Commun. math. Phys. 34, 37—52 (1973)
© by Springer-Verlag 1973

Exact Models of Charged Black Holes
I. Geometry of Totally Geodesic Null Hypersurface*

P. Hajicek
Institute for Theoretical Physics, University of Berne, Berne, Switzerland

Received April 23, 1973

Abstract. Inner geometry and embedding formulas for a totally geodesic null hyper-
surface ./ in an electrovacuum space-time are given. The structure of all possible symmetry
groups of the geometry is described in case that the space-like sections % of .# are compact
orientable surfaces and ./ is, topologically, % x R*. The result is ¢ =4 x #, where 4 are
the well-known isometry groups of %, and # is an at most two-dimensional group acting
along rays, which is fully specified in the paper. It is not shown that all these symmetry
types exist, but this will be done in the next papers where all horizons of a given symmetry
type will be explicitly written down.

1. Introduction

The interest in the theory of collapsed stars — black holes — has
recently increased, not only because of a theoretical appeal of these
objects. It seems that some phenomena observed in the sky, e.g. the
large X-ray source in Cygnus [1], can most naturally be explained by
the accretion of matter onto a black hole [2].

In the present and subsequent papers, we describe a way of obtaining
exact models of charged (electrically and magnetically) black holes
surrounded by matter and charge currents without solving explicitly the
Einstein-Maxwell equations. The method is akin to that of [3], [4], and
[5], in which the initial value constraints of Einstein’s equations are
solved along a space-like hypersurface of time symmetry, or, geo-
metrically, along a totally geodesic space-like hypersurface. What we
are doing is to solve the initial value constraint of the characteristic
Cauchy problem for Einstein-Maxwell equations along a totally geodesic
null hypersurface (TGNH). The relation to black holes is as follows.
Hawking [6] has shown that the area of black holes cannot decrease.
In a limiting case, it will remain constant, the convergence ¢ and the
shear 6 will be zero and the horizon will be TGNH; such a black hole
cannot swallow anything and can be, therefore, called “a fasting black
hole” (a name proposed by Kundt). In the “thermodynamic” language
of [7], one could also call the holes “adiabatic”, but we should like to
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preserve this word for a sort of slow change processes with our models.
All stationary black holes are fasting, but the converse is not true, as we
shall see later. Thus, restricting ourselves to the fasting holes, we still
deal with a more general situation than any known model ever described.

All TGNH have a nice inner geometrical structure induced by that of
the embedding space-time and consisting of 1) degenerate metric (as any
null hypersurface) 2) three-dimensional complete affine connection (only
on TGNH). The metric and the connection are not related in the usual
way by means of the Christoffel symbols; rather, they form, to a degree,
two independent structures, so that there are horizons with the same
metric and different connections and vice versa. We look for the sym-
metries of this structure, i.e. the Lie groups of diffeomorphisms which
preserve the metric and the connection being, thus, simultaneously
isometry and affine transformation groups ([8], p. 225—236). Properties
of these so-called horizon symmetries (HS) are investigated in Section 3,
where the structure of all HS groups is found.

The first steps in the theory of HS have been done by Hawking, who
has shown that a stationary horizon is either static or axisymmetric.
We rediscover many results and methods of [9] and [10], mainly in
the proofs of the Lemmas 7 and 11. But the whole approach as well as
our final Theorems are believed to be original.

The notation and all undefined notions are taken over from [8] and
[9], which can be regarded as standarts for mathematical relativists.

2. Geometry of TGNH
a) Embedding Formulae

A null hypersurface in a space-time ./ is a three-dimensional manifold
M together with an embedding @ : .# — ./, so that the induced metric
form g=©*(g) is degenerate. ®, maps vector fields on .4 into vector
fields on @(.#). If there is a vector field Z on . for any two vector fields

X, Y on . such that —
@*(Z)z V@*(Y)@*(X)> (1)

where Vy denotes the covariant derivative of ./#, then (.#, @) is called
a totally geodesic null hypersurface. On any TGNH (., ©), there is a
unique affine connection V such that

0,(Fy X) = Vo, 1) 04(X). 2

We call Vthe induced affine connection.

