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Abstract. An unsymmetrical, stationary solution of the Einstein-Maxwell equations
is given. The solution corresponds to the exterior field of two massive, charged, magnetised,
spinning particles. In general line singularities are present in the solution. The field of N
such particles is then considered and necessary and sufficient conditions for the equilibrium
of the system are given.

§ 1. Introduction

A method of constructing stationary solutions of the Einstein-
Maxwell field equations has recently been given by Perjes [1] and
independently by Israel and Wilson [2]. These solutions describe the
exterior field of massive, charged, magnetised, spinning particles.

Every particle satisfies (in relativistic units c = G = 1)

m = e, h= ±μ (1)

m, e, h and μ being the mass, charge, three dimensional magnetic moment
and angular momentum respectively.

Particular solutions of this class were then given by Bonnor and
Ward [3] and by Hartle and Hawking [4]. The solution in [3] gave
the exterior field due to two Perjeons (to be defined later). It was found
that in general there exist singularities on the line joining the particles.

In this paper I give in § 2 the generalisation, to the case when there
is no symmetry, of the Bonnor-Ward solution [3]. The condition for the
occurrence of singularities in the more general solution is found to be
exactly the same as in the axially-symmetric case. In § 3 I use methods
first given by Hartle and Hawking [4] and recently discussed by Israel
and Spanos [5] to derive necessary and sufficient conditions for a system
composed of N Perjeons (with spins in arbitrary directions) to be in
equilibrium. There is also an Appendix.
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The field equations used in this work are:

(2)
f +p +f -Q

βv,<y ' VG\μ ' <J/J.',V

F u v ju

where £J is the electromagnetic energy tensor, Fμv the electromagnetic
field tensor and Jμ the four-current which vanishes because I consider
the exterior field only.

§ 2. Generalisation of the Bonnor-Ward Solution

The prescription for generating a PIW metric has been given in a
fairly concise form by Bonnor and Ward, and I reproduce this prescrip-
tion here.

Latin indices run from 1-3 and Greek from 1-4. All functions are
independent of X4'. A comma denotes partial differentiation and a
stroke | denotes covariant differentiation with respect to the metric γmn

to be defined now. The metric is

ds2=-f-ίymndxmdxn + f(dx4 + ωmdxm)2 (3)

the three dimensional positive definite metric ymn having zero Ricci-
Tensor; the electromagnetic field is given in terms of two scalar poten-
tials:

F4n = </>,„, Fab = ηal""fψ<m (4)

ηabm being the Levi-civita symbol formed from γmn. The entire solution
is generated by two functions L, M harmonic with respect to γmn.

γabLlab = 0, fbMWb = 0 (5)

through the equations

f=i(L2 + M2)-1, (6)

ωa,b - cob,a = 8ηabmymt(MLt - LMJ, (7)

* £ * fi=±1 (8)
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Define U = 2L + i2M and consider the solutions generated by
taking

where

μj = (μji,μj2,μj3)

rj = (χ-χPy-yj,z- zj), rj = \rj\

and (x, y, z) is the field point and (xj, J/J, ẑ  ) are the positions of the
sources.

Perjes gave the metric corresponding to taking N — 1 (Bonnor and
Ward call this a Perjeon). Bonnor and Ward gave the metric correspond-
ing to

JV = 2 μi = ( 0 , 0 , ^ 3)

μ2 = (090,μ23)

Z l = -a

α > 0

so this solution represents the exterior field of two Perjeons with their
spins parallel or anti-parallel to each other and also parallel or anti-
parallel to their vector separation. Bonnor and Ward concluded that
singularities will occur along the line joining the particles unless

mιμ23+m2μί3=0. (12)

Here I give the solution corresponding to

3)

α > 0

This solution will therefore correspond to the exterior field of two Perjeons
with their spins in arbitrary directions. The solution is given by (10)
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with (3) to (8) and ω is found to be

m2μ22(z-a) 2μ12(z + a) 2μ22{z-a)
ω, = - r 4 r 3

'2 ' l

+ ί I X J ./ | ^ Z, < Z. J ^ | ^ / 1 J «" | ^ Γ ^ 2 3 «^

r? r5 rf r̂
2m 2 μ 1 1 x) ;
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A look at the solution will easily convince the reader that the con-
dition which excludes singularities on the line joining the particles is
exactly the same as in the axially symmetric case, i.e. m2μL 3 + mί μ 2 3 = 0,
or in vector notation (since this result must be true for arbitrary orienta-
tion of the line joining the particles)

ri2 (m2μί+miμ2) = 0. (15)

