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Abstract. Inner geometry and embedding formulas for a totally geodesic null hyper-
surface Ji in an electrovacuum space-time are given. The structure of all possible symmetry
groups of the geometry is described in case that the space-like sections ̂  of Jί are compact
orientable surfaces and Jt is, topologically, £f x Rl. The result is 0 = & x Jtf, where ̂  are
the well-known isometry groups of έ?, and $P is an at most two-dimensional group acting
along rays, which is fully specified in the paper. It is not shown that all these symmetry
types exist, but this will be done in the next papers where all horizons of a given symmetry
type will be explicitly written down.

1. Introduction

The interest in the theory of collapsed stars - black holes - has
recently increased, not only because of a theoretical appeal of these
objects. It seems that some phenomena observed in the sky, e.g. the
large X-ray source in Cygnus [1], can most naturally be explained by
the accretion of matter onto a black hole [2].

In the present and subsequent papers, we describe a way of obtaining
exact models of charged (electrically and magnetically) black holes
surrounded by matter and charge currents without solving explicitly the
Einstein-Maxwell equations. The method is akin to that of [3], [4], and
[5], in which the initial value constraints of Einstein's equations are
solved along a space-like hypersurface of time symmetry, or, geo-
metrically, along a totally geodesic space-like hypersurface. What we
are doing is to solve the initial value constraint of the characteristic
Cauchy problem for Einstein-Max well equations along a totally geodesic
null hypersurface (TGNH). The relation to black holes is as follows.
Hawking [6] has shown that the area of black holes cannot decrease.
In a limiting case, it will remain constant, the convergence ρ and the
shear 6 will be zero and the horizon will be TGNH; such a black hole
cannot swallow anything and can be, therefore, called "a fasting black
hole" (a name proposed by Kundt). In the "thermodynamic" language
of [7], one could also call the holes "adiabatic", but we should like to
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preserve this word for a sort of slow change processes with our models.
All stationary black holes are fasting, but the converse is not true, as we
shall see later. Thus, restricting ourselves to the fasting holes, we still
deal with a more general situation than any known model ever described.

All TGNH have a nice inner geometrical structure induced by that of
the embedding space-time and consisting of 1) degenerate metric (as any
null hypersurface) 2) three-dimensional complete affine connection (only
on TGNH). The metric and the connection are not related in the usual
way by means of the Christoffel symbols; rather, they form, to a degree,
two independent structures, so that there are horizons with the same
metric and different connections and vice versa. We look for the sym-
metries of this structure, i.e. the Lie groups of diffeomorphisms which
preserve the metric and the connection being, thus, simultaneously
isometry and affine transformation groups ([8], p. 225-236). Properties
of these so-called horizon symmetries (HS) are investigated in Section 3,
where the structure of all HS groups is found.

The first steps in the theory of HS have been done by Hawking, who
has shown that a stationary horizon is either static or axisymmetric.
We rediscover many results and methods of [9] and [10], mainly in
the proofs of the Lemmas 7 and 11. But the whole approach as well as
our final Theorems are believed to be original.

The notation and all undefined notions are taken over from [8] and
[9], which can be regarded as standarts for mathematical relativists.

2. Geometry of TGNH

a) Embedding Formulae

A null hypersurface in a space-time Jί is a three-dimensional manifold
Jt together with an embedding Θ : Ji-*Jί, so that the induced metric
form g = Θ*(g) is degenerate. Θ^ maps vector fields on Jί into vector
fields on Θ(Jί\ If there is a vector field Z on M for any two vector fields
X, Y on Jί such that _

®*(z)=*W) »,(*), ω
where Vx denotes the covariant derivative of Jί> then (Jί, Θ) is called
a totally geodesic null hypersurface. On any TGNH (Jί, Θ\ there is a
unique affine connection Psuch that

Θ^(VΎX} = VΘΛΎ}Θ^(X). (2)

We call Pthe induced affine connection.
Any vector field L on Jt tangent to the rays of Jί (we prefer to call

the null geodesies in M rays instead of the more common "generators",
preserving the latter word for symmetry groups generators) is orthogonal
to any vector field on Jί, g(L, X) = 0. We denote such a field always by L.
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Lemma 1. The necessary and sufficient condition for the null hyper-
surface (Jt, Θ) to be a TGNPI is that

0 (3)

be satisfied for any two vector fields X, Y and any L on Jί.

_Proof. Iff a vector field Z on Θ(Jt) in Jί satisfies the condition
g(Z, Θ^(L}) = 0, then there is a vector field Z on M such that Θ#(Z) = Z.

The equation g(VΘt(γ)Θ ,(X), 6>,(L)) = 0 (4)

is, therefore,_equivalent to (1). On the other hand, (4) is equivalent to
(3), because Pis the Riemannian connection of g ([8]), q.e.d.

Choose a real vector field L on Jt satisfying

FLL = 0, (5)

and a complex vector field M on Jί satisfying

0, (6)

where " + " denotes the complex conjugate. The connection Pcan then
be described through the four complex coefficients Γ, Ω, λ, μ as follows

(7)

=λL-Γ+M+ .

The self-consistence and full generality of (7) is guaranteed by (5), (6)
and the relation g(χ> ^ γ} = _

following from g = Θ*(g) and (2). The Lemma 1 and (7) implies that the
existence of affine connection V on (Jί, Θ) satisfying (8) is only possible,
if (Jί, Θ) is totally geodesic ([1 1]).

The curvature tensor R for V is easily computed from the well-
known relation

and (7): R(X> Y}Z = Vχ(^Z] ~ Vγ(VχZ] ~ ̂ Z (9)

+)L = (MΩ+-M+Ω-ΓΩ++Γ+Ω)L,

+ M+Γ-2ΓΓ+)M,

R(L,M)L = (LΩ)L,

R(L,M)M = (Lλ+)L-(LΓ)M,

R(L,M)M+=(Lμ)L +
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We have used

-Γ+M, (11)

(12)

the symbol Xf denoting the derivation of the function / in the
direction X.

The curvature tensor of a non-metric connection in a three-dimen-
sional space has, generally, 24 independent components and the following
symmetries

([8]). The first relation is automatically incorporated in (9). The second
one yields

LΓ = 0,

- L(μ - μ+) = MΩ+ - M+ Ω - ΓΩ+ + Γ+ Ω .

Thus, our curvature R has just 9 independent (real) components in com-
parison with the twenty four possible for general non-Riemannian
connections and 6 possible for Riemannian connections in three dimen-
sions. The 15 extra relations are

for any four vector fields X, Y, U, V and are related to the existence of
the degenerate metric.

From the definition of P(2) and from (9), the Gauss -Coddazzi equation
follows _

, Y)z) .

It allows to compute 14 of the 20 independent components of R from the
components of R, at every point of &(Jί\ But the components of R
must satisfy the Einstein-Maxwell equations and Bianchi identities. We
shall not compute the implications of these relations from the Gauss-
Coddazzi equation, which would be the most direct method, but use
rather the Newman-Penrose equations [12], which will be more rapid.

Introduce a pseudo-orthonormal tetrad field X^X^X^X^ along
Θ(Jf) such that

4 = Θ*(M+) (13)

and extend it differentiably in a neighbourhood of Θ(Jί). The corre-
sponding spin coefficients must then satisfy, because of (7), (13) and
(4.1 a) of [12]

κ = ε = π = ρ = σ = Q, α + β = Ω, α — β = Γ ,
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the coefficients y, v remaining undetermined. A straightforward calcula-
tion yields then the following relations:

(14)M+Ψ2 + Φl M+ Φj ,

L Ψ4 = (M+ + Γ+ + Ω+) Ψ3 - 3λ Ψ2 + Φl (M+ + Γ+ + Ω+) Φ

Φ,Φί ,

MΓ+ + M+ Γ - 2ΓΓ+ =-ψ2-

-M+λ+ + 2Γ+λ+-Ω+λ+ = Ψ+ -Φ^ΦΪ , (16)

where Ψ, and Φ{ are the components of the Weyl and Maxwell spinor,
respectively, as defined in [12].

From these equations, it can be immediately read that the horizon
is determined, if one prescribes

1) its metric and affine structure,
2) the phase of Φ1 at a Cauchy surface ,̂
3) Φ2 and Ψ4 at the Cauchy surface tf.
By a Cauchy surface, any space-like properly embedded two-dimen-

sional submanifold of Jί is meant that intersects all rays ι

b) Quotient Surface

The set ̂  of all rays of Jί can be given a differentiable structure
assuming the projection map Ti'.Jl-*^ differentiable; the point p e Jί
is mapped by π in the ray p going through p. The subspace of Tp(Jf)
tangent to this ray, i.e. the space Tp(p) of all vectors of the form αL, is
mapped by π^ into the zero vector of Tp(^\ There is one-to-one
correspondence, therefore, between points of Tp(£f) and the classes
Xp + aL of Tp(Jf)/Tp(p). All forms ωeT*(Jf) such that ω(L) = 0 are
linear forms on classes of Tp(Jί)/Tp(p) and determine, via the corre-
spondence, forms in T£(&). It holds

([8]). The metric g in Jί induces a non-degenerate metric on the classes
Tp(Jί)/Tp(p\ because Tp(p) is the maximal subspace of Tp(Jί) orthogonal
to Tp(Jί). Thus, we have a unique negative definite metric g on &
satisfying π*(#) = # at p, i.e. g(Xp9 Yp) = g(π^(Xp)9π^(Yp)). The metric g
is well-defined on &, i.e. independent of the choice of p along p, because of

3>Lg = V, (17)

£PX denoting the Lie derivative along X.
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Lemma 2. Let X be a vector field on Jt. There is a vector field X
on & π-r elated to X, iff [L, X~\ = aL, where a is an arbitrary function.

Proof. 1) L is π-related to the zero vector field on &. Suppose there
is X = π*(X). Then π J[L, X]p) = [0, lπ(p)] = 0. Therefore, [L, X\ e Tp(p\
for any p e Jί.

2) If [L, X~\ = aL, then there is X' and a function b such that X'
= X + bL and [L, JΓ] = 0 : b satisfies the ordinary differential equation
Lb = 0. Because &L(X') = 0, the integral curves of X1 are dragged along
by the rays; hence, the two integral curves of X' starting at any two
points p1 ?p2

 on tne same ray have the same projection. The tangent
vector Xn(pi} to this projection at π(pί) is π%(Xp). Thus, for X', there is a
unique π-related field X on &. Now, π^(X) = π^.(Xf), and X is π-related
to X as well, q.e.d.

It follows, that any real vector field X on Jί for which there is a
π-related field in SP can be written in the form X = xL + z+M + zM + ,
where x is an arbitrary real function on Jt and z is a complex one satis-
fying Lz = 0.

For any vector field X on ,̂ there is an operator V% on vector fields
in Sf defined as follows. Let X = u+M + uM + , Ϋ = v+ M + vM + , where

Choose two fields X, Ύ on Jt such that

X - xL + (π*(u+

x, y are arbitrary functions on Jί. Then, ^ί" = 71^(^7). It is easy to
show that 7χ Y so defined does not depend on x and y,

-f+)v)M+ ,

where Γ = π(Γ), and that Pis the symmetric Riemannian connection on
^ corresponding to g. In particular, we have

RABCD = K(gADgBC - gACgBD) , (1 8)

K = MΓ++M+Γ-2ΓΓ+ , (19)

where X is the scalar curvature of .̂ With (19), the first equation of
(\ 5Ϊ is
U j JC - - Ψ2 - Ψϊ + 2 Φ ! Φ + . (20)

We shall often need the component transcription of the last equation
of (15), too. Defining the real vector ΩA by

MA, (21)
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we find that ΩA is invariant under space rotation M' = eίφ - M, under
null rotation Mf = M + ξL and under rescaling L = ηL, it behaves like

(22)

The second equation of (15) is, then, equivalent to

dΩ, dΩ2

where XA are some coordinates on the manifold & and g is the determinant
of the matrix gAB of the metric components in these coordinates.

A straightforward verification from the definition yields that Φ1 and
Ψ2 are independent of the choice of L, M, and are, therefore, invariants

onJ/.
In what follows, we shall consider only those TGNH Ji with the

following properties
1) the quotient surface & of Ji is compact orientable surface,
2) Jί is, topologically, & x JR1.
(The last condition excludes, e.g. the TGNH separating the Taub

from NUT part in Taub-NUT space.)
Any TGNH satisfying 1) and 2) is called a horizon.

3. Horizon Symmetries

Let φ\Jt-*M be a diffeomorphism onto satisfying

(24)

(25)

for arbitrary p e Jt and arbitrary vector fields X, Ύ on Jί. Then, φ is
called a horizon symmetry, because it preserves all structures of the
horizon.

Let us call φ logitudinal HS, if it does not move the rays of the horizon.
Then, (24) is satisfied because of (17) and the only non-trivial condition
is (25). We find some implications of it.

Choose a ray p, and four different points α, b, c, d, on it. The number
(α(b) — α(α)) : (α(d) — α(c)) is independent of the choice of the affine
parameter α along p, and is, therefore, an affine invariant of the figure
consisting of α, £>, c, d. φ must preserve that invariant, or

)) =
l j
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where k is a non-zero real, dependent only on φ and p, independent
of the choice of a and b, because of the first half of (26).

Let pί and p2 be two different rays, a, b points on p±,c,d points on p2

and C:[0, l]->^ a smooth curve with C(0) = α, C(l) = c. Parallel
transport of the vector expo" ί (b) along C defines a unique vector X at c
and X a unique point b' = Qxpc(X) on p2 Again, the real (α(ί/) — α(c)) :
: (α(d) — α(c)), where α is an affine parameter along p2, is an affine in-
variant of the constructed figure, and is, therefore, preserved by φ. Using
the relation LΩ = 0, we obtain easily that kl=k2 with k{ defined by (26)
on pz. We have shown

Lemma 3. Any longitudinal HS φ defines a unique non-zero real k,
called affine magnification of φ, so that

/or any ίwo points a, b on any ray p, and for any affine parameter a along p.

We call φ a collineation, if feφ 1, and a translation, if k= 1. Let φ
be a collineation and |fe| < 1 (if |fe| > 1, choose φ"1 instead of φ). Then,
the series φn(a] is convergent for any point α e ̂ , and p0 = lim φ"(α) is a

M — >• oo

well-defined point on any ray p, for α e p, because lim φ"(α) = lim φn(b)
n— > oo «— >• oo

for any two points α, b on p. All such p0 form a Cauchy surface 5̂ 0 in M,
satisfying φ(£fQ) = ̂ 0? and it is the maximal subset of Jί kept point wise
fixed by φ. It holds [8]

Lemma 4. Let φ'.Jί^Ji be a diffeomorphism onto, Xί,X2,X?> a
frame field on Jί and Γjk, Γ ^ defined by

Then, φ is a longitudinal PIS, iff
1) π ° φ ° π " 1 = identity on &,
2) Γjk = ηlforall U, fc=l ,2 ,3 .

Lemma 5. Let Z be a vector field, Xv, X2, X3 a frame field along Jί
satisfying ^Z(X^} = 0, and Γjk the corresponding rotation coeff.

yXιxj = rfjxk.
Then, Z generates a one-dimensional group of longitudinal HS, iff

1) Z is tangential to rays,
2) zηk = Q.
Proof. 1) Suppose that Z generates a one-dimensional group of

affine transformations. According to [8], p. 231,
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for any X, Y, in particular for X = Xh Y = Xj. But ^z(Xj) = [Z, Xj] = 0,
hence 0 = &z(rXlXJ)=<?z(ΓfJXk) = (ZΓfJ)Xk, or Z/$ = 0.

2) Suppose that Z/y = 0. We show that (27) is satisfied for arbitrary
X = xlXh 7 = y F;: From the identity

} + (Zx

we have

= (Zx')

which is nothing but (27), q.e.d.
Let φ be a collineation with a fixed-point Cauchy surface ^0 and

affine magnification fc > 0. Choose an affine coordinate α along M such
that α = 0 at ^o, the field L = d/da, and the field M tangentially to ^0

satisfying FLM = 0 everywhere on Jί.liβ = Igα, then β(φ(p)) = β(p) + Ig/c
for any pe^ with α(p)φO. Choose another frame L,Mf as follows:

L = d/dβ, Mf = M at ^0, [L',M']=0 on ^ .

It follows that Lr = αL, M' = M + α£2L, because of Mα = — αί2. To show
the last relation, we observe that L(M α) = M(Lα) + [L, M]α, and,
according to (12), L(Mα) = — Ω. On the other hand, (Mα)^o = 0. Clearly,
φ^(L} = L, φή:(Mf) = Mf; the rotation coefficients with respect to the
primed frame are given by

(28)

(29)

+ +ΓΩ+ +ΩΩ+)L + ΓMf+ , (30)

where μ0 is defined by μ = μ0 + Ψ2u according to (14). From the Eqs. (14),
it follows at once that the primed rotation coefficients will be invariant
under β^β + \gk only if μ0 = λ = Q. Therefore, on ^0, VWM' = -ΓM',
VM,M'+ =ΓM'+, i.e., ^o is totally autoparallel. (28)-(30) together with
the Lemma 4 imply that the transformation β^ —β is a collineation
with fe = — 1. A combination of all these results with the Lemma 5 gives

Lemma 6. The existence of a totally autoparallel Cauchy surface ^
on Jί implies the existence of a two-component (k < 0, k> 0) one-dimen-
sional Lie group of collineations fixing £f0. The locus of fixed points of
any collineation on Jί is a totally autoparallel Cauchy surface.



46 P. Hajicek

Let, next, φ be a translation. Choose an arbitrary Cauchy surface
ίf and an affme coordinate α such that α = 0 at ̂  and a(φ(p)) = α(p) + 1
for any p e ̂ . Let L = 3/3 α, M be tangential to «$* and PLM = 0 every-
where on Jt. Another frame L, M' is chosen such that L = L, M' = M
+ aΩL. Again, φ#(L) = L9 φ^(M') = M'\ the new rotation coefficients
are given by

VM, M' = (λ+ + (MΩ + ