbb{N}} = \Delta$$
$$= \{\gamma \in \Gamma \mid \gamma_{j} = 0 \text{ but for a finite number of } j\text{'s}\}.$$

 $\hat{\mu}_{\kappa}$ is concentrated on $\gamma + \Delta$.

Now let us consider the representation π_{Ω} as defined in the introduction, the measure μ_{Ω} is corresponding to it in the Gårding-Wightman classification. $\mu_{\Omega} = \bigotimes_{k \in \mathbb{N}} \mu_k$ on $\Gamma = \prod_{k'}^{\infty} \{0, 1\}$ with

$$\mu_k(0) = |\beta'_k|^2, \quad \mu_k(1) = |\alpha'_k|^2, \quad \alpha'_k \beta'_k \neq 0 \quad \forall k \in \mathbb{N} \quad \text{and} \quad \bigotimes_{k \in \mathbb{N}} \binom{\alpha'_k}{\beta'_k} \sim \bigotimes_{k \in \mathbb{N}} \binom{\alpha_k}{\beta_k}^1.$$

Suppose μ_{Ω} is discrete. Then $\exists \gamma' \in \Gamma$ such that $\mu_{\Omega}(\gamma') > 0$ i.e.

$$\prod_{k \in \mathbb{N}} |\alpha'_k|^{2\gamma_k} |\beta'_k|^{2(1-\gamma_k)} > 0 \quad \text{or} \quad \sum_{k \in \mathbb{N}} x_k(1-x_k) < +\infty ,$$

therefore π_{Ω} is discrete.

Conversely, suppose $\sum_{k \in \mathbb{N}} x_k(1-x_k) < +\infty$. Then $\exists M, N \in \mathbb{N}, M \cap N = \emptyset, M \cup N = \mathbb{N}$ such that

$$\sum_{k \in M} x_k < +\infty$$
 and $\sum_{k \in N} (1-x_k) < +\infty$.

Let $\gamma \in \Gamma$ such that $\gamma_k = 0$ if $k \in M$ and $\gamma_k = 1$ if $k \in N$. Then

$$\mu_{\Omega}(\gamma) = \prod_{k \in \mathbb{N}} x_k^{\gamma_k} (1 - x_k)^{(1 - \gamma_k)} > 0 ,$$

hence [9] μ_{Ω} is discrete.

More, if this condition occurs, μ_{Ω} is concentrated on $\gamma + \Delta$. In the contrary μ_{Ω} is a non-atomic measure. So, a non discrete state ω_{Ω} to which corresponds (via G.N.S.) a Gårding-Wightman measure μ_{Ω} is unable to be unitarily equivalent to any quasi-free state ω_{K} , the measure $\hat{\mu}_{K}$ which corresponds to it being a discrete one, therefore inequivalent to μ_{Ω} [[10], Proposition 3.6, quoted by [9]).

III. Conclusion

We have exhibited a class of states useful in external field problems ([2, 3]) which are not unitarily equivalent to any quasi-free state.

¹ ~ is the weak equivalence of C_0 -vectors defined by von Neumann [11].

I wish to thank J. Manuceau, M. Sirugue, D. Testard and A. Verbeure for helpful discussions. I should like also to thank D. A. Owen for reading the manuscript.

References

- 1. Balslev, E., Manuceau, J., Verbeure, A.: Commun. math. Phys. 8, 315 (1968)
- 2. Van Hove E.: Physica 18, 145 (1952)
- 3. Wightman, A. S.: Proceedings of the 1967 International Conference on Particles and Fields. London-New York: Interscience Publishers 1967
- 4. Powers, R.T.: Thesis (Princeton 1967)
- 5. Araki, H.: Publ. RIMS Kyoto University 6, 385-442 (1970/71)
- 6. Gille, J. F., Manuceau, J.: J. Math. Phys. 13, 2002 (1972)
- 7. Reed, M.C.: J. Functional Anal. 8, 450-468 (1971)
- 8. Shale, D. Stinespring, W.: Ann. Math. 80, 365 (1964)
- 9. Gårding, L., Wightman, A.S.: Proc. Nat. Acad. Sci. US 40, 617 (1954)
- 10. Guichardet, A.: Ann. Sci. Ecole Norm. Sup. 83, 1-52 (1966)
- 11. Von Neumann, J.: Compos. Math. 6, 1-77 (1938)

J. F. Gille Centre de Physique Théorique C.N.R.S. 31, chemin J. Aiguier F-13274 Marseille, Cedex 2, France