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Abstract. A new basis of the conformal algebra is proposed, which makes appear two
conjugated Schrδdinger algebras. This basis allows to exhibit a chain which does not
contain the Poincare algebra, between the £^$(4,2) algebra and the (two-dimensional)
extended Galilean one. This non-relativistic structure of the conformal algebra is well
adapted to discuss some extreme models of hadrons based on collinear massless particles.

The existence of an isomorphism between a subgroup of the Poincare
group and the two-dimensional Galilean group is a well-known fact
which clearly appeared in the "infinite-momentum" or "light-cone"
formalism of high energy physics and led a "potential theoretic intuition"
in relativistic quantum field theory and quantum electrodynamics.

More recently this Galilean structure in the "transverse plane" was
used to derive the phenomenological Parton model of Bjorken and
Feynman [1].

In this paper we show that the non-relativistic structure of the
transverse plane again emerges in the conformal algebra which contains
a subalgebra isomorphic to the two-dimensional Schrodinger algebra.
We deduce that to any relativistic massless particle can be associated
a non-relativistic one having a variable mass but without the potential
energy present in the massive relativistic case.

Moreover we show that the two-dimensional Schrodinger algebra is
the stability algebra of the "color" of the lightlike states introduced by
Domokos [2] and we discuss the extreme collinear free massless quarks
model of hadrons considered by Del Giudice et ah [3].

It is well-known that the d'Alembert equation is invariant under the
conformal group which contains as a subgroup the Poincare trans-
formations, invariance group of the Klein-Gordon equation. The con-
formal Lie algebra is isomorphic to the 6?Θ (4, 2) algebra generated by
the 15 skew-symmetric Mμv(μ, v = 0, 0', 1,2, 3,4) satisfying the following
commutation relations:

[MμxMQ J = i(gμσMvρ + gvρMμσ - gvσMμρ - gμρMvσ) (1)
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with
900 = 9θ'Of:= —9 11 — — 922 = ~~03 3 = — 044 = 1

The generally used basis of the conformal algebra makes appear:
— A Lorentz algebra generated for example by the M μ v such that

μ,v = 0,1,2,3.
— The corresponding translational and special conformal Abelian

algebras

Pμ = M0,μ + M4μ and cμ = M0,μ-M4μ where μ = 0,1,2,3

which respectively form with έf&(3, 1) two conjugated Poincare algebras.
— The dilatation M0>4 which commutes with the Lorentz part.

In fact another decomposition of the &*Θ(4, 2) algebra can be given which
exhibits its non-relativistic structure.

First one finds a subalgebra isomorphic to the two-dimensional
extended Galilean algebra #2>

 t n e situation of which in the Poincare
algebra has been widely used. The generators are:

Pj = Pj = M0Ί + M4,., Kj = - (MOj + M3J)9 j=U2 (2)

M = Po + Pi = Mo'Ό + M40 + M 0 '3 + ^ 4 3

with the following non-zero commutation relations

[tf, Kj-] = - iP^, [KJ? P J = iδJkM .

Recall in particular that {Kj9Pj9M} form a two-dimensional Heisenberg
algebra Jf2, and that this choice of the generators of (S2 corresponds
to the usual change of basis used in the infinite momentum formalism.

Secondly, (32 is embedded in the larger two-dimensional extended
Schrodinger algebra 9^2 which corresponds to the largest group of the
Newtonian space-time transformations leaving invariant the two-
dimensional Schrodinger equation [4]. This algebra is 9-dimensional
and a basis can be given by adding to (2) the two generators

- 2 <0 + C3 - 2 OΌ 4 0 + 0'3 43 ^

D = M0,4-M03.

We have to add to (3) the following commutation relations

I L/, Γ;\ = — lΓ , I D, Λ , I = I A : , I JL/, tl\ = — Δltl ,

[C, P.] = iKj, [C, H] = — iD, [D, C] = 2iC .

It must be noticed thatH,C,Dgenerate an algebra isomorphic t o ^ ^ ( l , 1).
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Finally we can complete a basis of the SfΘ(4, 2) algebra with another
Heisenberg algebra Jf2* generated by

P ; = MOj - Λf3J, KJ = C j = M 0 J - M 4 J ,
(6)

M* = c 0 - c 3 = M o , o - M 4 0 - M o , 3 + M 4 3

and a 15th generator Λ = — (M 0, 4 + M 0 3 ) which plays the role of a
dilatation or scale transformation

IΛ, Kj] = iKj, [Λ, K*] =-iKJ, j = 1, 2, (7)

[Λ, M] = 2iM, [/I, M*] - - 2iM* .

Between the two Heisenberg algebras one finds the commutation
relations

[P^Pf] =2ίδjkH, LKj9Kn =2ίδJkC,

ίPj9Kn =-2iεjk,J,-iδjk{D-A\ [P | ,KJ =2iεjk3J3 + iδJk(D + Λ) .^

[Pj, Λί*] = 2iPJ, [Kj, Λf *] = 2ίiBΓy , (8)

iP*M-\ =-2iPj9 IKJ9M] =-2iKj9

[M,M*-]= -MA.

Let us remark that M, M*, /L also generate a 3-dimensional non-compact
simple algebra. It is not necessary to write the commutation relations
between the algebra . ^ © ( 2 ) 0 ^ ^ ( 1 , 1 ) (£TΘ(2) generated by J 3) and
2tfξ because ^ © ( 2 ) 0 ^ ^ ( 1 , 1 ) acts on Jf2* exactly as on J^2 and in
fact one can form the two Schrodinger algebras

,1)),

,1)).

