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Abstract. In a completely Hamiltonian dynamical system, there will be a generating
function Hγ for each infinitesimal space-time transformation Y. In the non-autonomous
case, the Hγ depend on the observer. This dependence is here described by a system of
commutation relations. It is also shown that these relations can be made to mirror exactly
the commutation relations of the Y's in the Lorentz-invariant case.

1. Introduction

A system involving an external field can be enlarged to a completely
autonomous system whenever a transformation-law for the field is
specified. By a method presented below we can enlarge any non-autono-
mous system to an "augmented" system which is completely autonomous.
When the original system preserves some Hamiltonian structure, an
analysis of the augmented system leads to the results stated about thei ί y .
The systems considered are of the classical type in that there are only
finitely many degrees of freedom but are more general in that the entire
space-time group, and not merely temporal changes as in classical
dynamics, are allowed as changes in observes.

For any given infinitesimal change of observer, the generating
function Hγ is almost unique: unique up to an additive term independent
of the dynamical coordinates. If such terms are improperly adjusted,
then the relation {HY,HZ} =H[Y Z], expected in the invariant case, may
not hold. In the Lorentz-invariant case we show that these relations can
be achieved.

2. Space-time, Coordinators, and Dynamics

For any discussion of dynamical systems, one must have a space-time
manifold M, and M must have a space-time structure. The latter includes
(usually tacitly) a differentiable-manifold structure (usually 4-dimen-
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sional), and a system of tensor fields on M (cf. [2, (2.2)]). Perhaps even an
affine space structure [7, p. 350] may be included. Here we always suppose
M to be 4-dimensional, and what is much more serious, we suppose
there is at least one coordinate system in M valid on all ofM and mapping
M onto 1R4 (Cartesian 4-space). This carries the space-time structure
over to IR4 and these tensor fields, etc., constitute the space-time structure
of IR4. The mappings of M onto itself which preserve its space-time
structure constitute the space-time group @. It should be conceived as
distinct, although obviously isomorphic, to the group of transformations
of IR4 which preserve the structure there. In the Einstein-Minkowski
case it is supposed that the latter structure (in IR4) consists just of the
metric

(dx4)2 - (dx1)2 - (dx2)2 - (dx3)2 .

The space-time group of IR4 in this case is usually called the Poincare
group 0>.

Any map JC : M-»IR4 which carries the structure in M onto that of IR4

shall be called a coordinator. Evidently a coordinator is a coordinate
system for M, but of a special sort, e.g. Lorentz coordinate system.
The class of coordinators will be denoted by (€. If T belongs to ^ , S to
the space time group G of IR4 and JC, y are coordinators, then x ° T and
S ° y belong to #, JC ° y ~1 to ^ , and y"1 ° JC to G. Thus ^ "acts" on the
left in # and G, on the right [6, p. 294].

A dynamical system consists of three things: Ή, K, A. Here # is the
class of coordinators, K is a manifold called the space of states, and A
is the dynamics, namely a family, {Ay

x}, indexed by all possible pairs of
coordinators of mappings of K onto K, satisfying [2; 2.4, 2.41]

(2.1) Δ*,°Δ>X = Δ%,

(2.2) Ay is the inverse of Ay

x .

A motion K is a function defined on ^ with values in K satisfying the
condition κ(y) = Z!̂ (K:(JC)) for all JC, y in #. Given JC in # and k in K one
can define a motion K such that κ(x) = k by setting κ(y) = Ay

x(k). This
motion will be denoted by Ax(k\ In an n-particle interaction [2, p. 157]
the given k would be the n positions and n velocities while Ax(k) would
essentially be the set of n world lines (in M) representing that movement
of those n particles ensuing from the initial conditions (x4 = 0) given by k.

We will say that an element T of ^ is an equivalence for the dynamics
A if for every two coordinators JC, y

Ay°T _ Λy
ΔχoT~ Δχ-
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If K is a motion (for Δ) and T belongs to ^ we can define TK by
Tκ(x) = κ(x ° T). This is a function from ^ to K, but it is not necessarily
a motion for zl. However, it will be if T is an equivalence for Δ.

More precisely

(2.3) if T is an equivalence then T~1(Δxk) = ΔχoT(k).

A dynamical system will be called completely autonomous if every T
in 5ί is an equivalence1. A simple test is the following.

(2.4) The dynamics Δ is completely autonomous if and only if Δy

x

depends only ony°x~1.

This latter map y°x~1 belongs to the space-time group G of IR4.

(2.5) Theorem. Suppose Δ is completely autonomous and rcis a motion.

Let T and Tγ belong to <§. Then TK is also a motion and Tί(Tκ) = (Tx ° T) (K).

Proof. The assertion about TK is essentially (2.3). The second is
proved as follows. For x in #, Tγ{Tκ) (X) = Tκ(χo Tί) = κ{x° Tγ ° T)
= (7ίoΓ)(ιc)(x).

Thus ^ acts in the space of motions in the completely autonomous
case, just as the space-time group of IR4, G, acts in the space K of states
[2, p. 158].

These two actions of these two different groups are related. For,
select a coordinator JC. Then Δx maps K onto the space of motions,
while the map S^>x~loS°x establishes an isomorphism of G onto ^.
These two maps are linked as follows.

(2.6) Proposition. ΔJSk) = (x " ί ° S ° JC) (ΔX k).

Proof. Sk = Δx

s-ίoxk by [2, p. 158], so the left side is Δs-loχ(k). This
is exactly what 2.3 yields for the right side.

While it takes a coordinator to relate them, neither action requires
the help of any coordinator.