Any vector field L on ./ tangent to the rays of .# (we prefer to call
the null geodesics in .# rays instead of the more common “generators”,
preserving the latter word for symmetry groups generators) is orthogonal
to any vector field on .#, g(L, X) = 0. We denote such a field always by L.
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Lemma 1. The necessary and sufficient condition for the null hyper-
surface (M, ©) to be a TGNH is that

g(@*(X)’ V@*(Y) @*(L)) =0 (3)
be satisfied for any two vector fields X, Y and any L on M.

_Proof. 1ff a vector field Z on O(M) in J satisfies the condition
g(Z, ©,(L)) =0, then there is a vector field Z on .# such that 0 (Z)=Z.

Th ti =
© cauaton §(Fo.n ©4(X), ©,(L)) =0 4
is, therefore, equivalent to (1). On the other hand, (4) is equivalent to

(3), because Vis the Riemannian connection of g ([8]), q.e.d.
Choose a real vector field L on ./ satisfying

V. L=0, %)
and a complex vector field M on ./# satisfying
g(M+>M):_19 VLM:()’ (6)

where “+” denotes the complex conjugate. The connection V can then
be described through the four complex coefficients I', Q, A, u as follows

V,L=V,M=V,M" =0,

VylL=QL, Vs L=Q" L,
VyM=,"L—TM, VyM=p"L+T*M,
VyM*=uL+TM*, Vy.M"=AL—T"M".

(7

The self-consistence and full generality of (7) is guaranteed by (5), (6)
and the relation 9(X,V,Y)= —g(Y,V,X), ®)
following from g = @*(g) and (2). The Lemma 1 and (7) implies that the
existence of affine connection V on (#, ©) satisfying (8) is only possible,
if (A, ©) is totally geodesic ([11]).
The curvature tensor R for V is easily computed from the well-
known relation
R(X, Y)Z: VX(VYZ) - VY(VXZ)_ l7[,\',1/]Z (9)
RM,MH)L=MQ"-M"Q-TI'Q"+T"Q)L,
RM,MYYM=Mup"—M*" A" +2I" i " +u Q- 2" Q"L
+MI*+M*T-2I'THM,
R(L,M)L=(LQ)L,
R(LL M)M =(LA")L— (LM,
RIL MM =L L+(LINHM™.

and (7):

(10)
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We have used
[M,M*]=VyM* —Vyy, M=(u—p" ) L+TM*~T*M, (11)
[LM]=V M-V, L=—-QL, (12)

the symbol X f denoting the derivation of the function f in the
direction X.

The curvature tensor of a non-metric connection in a three-dimen-
sional space has, generally, 24 independent components and the following
symmetries

R(X,Y)Z+R(Y,X)Z=0,
R(X,Y)Z+R(Y,Z)X+R(Z,X)Y=0,

([8]). The first relation is automatically incorporated in (9). The second
one yields
LT=0,
—Lpu—u)=MQ*—-M*Q-I'Q " +T*Q.

Thus, our curvature R has just 9 independent (real) components in com-
parison with the twenty four possible for general non-Riemannian
connections and 6 possible for Riemannian connections in three dimen-
sions. The 15 extra relations are

g(X,R(Y, U)V)+g(V,R(Y, U)X)=0,

for any four vector fields X, Y, U, V and are related to the existence of
the degenerate metric.

From the definition of ¥(2) and from (9), the Gauss-Coddazzi equation
follows -

R(0,(X), 0,(Y)) 0,(2)=0,(R(X,Y)Z).

It allows to compute 14 of the 20 independent components of R from the
components of R, at every point of @(.#). But the components of R
must satisfy the Einstein-Maxwell equations and Bianchi identities. We
shall not compute the implications of these relations from the Gauss-
Coddazzi equation, which would be the most direct method, but use
rather the Newman-Penrose equations [12], which will be more rapid.

