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Abstract. We prove the non existence of a self adjoint phase operator for systems
with a finite number of degrees of freedom and for systems with an infinite number of
degrees of freedom but enclosed in a finite box. We explicitely construct an example of a
phase operator for an infinitely extended Bose system with condensation and give an
application of this construction to a simple model.

I. Introduction

At the very early stage of quantum theory it has been tempting to
apply the quantization rules to canonical variables other than the p’s
and ¢'s. More precisely let us consider a one degree of freedom system;
one can define the following classical new canonical variables:

=3(p*+e "9, >0

¢ = Arc tg(@ﬂ) (-
q

whose classical Poisson bracket is:

{n,o}=1. (1.2)

So it was assumed [1] the existence of two self adjoint operators N, @
such that
[N,®]=i. 1.3)
Such a commutation rule would lead to the well known incertainty
relation
AN - AP=1. (1.4
A lot of papers have been devoted to stress the difficulties (even contradic-
tions) of the existence of N and @ with the assumed properties within
the ordinary quantum mechanics (see for instance [2] for references;
see also [3] for a solution of the problem of quantization).
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In order to avoid the problems linked to the definition of an angular
variable (defined up to 2x) Carruthers and Nieto introduced hermitian
operators C and S which are the quantum analogues of cos¢ and sin¢
in the classical theory (see also [4] and enclosed references). Unfortunately
those operators do not commute at least for systems with a finite number
of degrees of freedom [5] and even for systems with an infinite number
of degrees of freedom within the Fock representation [6]. Indeed in
these situations the commutator is essentially the projection over the
vacuum state of the system.

The non commutativity of C and S precludes the possibility of
finding an unitary operator U=C+iS and consequently a phase
operator @ satisfying (1.3) and (1.4).

Despite these drawbacks it is intuitively clear that the definition of
such objects is relevant to some very interesting systems as superfluids
and superconductors [7]. An approach of the problems linked to such
systems using C and S has been done by some authors [2, 6, 8].

Our goal in this paper is twofold: firstly to state the problem of the
existence of an unitary operator U =exp(i®) in its full generality, more
precisely within an arbitrary representation of the canonical commuta-
tion relations. Secondly to give an explicit example of the existence of a
phase operator within a representation which is physically interesting.

II. The Problem of Existence of an Unitary Phase Operator

We shall need a generalization of the notion of number operator for a
representation of the Canonical Commutation Relations (C.C.R.) as
it is developed for instance in [9].

Let & be the one particle space (its dimensionality is the number of
degrees of freedom of the system) and denotes by <- its scalar product.
A Weyl system over S is a correspondance W from 5 to the unitary
group of some complex Hilbert space K such that.

+ !’ i ’ !
) W) W) =exp (5 Im oy | Wi +41). o
ii) Ae R— W(iy) is weakly continuous at 1=0.

Creation operator a*(y) is defined as the closure of:
L (R~ iR (i)
l/j P)— iRy

where R(y) is the infinitesimal generator of the group t— W(ty).
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Definition (2.2) (Chaiken). Let W be a Weyl system over K. A self
adjoint operator N is a number operator for W iff:

exp(itN) W(yp) exp(—itN) = W(e'"p)
Yped, VieR.
It is shown in [9] that one can normalize the spectrum of N to be
a subset of the integers Z. We shall assume in the following that
normalization.
The following theorem is an obvious consequence of the results in [9].

Theorem (2.3). Let W be a Weyl system with at least one number
operator; there are three possible disjoint cases:

i) All the different number operators are bounded from below; this
occurs if and only if W is a Fock representation (or a direct sum of a
finite number of copies of the Fock representation).

il) There exists at least one number operator whose spectrum is
bounded from below but there exists at least another one whose spectrum
is the whole set of integers Z; this occurs if and only if W is a direct sum
of an infinite number of copies of the Fock representation.

iii) There is no number operator whose spectrum is bounded from
below; this is equivalent to say that the representation is not quasi-equiv-
alent to the Fock representation or equivalently that some subrepresenta-
tion of W is disjoint to the Fock representation.