When computing, it is much more convenient to deal with this action
of G in K rather than that of ̂  in the space of motions. In fact, working
with G is inevitable because the only effective way of introducing co-
ordinates into the space of motions is through the maps Δx in (2.6), while
for ^ coordinates are best provided through the isomorphisms given
in 2.6.

These remarks concern only completely autonomous systems.

1 In [2], such a system is called invariant. We change the terminology to prevent
confusion with the concept of invariant of the dynamics which is meaningful even when the
dynamics is not completely autonomous.
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We turn to the concept of invariants. We attempt no all-inclusive
definition. However, suppose Ω is a tensor field on K. A dynamorphism
Aζ is a differentiable map of K onto X and there is presumably (from
the definition of tensor field) an appropriate concomitant way for Δy

x to
transform Ώ, say to Ω'. If this Ω' is always the same as £2, then Ω is a
dynamical invariant. This can happen even in the non-autonomous
case. The main example of such an invariant is that of an invariant closed
non-degenerate 2-form. A closed non-degenerate (or non-singular)
2-form is also called a symplectίc structure or a Hamiltonian structure
[6, pp. 144-147]. A system will be called completely Hamiltonian if there
is on its space of states a symplectic structure which is dynamically
invariant.

It was intended in [2, 4.3] to present an example of such a system.
Actually, there is a removable defect in the presentation and this is a good
occasion to straighten it out. The error consisted failing to observe that
time-reversal [2, p. 172] does not preserve the symplectic structure

(2.7) dPίΛdq\

but changes its sign. So the system is not completely Hamiltonian,
although it surely is Poincare invariant as asserted. This failure occurs
even in the most elementary systems, such as one or more free particles
[1, p. 273]. The difficulty is essentially terminological and could be
avoided by using a term like ^0-Hamiltonian where ^ 0 (in this case the
orthochronous Poincare group) is the subgroup which does preserve the
symplectic structure. Another way out would be to allow changes of
sign of the symplectic structure, but that would conflict with established
terminology. The simplest thing is to include in the space-time structure
a sense (or direction) of time. Having done that, the coordinators have
to take this into account, with the result

(2.8) G will not contain time-reversal.

Amended in this sense, [2,4.3] does present a completely Hamiltonian
system, although now it has more invariance (or autonomy) than is
being claimed. We will adhere to the sense of time idea leading to 2.8
in this paper.

In the classical case, the space time group is implicitly limited to a
one-dimensional group ("time translations") and for a Hamiltonian
system, only this group is required to preserve a symplectic structure.

In the classical case, there is a generating function for the infinitesimal
time translation. This is the Hamiltonian H, or sometimes its negative
depending on the exact definition of the Poisson bracket. In the situation
to be treated here there will be a generating function for every infinitesi-



Non-invariant Dynamics 95

mal space-time transformation. It is our intent to investigate the Poisson
brackets of these generating functions, in the autonomous as well as the
general case. Our method is to "imbed" the system in a completely
autonomous system. This construction is the topic of the next section.

3. Semidirect Product of Two Systems

We are about to consider a great number of different dynamical
systems. The class # of coordinators will be the same for all.

Suppose we have one system (#, F, Γ) with state space F and dynamics
Γ. Let Φ be the class of all motions of this system.

Now suppose that for each motion φ of this system there is given
a system {$,K,φΔ\ Here the state-space is the same for all φ, but the
dynamics may vary with φ, as indicated. The example we have in mind
is that (#, K, φΔ) is the system provided by a charged particle moving
in an electro-magnetic field φ. In order to present this example explicitly
one would have to construct a system (#, F, Γ) such that its motions
correspond (preferably in some natural fashion) to the collection of
electromagnetic fields desired. For example, one can proceed as follows.
Let F be the class of solutions to Maxwell's equations in 1R4. Given an /
from F and a pair of coordinators x, y we form S = x°y~1, which is a
map from 1R4 to 1R4. (In fact, it belongs to G.)

Now / is a tensor field, and hence there is a standard way in which S
transforms it (for scalar fields, the new field is f°S and this idea is
escalated to affme tensor fields). The new field we call Δy

x(f\ for brevity.
In this example we would naturally use the Einstein Minkowski

space-time structure to define (€. Thus one can set up the system of
Maxwell's equations on M, and class Φ of solutions φ. These solutions
are practically the same as a motion of the system (#, F, Γ). In fact, given
a solution φ, we can define for each x in <&, the field x(φ) in ΪR4 obtained
by transference from φ. Setting φ(x) = x(φ) defines a motion φ. Thus it
makes very little difference whether you say that the motion of the
charged particle is conditioned by the field φ or some motion of the
external system (#, i7, Γ).

We leave this example now and continue the general discussion.
We can form a system with F x X as its space of states, and the

following dynamics Θ:

(3.1) θ>x(f,k) = (Γ>f9ΓχfΔ>k).

Here Γxf is the motion of Γ which has at x the value /. It is easily
verified that Θl° Θζ = Θl. For want of a better name, let us call this

y

the semi-direct product system.
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When this construction is considered for the charged particle in a
field, the semi-direct product system is completely autonomous. This
is the reason for making this semi-direct product, and so we will trace
the origin of the autonomy. We make an additional assumption.