Introduce a pseudo-orthonormal tetrad field X,, X,, X5, X, along
O(MA) such that

X, =0,(L), X;=0,M), X,=0,M") (13)

and extend it differentiably in a neighbourhood of ©(.#). The corre-
sponding spin coefficients must then satisfy, because of (7), (13) and
(4.1a) of [12]

x=¢=n=9=0=0,0+=Q, a—f=1I,



Null Hypersurface 41

the coefficients y, v remaining undetermined. A straightforward calcula-
tion yields then the following relations:

LI=LQ=Li=0, Lu=¥,,
®,=0, L&, =0, L& ,=M"* &, ,

Po=W, =0, LY, =0, L¥;=M"¥,+d; M* &, (14)
LY, =(M*+T++ Q" )W, =39, + & (M* +T"+Q")d,
—2)®, &}

MIt+M*YT=2IT "= -V, —¥] +2®,0] (15)
MQT—M"Q-TQ " +T"Q=—(¥Y,—¥;)=—L(u—u"),
Mut+Qu*—M* 2T 42l AT —=Q A =¥ — &, @, (16)
where ¥; and &, are the components of the Weyl and Maxwell spinor,
respectively, as defined in [12].
From these equations, it can be immediately read that the horizon
is determined, if one prescribes
1) its metric and affine structure,
2) the phase of @, at a Cauchy surface %,
3) @, and ¥, at the Cauchy surface &.
By a Cauchy surface, any space-like properly embedded two-dimen-
sional submanifold of .# is meant that intersects all rays of ..

b) Quotient Surface

The set & of all rays of ./ can be given a differentiable structure
assuming the projection map 7 :.# —.% differentiable; the point p e .#
is mapped by = in the ray j going through p. The subspace of T,(.#)
tangent to this ray, i.e. the space T,(p) of all vectors of the form aL is
mapped by 7, into the zero vector of Tp(,S’) There is one-to-one
correspondence, therefore, between points of TI,(V) and the classes
X,+aL of T,(M)/T,p). All forms we Tj(4) such that w(L)=0 are
hnear forms on classes of T,(.4)/T,p) and determine, via the corre-
spondence, forms in T*(?) It holds

(@) (X) = d(n,(X))

([8]). The metric g in .# induces a non-degenerate metric on the classes
T,(M)/T,(p), because T,(p) is the max1mal su.bspace‘ of T,() prthogona}
to T,(#). Thus, we have a unique negative definite metric § on &
satisfying n*(§) =g at p, ie. g(X,, Y,)=§(n,(X,), 7,(Y,)). The metric §
is well-defined on %, i.e. independent of the choice of p along p, because of

Z19=0, (17)
Zy denoting the Lie derivative along X.
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Lemma 2. Let X be a vector field on M. There is a vector field X
on & m-related to X, iff [L, X]|=al, where a is an arbitrary function.

_Proof. 1) L is n-related to the zero vector field on . Suppose there
is X =n,(X). Then n([L, X],) =[O0, Xn(p)] =0. Therefore, [L, X], € T,(p),
for any pe 4.

2) If [L, X]=ualL, then there is X' and a function b such that X’
=X+bL and [L, X']=0:b satisfies the ordinary differential equation
Lb=0. Because £, (X') =0, the integral curves of X' are dragged along
by the rays; hence, the two integral curves of X’ starting at any two
points p;,p, on the same ray have the same projection. The tangent
vector X, (py tO this projection at n(p,) is 7, (X, ). Thus, for X', there is a
unique n-related field X on % Now, 1 #X)=m,(X"), and X is n-related
to X as well, q.e.d.

It follows, that any real vector field X on .# for which there is a
n-related field in &% can be written in the form X =xL+z*M+2zM7,
where x is an arbitrary real function on .# and z is a complex one satis-
fying Lz=0.

For any vector field X on %, there is an operator I7X on vector fields
1n & defined as follows. Let X =u'M +uM™*, Y=v" M +vM™*, where

=1, (M). Choose two fields X, Y on .# such that

X=xL+(@*u")M+(r*w)M™",
Y=yL+(r*(v")M+(n*(v))M*,

X, y are arbitrary functions on .#. Then, VXY n,(Vx Y). It is easy to
show that V3 Y so defined does not depend on x and Y,

Ve V=" (M —D)o" +u(M* +T")o")M
+urM+Do+uM™ =T H)o)M™,

where I'=n(I'), and that V is the symmetric Riemannian connection on
& corresponding to §. In particular, we have