The result is that if the angular momenta per unit mass (μjmί,μ2/m2

respectively) are equal and opposite, or if the vector m2μ1 + miμ2 is
perpendicular to the vector separation of the particles then the singularity
disappears1.

§ 3. Equilibrium Conditions for N Perjeons

Hartle and Hawking showed that a necessary condition for regularity
of the exterior metric is that 2 :

$(U*VU-UVU*) ndS = 0 (16)
s

where S is any closed two-surface in the background Euclidean 3-space.
More recently Israel and Spanos [5] have argued that (16) is also suf-
ficient for regularity in the exterior geometry (assuming U is regular and
non-vanishing in the exterior).

It is more convenient for our purposes to amend (16) to the equivalent
statement (via Gauss' divergence theorem)

$(U*V2U-UV2U*)dV = 0 (17)
v

where V is the volume enclosed by S. We shall consider the case in which

1 The solution given in (14) is unique only up to the addition of the gradient of a scalar.
In (14) the line singularity shows up in the ωί,ω2, terms and occupies the whole of the line
x = y = 0 in the background 3-space. By choosing the scalar carefully the singularity can be
chosen to lie only on the section of z-axis between the particles, lϊωι,ω2,ω3 are expanded
in powers of R~x = (x2 + y2 + z2)'^ and if terms of order "β" are ignored then the solution
describes the field of a single Perjeon of mass mι +m2 and angular momentum μx + μ2

(cf. Bonnor and Ward [3], Eq. (3.4)).
2 £/* is the complex conjugate of U. V is the usual gradient operator and V2 is the

Laplacian.
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representing the field of N Perjeons with spins in arbitrary directions. It
is then fairly easily shown (outline given in Appendix) that the condition
(17) implies:

κ l2

* 7 I

where the volume V was chosen to enclose the Γth particle. We also note
that choosing N == 2 and i = 1 then (18) reduces to

as of course it should for the two particle case. For equilibrium of the
whole system (18) should be satisfied for each particle.

Appendix

For convenience I will consider the case of two Perjeons only (the
iV-particle case is evaluated in exactly the same way but the notation is
clumsy).

Thus in (10) take N = 2, i.e.

Ί r2 \ Ί r2

The following statements about delta-functions will be required:

— = —4πδ(rA= — Aπδ(x — xΛδ(y — yΛδ(z — zλ (A.I)
r i /

- ^ = - ^ , ί'(-x)=-ί'W (A.3)

j /(x)δ(x)dx = /(0), j /(x)δ'(x)dx=-/'(0) (A.4)
— oo — oo

where

ft \=*L
J [X) dx '

(A.I) to (A.3) are a sub-section of the usual statements made about the
delta-function. It should be remembered that these statements are only
valid when the appropriate integral is taken. A very full account of the
delta-function and its properties can be found in Ref. [6].
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Thus using (A.I) and (A.2), Eq. (17) implies directly:

ι x δχ{ri) + μ ι 2 δy{ri) + μ ι 3 δz{rι)) d v

where I have chosen V to include only the particle at (0,0, — a) now

v rι v rι

the "y" and "z" dependence can be taken out immediately and using (A.4)
we have

thus (A. 5) implies

1 " y γ , + V W ' terms

\ δ'(x — xΛdx

,. m, Ui i ( x — XΛ) δ(x — xΛ dx

ί | γ γ 3 ϋ — + ' y , " z " terms

££ „ t £ „

+ "/ ' , "z" terms = 0

? - y2)
2 + (z

+ 3
r 1 2

where

from (A.3) it follows that

δr(x — xx) — (x — x j δ(x — xx)

X —
(A.7)

thus we finally get using (A.4) and (A.7) in (A.6) (after some re-arrangement)
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