(3.2) For each T in the space-time group, for each motion φ of Γ
and each pair of coordinators,

Ay°T Ay
φΔχoT—TφΔx'

(3.3) Remark. By choosing a coordinator, say w, this condition may
be expressed using the action of G in the space of states F, with a labeling
of the dynamics by the elements / of F rather than by the motions φ.
Denoting φA by w-ί{φ)E, the condition reads

f^UOSow S(/)-C/MOH'

This is very unwieldy, since the special coordinator is still in evidence.
This is partly why we decided the dynamics ought to be labeled by the
motions, rather than the states of i^€, F, Γ). This decision made it im-
possible to formulate the theory in terms of only one the group G of
space-time transformations in 1R4.

Condition 3.2 is designed to produce the following result.

(3.4) Theorem. // the dynamics of Γ is completely autonomous, then
so is the semi-direct product.

(3.5) In greater detail, if T is an equivalence of Γ then T is also an
equivalence of the semi-direct product.

To prove 3.4, we must show that Θy

x°0^(f, k) = Θξ(f, k). The left side
is (Γ*°oτ f, ΓχoTA*°τk), by definition. T being an equivalence of Γ makes
the first component here equal to Γy

xf, while 2.3 changes the second
component to τ-Hrxf)^Hτ^ The latter is ΓχfΔχk by virtue of (3.3).
Thus the left side does not depend on T and (3.4) is established.

If we have a system (#, F, Γ) and a collection of systems (#, K, φΔ)
as above, and if Γ is completely autonomous, and moreover, (3.2) holds,
we will say that we have a field system.

The concept of a field system enables us to justify precisely the
intuitive idea that if a system (#, K, A) is not completely autonomous,
then there must be some external field, and that if we make a larger
system in which the field is also transformed, the desired complete auto-
nomy can be attained.

A system (#, F, Γ) which can be used in all cases, is the following.
The space of states F is simply # itself. For x, y in^ and the "state" z
(also a point of <g) we define Γy(z) = y ° x~! ° z. Not only (2.1), (2.2) are
satisfied, but the dynamics is completely autonomous, by (2.4).



Non-invariant Dynamics 97

(3.6) Proposition. For T in $ define φ(x) = x°T for each x in ζ€.

Then φ is a motion of (<&, c€, Γ). Each motion is given in this way, and with

a unique T.

Proof. Let φ be a motion. Then φ(y) = Γy(φ(x)) or y~ι°φ{y)

= x~1°φ(x). Hence there is a unique T (an element of <&) such that
JC~ * ° φ(x) = T for all x in #. That is clearly what is desired.

To continue assembling a field system, we must invent a family of
dynamics (#, X, ̂ zl). K is the given space of states. Using the given
dynamics A, we define φA

y

x to be Aζ[y]. This is meaningful because φ
is a function defined on #, with values in #, so that φ(x), φ(y) are co-
ordinators.

Now we check (3.2). We know ^ ? = < i o i | and Γ φ J J = J?;g>.
According to Section 1, T ^ is defined by Tφ(x) = φ(x° T). Thus (3.2)
holds, and we have a field system. In this case, we will call the semi-
direct product system the augmented system, the idea being that (#, K, A)
has been augmented by including a hypothetical field.

The augmented system being completely autonomous, we have an
action of ^ in its space of motions. As stated in Section 2, it is more
convenient to deal with an action of G in the space of states. This space
of states is & x K, and the action of G, when the notation is untangled,
emerges as follows.

(3.7) Theorem. In the augmented system, the effect of S (a member
of G) on a state (x, k) is to transform it into (S ° x, As

x

oxk).

This latter we abbreviate by S(x, k).
Obviously, G does not act transitively in ̂  x K. Indeed the dimension

of ^ x K exceeds that of G exactly by the dimension of K. The orbits
of an action are the subsets of the space in question on which G acts
transitively.

(3.8) Proposition. The orbits for the action of G in ̂ xK are in 1 :1
correspondence with the motions of the original system (%>, K, A).

Proof. To each point (x, k) of ^ xK we assign the motion whose
value at y in ^ is Ay

x(k). This rule assigns to S(x, k) the motion whose
value at y is Ay

Soχ(As

x

oχk), i.e., the same motion as before. Thus all points
of this orbit determine the same motion. This suffices to establish (3.8).

The action of G here is not to be confused with the action of G in the
state-space K (which in fact arises only in the autonomous case). This
latter action is the analogue of the action of ^ on the motions. In the
action of G in ̂  x K, the motions, being the orbits, are invariant.

Having properly made the distinction between G and ̂  and having
pointed out where each group acts in a coordinator-free way, but wishing
next to consider more technical matters, we take M to be 1R4 itself.
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Then <g = cβ = G. The action of ^ in ^ is left multiplication; the action
of G in # is right multiplication. The action of G in ^ x K for the aug-
mented system is given by

(3.9) S(T,k) = (SoT,As

τ

oTk).

There is no loss of mathematical generality if only systems of this
special sort are considered.

4. The Infinitesimal Dynamorphisms

Suppose G is a Lie group, and let its Lie algebra be denoted by g.
To be precise, let g be the linear space of right invariant vector fields on G.
(These are infinitesimal /e/ί-multipΓications.) For Y in g one has the one-
parameter subgroup s—>exps Y. For a given T in G and k in K consider
the curve

in K. Its tangent /'(0) at k we denote by Δγ τ(k\ which is a slight change
from [2, (2.63)]. Thus Aγ τ is a vector field on K. If the dynamics is
completely autonomous, this vector field is the same for all T, and one
has the commutation relation

(4 .1) \_ΛY T , Δ Z T ] = Λ [ Y Z]T\ A Y + Z T = Δ Y T + Δ
z τ .