VaM=—~TM, VgM*'=IM",

ﬁABCD:K(gADch_gACQNBD), (18)
K=MI*+M*T-2I'T", (19)
where K is the scalar curvature of . With (19), the first equation of
15)1 ~
(13 1s R=—W,— ¥ +20,0;] . (20)

We shall often need the component transcription of the last equation
of (15), too. Defining the real vector 2, by

Q=0QM;+Q"M,, (21)
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we find that Q, is invariant under space rotation M’ =¢'?- M, under
null rotation M'=M + ¢L and under rescaling L' =nL, it behaves like

a(lgn)
Q=0Q,— —=. 22

A A axA ( )
The second equation of (15) is, then, equivalent to

o O i 23)

ox? ox!

where x* are some coordinates on the manifold # and § is the determinant
of the matrix §,p of the metric components in these coordinates.

A straightforward verification from the definition yields that ¢, and
¥, are independent of the choice of L, M, and are, therefore, invariants
on /.

In what follows, we shall consider only those TGNH .# with the
following properties

1) the quotient surface ? of ./ is compact orientable surface,

2) M is, topologically, & x R'.

(The last condition excludes, e.g. the TGNH separating the Taub
from NUT part in Taub-NUT space.)

Any TGNH satisfying 1) and 2) is called a horizon.

3. Horizon Symmetries

Let ¢ :.#—.# be a difftomorphism onto satisfying

gP(X’ Y) = glﬂ(p)((p*(X)a (p*(Y)) > (24)
0 Vx Y) =V, 04(Y), (25)

for arbitrary pe .# and arbitrary vector fields X, Y on .. Then, ¢ is
called a horizon symmetry, because it preserves all structures of the
horizon.

Let us call ¢ logitudinal HS, if it does not move the rays of the horizon.
Then, (24) is satisfied because of (17) and the only non-trivial condition
is (25). We find some implications of it.

Choose a ray p, and four different points a, b, ¢, d, on it. The number
(a(b) — a(a)) : ((d) — afc)) is independent of the choice of the affine
parameter o along p, and is, therefore, an affine invariant of the figure
consisting of a, b, ¢, d. ¢ must preserve that invariant, or

a(@(b) —a(p(@)  a(p(d)—a(e(c)

ab)—al@)  ald—alc) =k (26)
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where k is a non-zero real, dependent only on ¢ and p, independent
of the choice of a and b, because of the first half of (26).

Let p, and p, be two different rays, a, b points on p,, ¢, d points on p,
and C:[0,1]—>.# a smooth curve with C(0)=a, C(1)=c. Parallel
transport of the vector expa ' (b) along C defines a unique vector X at ¢
and X a unique point b’ =exp (X) on p,. Again, the real («(b") — a(c)):
:(a(d) — a(c)), where « is an affine parameter along p,, is an affine in-
variant of the constructed figure, and is, therefore, preserved by ¢. Using
the relation LQ2 =0, we obtain easily that k, =k, with k, defined by (26)
on p,. We have shown

Lemma 3. Any longitudinal HS ¢ defines a unique non-zero real k,
called affine magnification of ¢, so that

o He®) —uo@)
B a(b) — a(a)

for any two points a, b on any ray p, and for any affine parameter o along p.

We call ¢ a collineation, if k+ 1, and a translation, if k=1. Let ¢
be a collineation and |k| <1 (if |k| > 1, choose ¢ ~! instead of ¢). Then,
the series ¢"(a) is convergent for any point a € .#, and p, = nanOlO o"a)is a
well-defined point on any ray p, for a € p, because 3131010 Q"(a)= 3111;3 o"(b)
for any two points a, b on p. All such p, form a Cauchy surface &, in A,
satisfying (%) = %, and it is the maximal subset of .# kept pointwise
fixed by ¢. It holds [8]

Lemmad4. Let ¢: .4 —.H be a diffeomorphism onto, X, X,, X3 a
frame field on M and T}y, I'; defined by
Ve, X;= 1—;]3 X Vouixy (»D*(Xj) = Fz/]k P4 (X) .

Then, ¢ is a longitudinal HS, iff

1) mepon™! = identity on &,

2) I}y=Tj; forall i,jk=1,2,3.