These two algebras are conjugated, which can be proved by considering
the action of SfΘ(4, 2) on the pseudo-euclidian space £(4, 2) and in fact
turns to introduce the algebra

49 2) = ̂ "(4 + 2 ) Π ^ ( 4 , 2).

is the 6-dimensional translational algebra and ^0(4,2) acts on
its generators Vμ as

[Λί μ ϊ ,F ρ ] = i ( ί ι ϊ ρ K μ - ί μ ρ K ϊ ) . (9)

Then it can be shown that the 10-dimensional algebra (^2,Λ) is the
stabilizer of the 2-plane (Vo, + F 4 , Vo + V3). Indeed one can verify that
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(&2,A) is maximal in 5^0(4,2) and by using (9) that it stabilizes the above
2-plane. Identically (<9?

2* > A) is the stabilizer of the 2-plane (VQ> — F 4 ,
Vo-V3).

One achieves the proof by checking that the two above 2-planes are
conjugated [for example under the inner automorphism: F->exp(ίπM3 4)
• Fexp(— ιπM 3 4 ) ] which ensures that ^ 2

 a n d &* are conjugated in the
same way.

Hence the decomposition we have introduced permits to show the
existence of an interesting chain of subalgebras between # 2

 a n d ^® (4,2)
which does not contain the Poincare algebra and we can draw the
following complete chains (we mean by complete a chain such that it
does not exist any algebra between two adjacent algebras).

To be more precise we have represented by dotted lines the little
chains which exist between the two physical chains, and it is worth
noticing that there exists no other chain between 9"2 and

Conformαl algebra
7 5 ] = Λ 0 )

Ext

"91

/
schrod.

\

αlg.

^ \

E:χt

1
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A
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- ' \
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^ ^ /
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Physically the consequence of the inclusion of ^ 2

 m ^ ^ ( 4 , 2) leads
to associate to any relativistic massless particle a non-relativistic one
with a variable mass in a two-dimensional space (the transverse plane).
Indeed the d'Alembert equation p21 > = 0, describing the states | > of a
massless relativistic particle in the momentum space, formally becomes

H IL
2M

I > = 0 with PL = {Pί, P2), for states such that M | > + 0,

i.e., furnishes the Schrodinger equation describing the states of a free
non-relativistic particle which is invariant under the Schrodinger algebra.
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Furthermore if we start with two non-relativistic massless particles a
and b. then p = p{a) + p{b) and we are led to the formal Schrόdinger
equation

H

 ΓlW f l ^ + γ | \ = 0

2M(α) 2M(b) J

where F is a function of the relative transverse momentum Pλ(a,b)

V 2M(a)M(b) FΔ<l'b)

with
P (a h)= M(«)PΛb)-M(b)Pλ(a)

Λ ' } M{a) + M(b)

This does not contradict the invariance under ^2 since it has been shown
in Ref. [5] that this invariance allows the existence of some classes of
mutual interactions between the constituents of the free system.

In fact the existence of such a non-relativistic structure in the con-
formal algebra is subjacent in the wave packet realization of lightlike
states given by Domokos [2].

In our formalism the definition of a lightlike state becomes

where k is the color of the state. From the above commutation relations
(3, 5, 7, 8) it is clear that the algebra of transformations which leave the
color invariant, i.e. the algebra which commutes with M is exactly <5?2

The Domokos's lightlike states completely agree with our interpretation
of the conformal algebra since the color is associated to the "mass" of
the non-relativistic particle, but we must remark that the generator of
"time" translations (the "Hamiltonian" H) does not correspond to the
compact subalgebra of 5 ^ ( 1 , 1 ) : H -\-C alone generates ^Θ(2\ hence
is able to have a discrete oscillatorlike spectrum [5].

The situation is rather different in what concerns the extreme collinear
free massless quarks model introduced in Ref. [3]. The collinear states
describing massless particles travelling in the z-direction are defined up
to a conjugation by

But the used invariance notion of state space makes the model go out
of our interpretation and leads to consider the algebra which in our
formalism corresponds to J 3 , D, M, M*, A. As it has been above noticed
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M,M*,Λ form a non-compact algebra which corresponds to Θ(2,1) in
Ref.*[3], and it may be interesting to remark that their conformal quan-
tum number is the eigenvalue of the compact generator M — M* which
turns to account the "masses" of the two Heisenberg algebras present in
the decomposition of ^$(4, 2) we have given.

We hope that this brief analysis brings some insight about the point
raised in the footnote (9) of the Ref. [3] in the following sense: the
Domokos's approach uses the underlying non-relativistic analogy con-
tained in the conformal algebra, while the invariance notion retained
by Del Giudice et al. discards this analogy.

In conclusion we lay stress on the scheme we have drawn which
clearly makes appear the double, - relativistic and non-relativistic -,
content of the conformal algebra and the conformal nature of the
Schrodinger algebra.

Finally let us add that the same kind of scheme can be drawn
between the algebra ^0(5,2) and the 3-dimensional Galilean algebra
embedded on one side in the Schrodinger algebra ^ 3 , on the other side
in the Poincare algebra ^(4,1) corresponding to transformations on the
Ji(A,i) Minkowski space.
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