Conversely, if vector fields Δγ τ independent of T are given on K,
satisfying (4.1), then dynamorphisms zlj can be found, at least for all
ΓoiS"1 sufficiently close to the identity element of G, such that the
corresponding infinitesimal dynamorphisms are just these given Δγ τ.

The question was raised in [2, loc. cit] what happens to the con-
dition (4.1) in the non-autonomous case. This question we now answer.

Each Y in g is a vector field on G. For each k in K, there is a mapping
Fk of G into GxK with Fk(T) = (T, k) and this mapping transforms Y
into a vector field on G x {fc}. Varying k we obtain a vector field Y on
GxK. Similarly, for each T define Fτ{k) = (T, k). This Fτ transfers ΔJT

to {T}x K. Varying T gives a vector field Δγ on G x K. In a sense, Y is
parallel to the G axis and Δγ is parallel to the K axis: a vector V in GxK
with base point (T, fe) is called "parallel to the K axis" if it is tangent to
the subspace {T}xK. One might also jsay that the G component is 0.

Now G acts in GxK (see (3.9)) and 7 + zly is the infinitesimal action
due to 7, in G x K. Because we have an action, we must have

(4.2)
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for each pair Y,Z in g. This is essentially the condition replacing (4.1).
It can be given a little more useful form. It is obvious that [Y, Z] = [Y, Z],
whence

(4.3) μ y ,Z] + [F,Jz] + [J y ,J z ]-z l [ y f Z ] = O.

Now the components of Y, Z do not depend on k. Hence the vector
field on the left of (4.3) is parallel to the K axis. To see this one must
think of vector fields as linear differential operators [6, pp. 90-94]. What
we are saying is that if / is a function o n G x K and f(T, k) depends
only on T, and if the linear differential operator on the left side of (4.3)
is denoted by L, then Lf = 0 automatically. Hence the total content of
(4.3) is that Lf = 0 for all / such that f(T, k) depends only on k. Let /
be such a function ("depending only on fc"). Then

Ay(Z(f)) - Z(Δγ{f)) + Ϋ(Δz(f)) - Az(Ϋ(f))

Observe that Z(f) and Y(f) are 0. Leaving off, as is customary, certain
parentheses, we obtain

(4.4) LΔγ,Δz]f = Δ[YfZ]f

(4.5) Theorem. // vector fields Δγ on GxK are given, satisfying (4.4)
and depending sufficiently smoothely on the coordinates, then dyna-
morphisms zlj can be constructed at least for T° S'1 sufficiently close to
the identity of G such that the Δγ τ are the infinitesimal dynamorphisms
for that (local) dynamics.

Proof. From (4.4) we can get back to vector fields Y + Δγ on G x K.
By a "local" existence theorem [5, Theorem 88], we obtain an action of a
neighborhood of the identity in G, on G x K. Then we use (3.9) to define
the ΔjoT for all S sufficiently close to the identity.

In the classical case, (44) is always fulfilled because g is one-dimen-
sional, so that Y, Z are linearly dependent.

5. Completely Hamiltonian Systems

In this and the following sections the vector field Y in GxK corre-
sponding to Y in g will be denoted simply by Y.

On the next theorem we require the state space K to be simply
connected. We also require the dynamics to preserve some symplectic
structure ω as the definition of complete Hamiltonicity requires.
Moreover, we suppose that the symplectic structure ω is exact, that is,
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there is a 1-form μ on K such that ω = dμ. Using notation of (3.9), we
"extend" μ to G x K in the manner corresponding to the Cartesian
projection of G x K on K, and call that extension μ also. Our statement
involves also the Poisson Bracket associated with ω [6, (7.10)].

(5.1) Theorem. Suppose (Ή, K, A) is completely Hamiltonian. Suppose
K is simply connected. Then one can find a 1 -form λ on GxK such that

(5.1.1) λ is orthogonal to the K axis, i.e. (λ, Xs) = 0 for each vector X
paralled to the K axis,

(5.1.2) {(λ, Y},f} = Aγf for each right invariant vector field on G,
and function f on GxK,

(5.1.3) for Y, Z right invariant vector fields,

and
(5.1.4) the vectors in GxK tangent to the orbits under the action of G

are precisely the singular vectors for d(μ — λ).

To prove this, we first translate it into the language of coordinates,
bases and components.

We suppose there are coordinates pγ,...,pn, qι,...,qn such that
μ = pkdqk (summation convention used). These coordinates extend to
GxK by defining pk{T,k) = pk(k), etc. This defines / i o n G x X a s (5.1)
says, and the new μ is pk dqk in terms of the new p, q. We now choose any
basis Yί,..., Yv for the Lie algebra of right invariant vector fields on G.
This gives rise to structure constants ry

Λβ for which [Ya,Yβ]=rlβ

(summation here from 1 to v). The constants are called r for "right".
They are the negatives of those underlying the table (4.6) in [3], where
following most texts the left invariant vector fields are involved. The
dual linear space of the lie algebra generated by Yί,..., Yv is spanned
by the right invariant Maurer-Cartan forms λ1,..., λv for which λ*(Yβ) = δa

β.
We will write <iα, Yβ} for λa(Yβ). Now (5.11) says, concerning the λ
promised by (5.1) that

(5.2.1) λ has the form (of a sum) Haλ
a.

Here Ha are certain functions on GxK. Now (λ, Yα) is easily seen
to be Ha. Thus (5.1.2) says

(5.2.2) Ha is a generating function for the infinitesimal dynamorphism

Now, (5.1.3) says

(5.2.3) {Ha,Hβ} = rlβHy - Ya(Hβ) + Yβ(Ha).
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The Poisson Bracket {/, g) is

df dg df dg

δpk dqk dqk dpk '

We will always be using the summation convention.
Finally, (5.1.4) says the same as

(5.2.4) The singular directions for dipfdq1 — Haλ
a) are the vectors

tangent to the orbits.

When reformulating (5.1.1)—(5.1.4) in terms of coordinates we are not
supposing this coordinate system to be valid on all of K. As a matter
of fact, coordinates can always be found giving μ the form pk dqk [6, p. 140].
This remark shows that (5.1.1)—(5.1.4) implies (5.2.1)—(5.2.4). Conversely,
if the latter hold for all such coordinate systems, then (5.1.1)—(5.1.4) hold.

To prove (5.1), we will establish the conclusion in the form
(5.2.1)—(5.2.4). The essential element of the proof of (5.1) is the observation
that ω is dynamically invariant if and only if dμ = dpk A dqk, as a 2-form
o n G x K , is invariant under the action of G in G x K (this remark and
the succeeding one apply to all covariant tensor fields on K).

Besides the "obvious" way to extend differential forms from K to
G x K already used to define μ, there is another way, based on the map
(T, fc)-> T " X(T, k) of G x K onto {e} x K. This map Q provides a way of
defining a tensor field QΩ on G x iC, given a covariant tensor field Ω on
{e} x K (or on K). Namely, QΩ evaluated for vectors in G x K shall be Ω
evaluated on their images under Q. Any vector tangent to an orbit for the
action of G is singular for QΩ, because under Q such a vector projects
onto 0. Moreover QΩ is invariant under G. QΩ is not an extension of r,
in the sense of agreeing with Ω on {e} x K, but it does agree with Ω for
vectors tangent to {e} x K.

Both Qω and dμ are invariant under G. They agree for vectors
tangent to {e}xK. Hence they agree for vectors tangent to {T}xK.
Let β = Qμ — μ. Then dβ = dQμ — dμ = Q(ω) — dμ, and as we just said
(dβ; Z, W} = 0 if Z and W are tangent to {T} x K. We now assert that
for each point k0 of K there is a neighborhood U of k and a function Sv

defined on GxU such that Qμ — μ — dSυ is a linear combination of the
Maurer-Cartan forms λa. To prove this, we choose a simply connected
neighborhood U of k0 on which there is coordinate system x1, ...,xm

where m is the dimension of K. Let / be some coordinate system for G.
(This latter assumption can be avoided by using the Maurer-Cartan
forms and is not necessary, but it simplifies the exposition.) Let β = Qμ — μ.
β is of the form At dxl + βa dya, whence
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What we said about dβ earlier forces dAi/dxj to be 0 (among other
things). Thus we can obtain a function Sv on G x U such that

Λi=~d7Sv

This function can be obtained for each T, k by integrating along some
curve (Γ, fc(s)) where k(0) = ko and k(ί) = k and hence depends differ-
entiably on T, k.

Now let U and V be two neighborhoods on which such Sv and Sv

have been constructed. It follows that dSv — dSv is of the form /α(x, y) <ίyα,
so to speak. More precisely, SUV = SV — Sv depends only on T in G.
We can therefore replace Sv by 5 F + Suv and obtain a new Sv which
agrees with Sυ on the intersection of U and F. This is a situation of the
sort where simple connectivity is always invoked to provide a single
function S such that Qμ — μ — dS is a linear combination —Haλ

a. These
functions Hα will turn out to be our generating functions. In any case,
— Qμ + μ + dS is the desired 2, completing the proof of (5.2.1).

Consider d(μ — λ). This is dQμ = Q(ω). Anything obtained by the
g-process has the property that vectors tangent to orbits are singular
for it. Conversely, vectors not tangent to orbits project (under Q) into
non-zero vectors in {e} x K which are not singular for (the non degenerate)
ω. This proves (5.2.4).

In coordinates p, q, μ — λ is of the form Pidq* — Haλ
a.

To establish (5.2.2) and (5.2.3) we need d(μ — λ). We use the following
important formulae. One is for functions fί on G x K . It is of interest
even for functions independent of the p's and #'s, that is functions
depending only on the coordinates in G.

(5.3) dH=ψ-dPk+ψΐ dqk + λ" Ya(H).
opk oq

The other is for Maurer-Cartan forms and can be deduced by com-
paring formulae (2.1) and (2.3) of [6, pp. 217-219].

(5.4) dtf=-\rlβλ*Λλ*.

This result is

- Yβ(H«)λβ A λa + \ Har«βyλ
β A λy.

Here Hk means dH/dpk and Hk means dH/dqk.
Now we express the fact that Yδ + Dδ is singular for d(μ — λ). We

make use of the fact that, if φi and ψt are 1-forms, then Z is singular for



Non-invariant Dynamics 103

Σ (pt A ψt if and only if Σ [(φi9 Z> ψt — ζψh Z ) φj — 0. Applied to our
problem, this says

Dδ(Pjί)dqk - Dδ(qk)dpk + [ -HkDδ(pk) - HakD{qk)-\ λ«

-(~Hkdpk-Hδkdqk)

- Yβ(IQ (δξ λ« - λ* δ*) + Ha r%y λy = 0.

The coefficient of dqk (for example) must vanish. Therefore Dδ(pk) = — Hδk.
Similarly Dδ(qk)= -Hi This much already tells us that Dδ(f)= {Hδ,f}
which is (5.2.2). We now set equal to 0 the coefficient of λγ, making use
of the values of Dδ(pk) and Dδ{qk). The resulting equation is precisely (5.2.3).
Thus (5.1) is proved. Perhaps the theorem should have been formulated
merely as asserting (5.1.1) and (5.1.4), because (5.1.2) and (5.1.3) follow
from these, as we have seen.

Now we look into the question of the uniqueness of these Ha. As is
well known, in the classical case, any two valid Hamiltonians differ by a
function of t. The general case is essentially analogous.

(5.5) Theorem. Let the λ be as above. Suppose another ί-form I
satisfies all the conditions of (5.1). Then there is a ί-form v on G such that
λ = λ + v and dv = 0. In component form, λ = Haλ

a, Ha = Ha + φα where
the functions φa depend only on the coordinates for G. Locally, one can
find one function φ on G such that φa = Ya(φ). The converse is also true.

The φ need not exist as a single-valued function on all of G be£ause G
is not simply connected. To prove (5.5) we begin by letting φa = Ha — Ha.
From (5.2.2) we deduce that φa depends only on the group coordinates.
From this we see that {Ha,Hβ} = {Ha,Hβ}. Writing down (5.2.3) for
Ha, Hβ on the other, and substracting, yields

(5.6) 0 = rlpφγ-Yaφp+YpφΛ.

If we let v = φaλ
a then (5.6) and (5.4) imply that dρ = 0. On any

simply connected set in G we can find φ such that v = dφ, on that set.
So much for (5.5).

We will say a few words about the assumption of simple connectedness
for K. It is really needed to produce the generating functions. An example
will illustrate the phenomenon. Let K be the real plane minus the origin.
Let ω = dr A dΘ. Everybody knows what this is even though Θ itself
is not single-valued. Moreover, ω = dμ where μ = rdΘ. The vector field

Ί)r~
certainly preserves ω, but the generating function would have to be Θ.
Perhaps one could set up the theory with generating functions being
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replaced by closed 1 -forms, but many-valued generating functions would
not serve the purposes to which generating functions are usually put
(see Section 6, right after (6.1)).

6. Completely Autonomous, Completely Hamiltonian Systems

Suppose the dynamics is completely autonomous. Then the infinitesi-
mal automorphism Δγ τ evidently depends only Y. Therefore write it
as Δγ. Let us consider the 1-parameter subgroup generated by Y. Suppose
that the dynamics is completely Hamiltonian. Then this subgroup
preserves the symplectic structure. We may treat it as the flow of time
and the classical theory will give us a generating function Hγ for the
vector field Λγ. Since Δγ does not depend on T we obtain an Hγ in-
dependently of T.

Now consider the totality of these Hγ, Y running through g. We will
now show that {Hγ, Hz} is a generating function for [7, Z]. Let / be any
function on K. Then

{{Hγ,Hz},f}= -{{HZ9f}9Hγ}-{{f,Hγ},Hz}

= -{Δzf,Hγ} + {Δγf,Hz}

= AYAzf_AzAYf

= Δ[Y>Vf.

Of course, this latter is also {H[YZ],f}. Thus

{Hγ, HZ} = H[Y Z] + const.

One way to motivate our investigation is to say that we want to get
rid of the constant here. The idea is not merely aesthetic, but one wants
to use the condition

(6.1) {Hγ,Hz}=HίY,Z]

as a way of normalizing these functions. If this were not possible, it would
be absurd to expect polynomials of the H's to represent quantities such
as mass and spin [4, p. 2418]. We have already shown in [4, p. 2417] that
such a normalization is possible for elementary systems. We solve this
problem here in general, assuming things about G which are true for the
Poincare group. (For non-autonomous systems, the normalization (6.1)
is unacceptable because it forces G to act in K, thus forcing complete
autonomy. The problem of formulating an effective normalization in the
non-autonomous case is surely also important, but it is not solved.)

Our assumptions about G are as follows.
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(6.2) Each exact invariant 2-form is the exteriour derivative of exactly
one invariant i-form.

For the Poincare group, the truth of this follows from well-known
facts. Perhaps we may refer to [3] for a self-contained elementary proof.
For the 2-form [3, (4.41)] the desired 1-form is Σ Λkjμ

kj + Bkμ
k. The proof

of uniqueness rests on the observation on p. 132 of [3] that every element
of the chosen basis occurs in the body of the table. For suppose μ is an
invariant 1-form such that dμ = 0. Now <μ, [Y, Z]> = — <dμ; Y, Z>
[6, pp. 103, 219] and so μ vanishes for all X in the table, thus μ = 0.

(6.3) Theorem. Let G be as in (6.2), and suppose K is simply connected.
Then there is exactly one way of defining Hγ for each Y in g such that

(6.3.1) Hγ depends only on the coordinates in K

(6.3.2) {HYJ} = Aγf for each function on K

(6.3.3) {HY,HZ}=H[H,Z].

In terms of components, this says about the functions f/α

(6.4.1) Ha depends only on the coordinates in X,

(6.4.2) Ha is a generating function for Da

{Hx,Hβ}=rlβHγ.

We begin by treating the case in which K is connected. Let Ha be a
system of generating functions as provided by (5.1). We will amend
them to functions Ha which satisfy (6.3.1)—(6.3.3). Curiously, we have
not been able to use (5.5) to do this, and give an independent argument.

We observe that each Yβ(HΛ) depends only on the coordinates in G.
Indeed, (5.2.2) says that

D = dH^ J__dH«_ J_
a dpk dqk dqk dpk '

The complete autonomy insures that the components here depend only
on the p's and qs. Therefore Yβ applied to them yields 0. Interchanging
the order of differentiation shows

Now Yβ(Ha) can depend on the coordinates in G, but since K is connected,
it does not depend on the coordinates in K.

Now select any point k0 in K and let Gα = Ha(k0). This clearly depends
only on the coordinates in G. Thus the same is true for Yβ(Ga). Let
Fa = Ha-Ga. Then Yβ(Fa)=Yβ(H«)-Yβ(Ga). This depends only on the
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coordinates in G. So we get its value by evaluating at any k in K. Choose
k = k09 and see that Yβ(Fa) = 0.

Observing that {Ha, Gβ}=0 we get from (5.2.3) that

{Fa,Fβ}=rlβFy-YaFβ+Y,Fa + rlβGy-YaGβ+YβGa.

We recall that YaFβ = 0, so

(6.4) {Fα, Fβ} - rlβFy = rlβGy -YaGβ + YβGa.

The right hand side surely depends only on the coordinates in G.
As to the left hand side, recall YaFβ = 0. If G were connected, we could
conclude that Fβ depends only on the coordinates in K; and if we denote
each side by caβ we could say that caβ is constant. As it is, we can only
say that caβ is constant on each component of G, but this is enough for
the subsequent argument. Consider Go, the component of e, and let caβ

be the values assumed there. From (6.4) we see that

(rlβGy -YaGβ+ YβGαμ
α Λ λβ = caβλ« A λβ

whence (by virtue of (5.3) and (5.4))

(6.5) caβλ«Aλβ=-2d(Gγλ
y).

On the left side of (6.5) we have an invariant 2-form, and (6.5) tells
us that it is exact. Hence (6.2) assures us that caβ λ

a A λβ = d(kyλ
y) where

these ky are constant. Let ky = — 2cy. Then ry

aβcy = caβ

(6.6) {Fa + ca,Fβ + cβ} = rlβ{Fy + cy).

If we define # α as being Fa + ca, then these certainly have the desired
properties (6.4.1)-(6.4.3).

We now consider uniqueness. Let the systems Ha and Ha (however
obtained) satisfy (6.4.1)-(6.4.3). Then Ha — Ha must be constant, ca.
Since {Ha, Hβ} = rlβHy and {Hα, Hβ} - {tfα, Hβ} we obtain r\βcy = 0. Let
λ = cyλ

y. Now dλ=-\cyr
y

aβλ
aΛλp = 0. But dO = O. Hence by the

"exactly one" assumption in (6.2), we have λ = 0. Thus each cy is 0. Thus
(6.3) is proved for connected K.

If K is not connected then the action of G either interchanges some
components or it does not. In the first case it is easy to modify the action
without changing it on the component of the identity of G, to produce
the second case. In the second case we can apply our proof for the
connected case to the system defined by each connected component.
Thus (6.3) is proved.

A variant of (6.3) could also be stated in which the simple-
connectedness of K is replaced by the weaker requirement that some
system of Hα satisfying (5.1) exist. This variant would have the same
conclusion as (6.3).
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7. A Class of Examples

We will present some examples to show that complete Hamiltonicity
does not imply complete autonomy.

Consider the cotangent bundle T^M) of space-time. Associated with
a coordinator (or indeed any coordinate system (x^x 2 , x 3,x 4) in M
there is a coordinate system (x1, x2, x3, x4, pi9p2, p$, PA) *n T^M) where
Pi of a generic element aγ dx1 H h α 4 d x 4 is just the component a{.

By a space-time Hamίltonίan surface we mean a hypersurface £f in
Ti (M) having the property that for each coordinator JC, an equation for £f
can be written in the form p4= —H(xι,x2,x3,xAr,p1,p2,p3) where
these are the associated coordinates. This H will in general be a different
function for different coordinators. An example can easily be made.
Select any coordinator x, and also four functions Aί,A2,A3,A4, on
space-time and define Sf by

(7.1) p 4 = _ ^ 4 + [ l + ( p 1 + ^ 1 ) 2 + +(P3 + ^ 3 ) 2 ] i .

This leads to a Hamiltonian surface in the sense just defined because
when (7.1) is expressed in terms of another coordinator (y1, ...,y4), we
get an equation like (7.1) when we solve for the 4-th "momentum" in the
y system.

T^M) has a natural 1-form Θ [6, p. 143] and this defines a symplectic
structure dΘ on T±(M). By restriction to £f we obtain a 2-form dΘ^
on £f. This may be regarded also as d(Θ#) where Θy is the restriction
of Θ. Θy in coordinates has the form

(7.2) p1dxi + -

where x1, ...,x4, pi,p2,p3 are being used as coordinates on £f. This
2-form dΘy is singular (mainly because ^ is odd-dimensional) and thus
has a singular direction defined by

(7.2.1) dx^ψ-dx\ dp^-ψjdx*
dp dx1

at each point of y . The integral curves for this direction field fiber £P
into a 6-parameter family of curves. Let us call this family \Jf\ These
canonical Eqs. (7.2.1) show that dx 4 is not 0 along any such integral curve.
Hence pl9p2, p3, x1, x2, x 3 may be used as coordinates for \β*\ thereby
defining a manifold structure for it. Because the fibers are singular for
dΘy, one can define a 2-form Ω on \β*~\ such that dΘ^ = QΩ where Q
is the map from Sf into \βf\ This is a symplectic structure, and using
the six coordinates

(7.3) Q = dpί A dx1 + + dp3 A dx3.
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Next, we will map \£f~\ onto K= 7i(lR3), by various maps Δx each
indexed by a coordinator JC. Let JC be a coordinator. Let us regard ΪR3

as a subset of IR4, namely the subspace on which the fourth coordinate
is 0. Now JC maps M onto 1R4 whence JC" 1 maps 1R4 onto M and by
restriction, JC" 1 maps 1R3 into M. A point r of IR3 maps into m in M and
each vector at r maps into a vector at m. Hence the covectors at m,
T^M)^ map into the covectors, TJ_ (IR3)r at r. These linear spaces have
dimension 4 and 3 respectively. The condition we impose on Hamiltonian
surfaces insures that the mapping of the intersection

(7.4) T 1 ( A ί ) m n ^ - T 1 ( I R 3 ) r

is 1 :1 and onto. Now let ξ be an element of \βf\ So it is a subset of £f
(indeed a curve). This ξ has on it only one point for which x 4 = 0. This
point belongs to Ύγ(M)mr\9? for some m whose x(m) lies in 1R3. Hence
we may apply (7.4) to give an element of T f̂lR3). This element of 1R3 we
call Λx(ξ). The dynamics is defined by [2, (2.42)]

(7.5) Δy

x = Δyo(Δx)-1.

Thus a system has been assembled. It remains to show that it is
completely Hamiltonian. T^IR3) has a natural symplectic structure and

this symplectic structure is preserved by (7.5).

This follows from the fact that

(7.6) each Δx transforms (7.3) into the symplectic form of T f̂lR3).

To prove (7.6) one must examine the map Δx, to see what happens to
a curve ξ whose pi coordinates are bί9b29b3 and whose xι coordinates
are r1, r2, r3. These p and x are the coordinates on [ y ] used in (7.3).
It turns out that Δx(ξ) is a covector at (rί,r2, r3) in IR3 with Cartesian
components bub2,b3. This is simply a consequence of how we defined
the x and p as coordinates on [5^]. Thus (7.6) is apparent.

We can state what the generating functions are for systems of this type.
To prevent erroneous application of these results we have to be very
pedantic about notation. In the first place, the dependence of these
functions H on the coordinator must be explicitly indicated. About £f
we are assuming that for each coordinator x there is a function if (JC)
of seven variables such that an element Sf of Tx (M) will lie on Sf if and
only if

(7.7) p 4 (0 + H(x) (x'iζX x\ζ\ x\ζ\ x 4 (0, pM P2(Q, P3(0) = 0

Thus we are now writing H(x) where we wrote H in the original
definition of Hamiltonian surface. This bold face JC is nothing else but
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(x1, x2, x3, x4), of course. It should be clearly understood that (7.7) does
not say that the equation of Sf has the form

//4 i ~ Γ i ^ X , X , X , X ) yX , X , ? //3J : = U .

Put another way, the (x1, x2, x3, x4) which could be inserted for x in
(7.7) are not numerical parameters. (In fact, x ranges over the 10-dimen-
sional set of all coordinators!) On the other hand, the xι(ζ) in (7.7) are
related to the very coordinator x involved. The xι of a covector ξ is the
actual or original x{ of the base point of ζ. This is nothing but the old
way of lifting coordinates from configuration space to phase space and
conventionally one uses the same letter x\ From here to the pt is the
familiar step.

An infinitesimal transformation associated with the group G is a
vector field in the space on which G acts, in this case 1R4. As a matter
of fact, we have the following more general result (cf. [2, (3.7)]). We will
use ί\ ί2, ί3, t4 as Cartesian coordinates in 1R4.

(7.8) Proposition. Let Sf be a Hamiltonian surface. Then the dynamics
it defines (as described above) is completely Hamiltonian. Let Y be an
element of the Lie algebra of G and let

z = z\t\t2,t\t*)4r + - + z\t\t2,t\t*)4^

be the corresponding infinitesimal transformation in 1R4. Let x be a co-
ordinator, with H(x) as the corresponding Hamiltonian. Then the following
function Hγ(x) is a generating function for the infinitesimal dynamorphism
ΔYfX [5^(4.1)]:

Hγ{x) = Z\x\ x2, x 3 ,0) P l + + Z 3 (x\ x2, x3, 0)p3

- Z\x\ x2, x3,0) H(x) (x1, x2, x3,0, Pl, p2, p3).

To prove this, adapt the proof of [2, (2.7)], which deals with ("contra-
variant") vectors, to the case of covectors ("covariant" vectors). This
means mainly that one uses the law for transforming covariant com-
ponents rather than contravariant components. When Z 4 = 0 and the
other components are independent of time, we have exactly the case dealt
with in [2, (3.7)]. However, at first glance there seems to be an overall
error in sign for the generating function. This is no error since the Poisson
Bracket in [2] is the negative of the one we are using here.

Proposition (7.8) seems to contradict [2, (3.3)] which says that under
certain rather natural conditions, in the Einstein-Lorentz case, there
cannot be a completely Hamiltonian system which is not completely
autonomous. Of course we must conclude that the examples provided
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as above by Hamiltonian surfaces do not satisfy the conditions alluded
to. These conditions actually amount to the following. There should be
some coordinator x such that if we use "his" Hamiltonian H(x) to define
an inverse Legendre map from T^R3) to T^IR3), then the dynamics on
T^IR3) should be that for some second order 1-particle "inter" action.
(It is not assumed that this 1-particle motion is Poincare invariant: it is
proved.)

Notice that we did not say that these Hγ had the commutation
relations (5.1.3). We conjecture that they do. We have verified this con-
jecture in the special case of the surface defined in terms of a covector
potential Aί,Λ29 A3, A4 in the manner of (7.1). This includes the motion
of a charged particle in an electromagnetic field.
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