Lemma 5. Let Z be a vector field, X, X,, X5 a frame field along .M
satisfying £,(X) =0, and T, the corresponding rotation coeff.

Ve Xi=TX, .

Then, Z generates a one-dimensional group of longitudinal HS, iff

1) Z is tangential to rays,

2) ZI;,=0.

Proof. 1) Suppose that Z generates a one-dimensional group of
affine transformations. According to [8], p. 231,

gZ(VX Y)“ VXQZ(Y)I V[Z,X]Y (27)
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for any X, Y, in particular for X = X;, Y= X,. But Z,(X)=[Z, X;]=0,
hence 0=%,(Vy, X)) = Z,(I'}; X,) = (Z1})X,, or ZI'};=0.

2) Suppose that ZI};=0. We show that (27) is satisfied for arbitrary
X =x'X;, Y=)'Y,: From the identity

ZX) (X V) X+ X (Z(Xy) X+ (ZX) Yy T X + X(Z )T X,
—X(X(ZY)X; —x(Z YT X,

=(Zx) (X Y) X, +(ZX) YT X,
we have

LAX (X y) X; + X YT X) = X Wy (Z ) X)) = (Z X)) Py (v X)),

gz(xi VX,(yj X,)) —x' Vxl(gz(yj ‘Xj)) = l7(in))(,()in,‘) >

which is nothing but (27), q.e.d.

Let ¢ be a collineation with a fixed-point Cauchy surface ¥, and
affine magnification k > 0. Choose an affine coordinate o along .# such
that « =0 at %, the field L =0/0a, and the field M tangentially to %,
satisfying V; M =0 everywhere on .. If § =Iga, then B(o(p)) = B(p) + gk
for any pe.# with a(p)+0. Choose another frame L, M as follows:

=0/0f, M'=M at %, [L,M]=0 on ..

It follows that L' =aL, M' =M + «QL, because of Ma = —af. To show
the last relation, we observe that L(Ma)=M(Lo)+[L, M]a, and,
according to (12), L(M«) = —Q. On the other hand, (M), = 0. Clearly,
0. (L)y=L, ¢, (M)=M'; the rotation coefficients with respect to the
primed frame are given by

L=1-L, V,M=QL, V.[=QL, (28)
VM = Pi* +MQ+TQ+Q)L —TM, (29)
Ve M'* =(e P o+ W, + MQ +TQ* +QQY )L +TM'*, (30)

where p, is defined by pu = po + ¥, according to (14). From the Egs. (14),
it follows at once that the primed rotation coefficients will be invariant
under f— f +lgk only if uy=A=0. Therefore, on %, Vy M'= —I'M’,
VyM™=IM",ie, ¥, is totally autoparallel. (28)—(30) together with
the Lemma 4 imply that the transformation f— —f is a collineation
with k= —1. A combination of all these results with the Lemma 5 gives

Lemma 6. The existence of a totally autoparallel Cauchy surface &,
on M implies the existence of a two-component (k <0, k> 0) one-dimen-
sional Lie group of collineations fixing %,. The locus of fixed points of
any collineation on M is a totally autoparallel Cauchy surface.
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Let, next, ¢ be a translation. Choose an arbitrary Cauchy surface
& and an affine coordinate « such that o =0 at & and «(¢(p)) = a(p) + 1
for any pe 4. Let L =0/0a, M be tangential to & and V, M =0 every-
where on .. Another frame L, M’ is chosen such that L =1, M'=M
+aQL. Again, ¢ (LY=L, ¢, (M')=M’; the new rotation coefficients
are given by
V. L=0, V., M=QL, V,L=QL,

Ve M =(2" +(MQ+TQ+Q)a)[.—T' M,

MM =g+ (P, +MQ" —TQ " +QQ ")) L +T'M'" .
Invariance under a —« + 1 is equivalent to
MQ+TQ+0Q*=0, (31)

Y, +MQ"—-TQ"+Q0"=0. (32)
Combination with the Lemma 5 and 6 yields

Lemma 7. The existence of a longitudinal HS ¢ implies the existence
of a one-dimensional group of longitudinal HS containing .

Lemma 8. If two one-dimensional groups ¢, and vy, of longitudinal
HS contain a common element ¢, =yr,, Ty +0, then

b1z = Ws for any t.

Lemma 9. Two different totally autoparallel Cauchy surfaces Sy, S
in M imply the existence of a translation ¢ such that p(¥)=%,.

Proof. Choose o =0 at &, and let o = a(x*) at .&,. The collineations
implied by Lemma 5 can be written

a—ko, o—oa(x?)— (o —a(x?).
Combining these collineations with k=2, {1 =1/2, we have
a—2(a(x*) + 5 (0 —a(xM)) =a +a(x?), qed.

Lemma 10. There cannot be two different one-dimensional translational
groups on a horizon M.

Proof. If the groups are different, we find, for any ray p, a combination
of translations which is not the identity and which keeps j fixed. In fact,
we shall have a whole one-dimensional group @, of such translations.
Obviously, there is a dense subset ¥ of % such that, if p € &, then &,
induces a one-dimensional group of null rotations in T,(.#) for every
p € p. Therefore, components of all quantities related to a frame L, M
must be numerically the same as those related to the frames (L, M’)
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=Qu(L,M):L=L, M'=M +{(t)L, t is the parameter of the group @
Now, the corresponding components of the left hand side of (16) are
related as follows

(Lhs. of (16)) =(Lhs. of (16)— (D)W, ;

invariance is possible only if
v,=0 (33)

on p. But p are dense in %, so (33) holds everywhere. Equation (22) and
(23) then implies that there is a rescaling after which Q =0. In the corre-
sponding frame L, M

P,L=0, V,M=0, VyL=0
VuM=)"L-TM, VyM'=upL+I'M",

u, A, I being constants along rays and [L, M ] = 0. According to Lemma 5,
L generates a one-dimensional translational group. There must be
another linearly independent translation generator, say, L =#L, where 4
is a non-constant real function on .#, Ly =0. In the frame L, M'= M,
' =M(glnl), and must satisfy (31) and (32) with (33). For y=Ign|,
these equations read in the component formalism

?y oy 0y dy
= I$p—~.
G oxP  oxA axP T lABTC
The integrability conditions of (34) yield either y=const or K=0.
In the second case, & is a torus and periodic coordinates x? can be
chosen so that I'{z=0. The only non-zero solution of (34) is, then

(34)

y=lgn° —ngx")
with #°, % constants. This function shows no periodicity unless all
ng =0, giving y =const. But this is the old group generated by L, q.e.d.
(The compactness of ¥ was used here; our linear solutions for #
work all very well in the null plane of Minkowski space-time.)

Theorem 1. The group S of all longitudinal HS of a given horizon M
can be of the following four types, at most:

1) identity

2) one-dimensional two-component collineation group,

3) one-dimensional translation group,

4) two-dimensional two-component group generated by 2) and 3).

We shall see later that all three types really exist. Next, we turn our
attention to the so-called transversal groups. In general, any HS ¢
must map null curves into null curves, i.e. rays into rays. Thus, it induces
a diffefomorphism ¢ : ¥ -, ¢=no@-n""', on ¥, which clearly must
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be an isometry. Let ¥ be the group of all HS of .#. Denote by
G=n-%on ' and by m, Y —% the homomorphism defined by 7 ,(®)
=no@on ' The kernel of 7, is the group # of all longitudinal HS of M.
@ is called transversal group of 4. The possible structures of isometry
groups of a compact orientable surface are well-known, we have, therefore

Theorem 2. The component of the identity of the transversal group 4
of a given horizon M can be of the following four types

1) identity,

2) SO(2) (axial symmetry),

3) SO(3) (sphere),

4) SO(2)x SO(2) (torus).

The discrete groups, also well-known, are not interesting for us.
Our investigation on HS is nicely completed by proving the following
“Decomposition Theorem”™:

Theorem 3. Let % be the group of all HS of a given horizon M, H#
the subgroup of all longitudinal symmetries and % the transversal group.

Then, G H xG .
First, we show the following

Lemma 11. Let ¢, be a one-dimensional group of HS on . with space-
like trajectories which are not closed. Then, there is a whole two-dimensional
group of HS on M containing @, as a subgroup, a one-dimensional longi-
tudinal subgroup vy, and a one-dimensional subgroup ®, with space-like
closed trajectories such that &,= ®,.

Proof According to the Theorem 2, @, is isomorphic to SO(2), so
there is a minimum parameter value ¢t =T >0 such that ¢ is identity
on .%. Because the trajectories of ¢, are not closed, ¢ is not the identity
on ./ and must, therefore, be purely longitudinal. The Lemma 7 then
implies, that there is a whole group, v, say, of longitudinal HS; let us
choose s such that ;= ¢@;. For a fixed ¢, ¢ _,°yp,° ¢, is again a longi-
tudinal group, containing Pr=@_,°pr° @, hence @_,op° @, =1,
because of the Lemma 8. But the last identity means that any ¢, commutes
with any y,. Then @, =y_,° ¢, must be a one-dimensional group with
space-like closed trajectories in ./, satisfying &, = @,, q.e.d.

In fact, we have shown the Theorem 3 in case that 4 is one-
dimensional. If 4 has more dimensions, we can construct, for any one-
dimensional subgroup of ¥, the corresponding group with space-like
closed trajectories in ./, as in the proof of the Lemma 11. Then, it must
be shown that i) all elements of these “closed” subgroups commute with
all elements of 4, ii) these “closed” subgroups generate a group whose
trajectories in .4 are two-dimensional.
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i) Denote by N the dimension of ¢4, by N —n the dimension of #
and choose a basis for the Lie algebra of ¢ such that the last N —n
elements H,,,,..., Hy form a basis for the subalgebra of 2. Each G;
from the remaining »n elements G, ..., G, generates a one-dimensional
subgroup ¥, of 4 and the vector fields G, = n,(G;) form a basis of 4. The
generator G; can be chosen in such a way that ¢, all have closed tra-
jectories, according to the Lemma 11. Then, we show that all elements of
9., i=1,...,n, commute with all elements of . Choose he H#,
Gi=h"'-%;-h is another one-dimensional transversal subgroup of %
such that ©,(%}) = n,(%,), so there is a generator G; of ¥ fulfilling =, (G;)
=,(G;). Hence, the vector field G, — Gi generates a subgroup #; of #,
if G, — G; = 0. The trajectories of ¥; and ¥; are both closed; starting from
a common point p, they must have, according to the Theorem of Rolle,
equal tangents at some point, g, say, before returning to p. But this means
that G,(q,) = Gi(q,) for any two points ¢,, g, on § and § is a fixed ray of
;. This is possible only if J# is trivial or a translation group. In the
second case, 4, is the only translational subgroup of 5# according to the
Lemma 10, and its fixed ray is a property of the horizon which must be
symmetric with respect to %;. Hence, J; is trivial, G;= G}, and ¥, =¥,
g.e.d.

i) First, we need the following results on HS:

Lemma 12. The generator X =xL+z"M+:zM"* of a HS must
satisfy the equations

(M+1)z=0, (M—T)z* +(M* —I'*)z=0, Lz=0,  (35)
L(Lx)=0, M(Lx)=—(¥,—¥;)z. (36)

Proof. The Egs. (35) are nothing but the Killing equation (17)
written in the complex formalism. The Eq. (36) follows from the first
equation of [8], p. 236, setting Y=Z=L and Y=M, Z=L, and from
Egs. (35) and (14).

To show ii), we choose a special case ¥ =SO0(3). The proof for a
torus, which is, according to the Theorem 2, the only rest to be removed,
then, is similar and even simpler (and less physically interesting, [6]),
so we shall not give it here. : y

Choose spherical coordinates 3 and ¢ on &. The generators of ¥
can be chosen P d
G, = sin @ — 3 cosp —,
G,=sng 29 +ctg 0

I

G, cosgo—a% —ctgd sinw%,

_ 0
37— a(p'

(o]}
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If o is an affine coordinate on .#, generators G, G,, G3 can be of the
form

. 0 0 0
Gl=sm(p% +ctg3005<pa—¢— X5 (37)
0 . 0 0
Gz—cosqom—ctg.f) sing - - X2 5 (38)
0 0
Ga= —— . 39
=3, +x3 5 (39)

The symmetry represented by (37), (38), and (39) implies ¥, = const over
the horizon, and, because of (23), ¥, — ¥; = 0. We can, therefore, choose
o in such a way that Q =0, if L=0/00. a is determined up to a trans-
formation o' =#no+ a(9, @), where 5 is a constant. The vector field M
taken tangent to the surface o =0 remains, then, tangent to any surface
o =const. In such a coordinate system

0 0
M=M*——+M°——
39 "M 5y
where M* and M? are some complex functions independent of «, and

we have from (37), (38) and (39) G;=x;L+z;" M +z;M*. The Egs. (36)
give for x; Xi=Eoatal®9) i=1,23, (40)

& being constant. Each group ¥; has two fixed rays (%4,, e.g, $=mn/2,
¢ =0, ), and because its trajectories are closed, at these rays, the corre-
sponding x; must be zero. Hence,

51—_—52:53:0, (41)
a (—723,0)=a1 (%,n)=0, 42)
noT n 3n
d, (7,—2“> =dy (7,7) =0 , (43)

613(0, O) = 03(71', 0) =0.
In addition to this, ¢;’s must be continuous:

aaz(oa(P) — 6“1(”@@) :0, i=1,2,3. (44)

oo oo
The general form of a generator of # is H=(y-o+ (3, ¢)) 8/0a,
where 7 is a constant, because of Eq. (36). If there is an H with 30, we

can specify o further as follows

t
o =0+ ;(1(9,@—1),
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keeping everything valid and reducing H to
H=(n-o' +1)0/00 . (45)

The commutators [G;, H] must be zero because of i), or, with the help
of (37)—(40), (42), and (45), n-a,;=0. Let ;=0 for all i=1,2,3. Then,
the Theorem follows immediately. Suppose, therefore, that one ¢; differs
from zero for any choice of the affine coordinate o.. Then, all generators
of # must have the form H =I(39, ¢) 0/0x and generate translations.
According to the Lemma 10, there is at most one linearly independent H.

i) yields [H,G]= —(G.)d/oa=0, i=1,23,
or, [=const. Thus, we can choose the affine parameter o so that the
following relations hold 2
=
a, (9, %) =0, (46)
as(3, ¢) =0. 47)

(46) and (47) reduce to the following construction of the surfaces o = const:
Choose a point p with 3=0. Let C(p, q) be the segment of the trajectory
of ¢, going through p, on which ¢ =7/2 and 0< 9 <=, 3(g) ==. Then,
the surface o« = const is 45 - C(p, q).

The following must be generators of some HS in .#

Jda 0
[G3,G]—-G,= ((‘)—(pl - az) P’

da 0
[Gz,ng—Gl=(— Go —al)%,

(. day da, da,
[Gl,Gz]—Gs—(sm(pW cos @ 79 +ctgd coso 29

+ ctg 3 sin day ) 0
8IS0 50 ) 0
They all generate longitudinal groups, therefore
da, Cay = A, da,
op do

+a,=8B, (48)

da, da, . Oay

—_— —_— = 4
79 +ctg9<cos<p 30 +sing 30 C, (49
where A4, B, C are some reals. (48) have the general solution

ay=B+ f(9)sin(p—g(9), ay=—-A+f(cos(p—g(9). (50)

.0
mmp% —cos@
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where f and g are arbitrary functions of 3. With (50), (49) is equivalent to

(fctgd+ f)sing— fg' cosg=C. (51)
(44), (42), (43), and (50) imply
f(O)=f(m)=0, (52)
AN i
A=B=0, f(7> 31ng(7)=0. (53)
(46), (50), and (53) imply
f(3) cosg($)=0. (54)
From (54), we have either
f¥)=0, (59)
or
cosg=0. (56)

(53) and (55) yield a; =a, =0, (51) and (56) imply f"+ fctgd=+C,
which has the general solution of the form

1
=+Cctg§—D—r.
f=1Cctgd sin g

Then, (52) can only be satisfied, if C = D =0, and we have againa, = a,=0,
which is a contradiction.
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