Let us make some remarks about this theorem.

i) The Definition (2.2) allows different numbers of particles when the
representation is not irreducible. In that way (2.2) is a generalization of
the usual definition of the number operator.

i) The third case never appears when J# is finite dimensional and
this is due to von Neumann uniqueness theorem about representations
of C.C.R.

iii) The number operator defined in (2.2) is not in general in the
algebra generated by the W(y)'s.

Let us define now that we shall call a phase operator.

Definition (2.4). A Weyl system W has a phase operator with
respect to a given number of particles N if and only if there exists an
unitary operator U such that:

exp(ia N)U exp(—iaN)=e *U.
Given such a U there exists always a self adjoint operator @ such that

U =exp(i®); ® and N satisfy (1.3). Next result gives the general structure
of systems with a phase operator.
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Theorem (2.5). Given on a Hilbert space K a strongly continuous
group of unitaries a—exp(ia N) and an unitary operator U such that
exp(ia N)U exp(—iaN)=exp(—ia)U
exp(2inN)=1

then there exists two Hilbert spaces H,(=1,(Z)) and H, such that up to
an unitary equivalence

K=H ®H,,
exp(iaN)=exp(ioaN,)®1,
U=U®1,
moreover:
(exp(iaNy) f)(m=e*"f(n), fel,(@), (2.6)
U Nm=fn+1). 2.7
Proof. Let us define:
Viyn)=e 2 &*NU", aecRneZ. (2.8)

It is an unitary operator and the Vs satisfy:

Ve, n) V(o',n') =exp (% ('n— ocn’)) Vie+o',n+n') (2.9)

moreover:
V(e +4m,n)= V(o n). (2.10)

Hence the V’s are a generalized Weyl system over the Abelian group
G=T xZ (T is the group of complex numbers of modulus one) and the
function from GxG—=T

(o, ) (' n") > exp (% (a'n—oa n’)), oo €[0,4n[,n,n el

defines an isomorphism of G onto its dual group G. Consequently
Theorem (2.5) is nothing but the generalization of Von Neumann'’s
uniqueness theorem [10, 11].

Corollary (2.11). If there is a phase operator, the spectrum of N is Z,
each eigensubspace of N has the same degeneracy. Consequently there
exists no phase operator in the first case of Theorem (2.3), i.e. in the Fock
representation.

As we said in the introduction, this result is well known and is
connected with the fact that the polar part V of the polar decomposition
of the annihilation operator despite the fact that it satisfies (2.4) is not
unitary (see e.g. [3]).
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Notice that the previous theorem shows that in general U is not
uniquely defined by (2.4). Namely in Theorem (2.5)

U=U,U,,

where U, is an arbitrary unitary operator on H,, would satisfy (2.4).

We have excluded the first case of Theorem (2.3). In the second case
it is in general possible to built an unitary operator U which satisfies (2.2)
since there exists at least a number operator N whose spectrum is Z.
Let us give an explicit example.

Let # = (one degree of freedom) and aj the ordinary creation and
annihilation operators of the usual unique Fock representation on Hy
(with number operator Ng). Let:

K=H,®H;, (2.12)
f=ap @1 (W) =Wip)®1), (2.13)
N=N;®1—1®N; (exp(iaN)=exp(iaNp)@exp(—iaNg)). (2.14)

Moreover if {¢,},z0 is the orthonormal basis of eigenstates of Ny,
a complete basis of H-® Hy is given by the ¢,® ¢,,. Define now the
operator U on that basis as:

U¢n®¢m=¢n—l®¢m lf n>m

. (2.15)
U¢n®¢m=¢n®¢m+l lf ném‘
It is an easy computation to show that (2.4) is satisfied.

This construction is not purely artificial since the previous representa-
tion occurs for instance to describe the equilibrium state at temperature
T+ 0 of an harmonic oscillator.

The mean value of any function A of p and ¢ is given by:

e FH

Tr(e ) H=3(p’+4q% (2.16)

(A) = Tr(Q,;A), 0=

and f=(kT)™"; let exp(—pe,) be the eigenvalues of g;. As it is well
known e.g. [12] the mean value (2.16) appears as the expectation value
of A in the vector of Hr@Hy, ;=) exp (— ﬁ;")q’)"@d)n. The defini-
tion of N we have chosen is the one which annihilates Q.

The U we have defined in (2.15) has a poor physical meaning and
according to a previous remark one could expect that another U can
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be defined which would satisfy (2.4) and be physically relevant. Never-
theless we have the following result:

Proposition (2.17). Let W be a Weyl system which is a direct sum of
an infinite number of copies of the Fock representation. Then for any
number operator whose spectrum is Z the unitary operators U which
satisfy (2.4) do not belong to the weak closure of the algebra generated
by the W(y)'s.

Proof. By definition any representation on K of the C.CR. quasi
equivalent to the Fock representation is of the form (up to unitary

equivalence)
K=HF®H2, (2.18)

W(yp)=Wr(p)®1, (2.19)

hence any number operator on K is of the form:

N=N;®1+1®4 (2.20)

where A is an operator on H,.
Consequently any operator U satisfying (2.4) and belonging to the
algebra generated by the W(y)’s is of the form

U=U,®I 2.21)

where U, is an unitary operator on Fock space which moreover satisfies
(2.4) with respect to Np. Hence a contradiction with Corollary (2.11).

So despite the fact that we have solved the algebraic problem in that
case the U operators we have defined have no direct physical meaning
and are of little use for the program we develop in the end of the first
section. For these physical applications it seems necessary to impose at
least that U belongs to the weak closure of the algebra generated by
the W(y)'s in order to have a phase which is observable; more precisely:

Definition (2.22). A Weyl system has an observable phase operator
with respect to a number operator N if there exists an unitary operator
U such that

i) U satisfies (2.4)

il) Ue(W(yp); weH) the weak closure of the algebra generated by
the W(y)'s.

Next result is an immediate consequence of the previous results:

Corollary (2.23). Let W be a Weyl system with a number operator.
There exists an observable phase operator only if the corresponding
representation is not quasi-equivalent to the Fock representation. As a
special consequence there exists no observable phase operator for systems
with a finite number of degrees of freedom.
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III. Examples of Weyl Systems with Observable Phase Operator

The previous results suggest to look for Bose systems with an infinite
number of degrees of freedom and moreover, according to the physical
program of the introduction, to consider systems with some condensation
property. Let us describe the model:

H =9 the space of complex valued and infinitely differentiable
functions with compact support on R* with the ordinary scalar product.

Let ¢ be the following operator: gy(k) = o(k) (k) where ¢ is the
Fourier transform of . 0 < g(k) <1 is a continuous function of k.

K the representation space is

K=H,QH,®M 3.1
where Hp is the Fock space and M is the space of square integrable
. . . do
functions on the circle with respect to the measure Er
Let C and S be the following operators from M to M
(CHO) =cosb f(B), feM, 6€[02xn[, (3.2
(Sf)(6)=sinb f(0) (3.3)

for W(yp) we define the following operator:

W, (w)=We((1 + )" ) ® Wr(e'* )

o ) (3.4
®exp(ir(P;(0)C +1,(0)S))
where Wy denotes the Fock representation and i, and y, are respectively
the real and imaginary part of y; r is a non negative constant.
The cyclic vector of this representation is:

0=0,02;®1 (3.5)

where Q. is the Fock vacuum and 1€ M is the function identically one
on the circle.

One can easily calculate the expectation values of products of
creation and annihilation operators with respect to Q. As a special case
we compute the kernels <a,», {af a,.» which correspond respectively to
the one and two points functions.

{ay=0
dat g = 0l 30k~ k) + 009 506). e
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One easily shows that the number operator can be chosen as follows:
d
N=NF®1®1—1®NF®1+1®1®<1'—‘E) 3.7

which has as spectrum the whole Z and annihilates the vector Q.
Now we define an observable phase operator through the unitary

operator U=1@1®(C+iS). (3.8)

Unitarity and (2.4) are obvious. We are still left to prove that U e {W(y)}".
To do this we remark first that the vector Q is cyclic and separating with
respect to the algebra Z generated by the W(yp)’s (see e.g. [13]). Hence the
commutant £’ is exactly generated by the following Weyl system (see

(13, 14): W, (1) = Wel@"2 ) ® Wi((1 + )2 )
Qexp(—ir(,(0)C +h,(0)S)).

But it is obvious that U commutes with the W, (p)s. Hence U e £"
Such representations occur in the description of the ideal Bose gas

below the critical temperature in the thermodynamic limit. The actual

state of the ideal Bose gas below the critical temperature is given by

o0

J artee e @10 (.10

=exp(—% [ (1 +20() D (P)I* dp — 5 0o [D(0)?) .

The density of the system is ¢ =g, + [ dp o(p) (see e.g. [13, 15]).
The Hilbert space corresponding to this state is just the direct
integral of Hilbert spaces (3.1) with respect to the measure:

du(r)=r/ope ""1*e dr (3.11)

and within that space it is easy to built an observable phase operator
by summation of operators (3.8).

For the case T=0 the situation is a little bit different. One has to
consider the following definitions:

(3.9)

K=H,®M, (3.12)
W(p) = Wi(y) ®@exp(ir (1 (0)C + 1,(0)S)), (3.13)
0=0,®1, (3.14)
d
N=NF®1+1®(id—0>. (3.15)

(See for instance [16].) As previously it is possible to write a phase

operator
U=1®(C+iS). (3.16)
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Moreover U is observable if one remarks that ([13] and [16]):

U=go'? lim a*(yy) (3.17)

where vy, is the characteristic function of the volume ¥ eIR3,

IV. Physical Interpretation

In this section we want to show that the results we have got can be
expected on physical considerations and also give a model of possible
use of operators U.

The representations of the C.CR. where we have constructed an
observable phase operator correspond to systems in the thermodynamical
limit. This is not surprising since from a known theorem (see [17])
systems enclosed within a finite box are associated with representations
quasi equivalent to the Fock representation, where by Proposition (2.17)
there is no observable phase operator. On the other hand one would
expect the existence of an observable phase operator only for those
systems which have a phase transition of some kind and this is evidently
not the case for finite systems.

Let us remark there is a duality between our results and the theorem
of Dell’Antonio, Doplicher, Ruelle [18] where the number operator
appears as an observable only in the representations where it is impossible
to construct an observable phase operator. (The number operator we
have considered to construct U is never within the algebra of observables.)

Another remark is that in the examples we have displayed the ob-
servable phase operators are actually in the center of the algebra £.
On physical grounds it seems likely to conjecture this is a general
situation.

Finally let us describe a crude model to show the interest of the
definition of observable phase operator.

Let us consider two infinitely extended Bose systems at T=0, X,
and X,. Both are described by representations of the type (3.12) to (3.16).
As representation space for coupled system we have:

K=K, QK,=H}QM'QH}QM?. 4.1)
There are two different observable phase operators U,

U =1®(C+iS)@1®1

. 42)
Uy,=1®1®1®(C+iS).
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We take the hamiltonian of the complete system:

H=Hy+1g(U, U} + U, U¥) (4.3)
where:
Ho=u Ni@1@1@1+ 1, IQI@N®1, p;>0.

According to (3.17) that definition of the interaction corresponds
physically to the exchange of particles between the condensed phases
of each system.

Let us define the following operator

AN =1 N}®1®1®1+1®<i—d%)®1®1
(4.4)

—1®1®N;®1—1®1®1®(i—d‘%—)}.

Then let us compute:
AN =i[H,AN]
=3gi(U, U5 - U, Uf).

This operator will be interpreted as the flow J of particles between the
two systems; if we define @, and &, as the phase operators corresponding
to U, and U, respectively then we get the following result using com-
mutativity between U, and U,:

J=gsin(®,—d,). (4.5)

This model simulates the interaction between two superfluid systems
(or between two superconductors where the Cooper pairs are considered
as Bose particles) and formula (4.5) is typical of the Josephson effect [19].
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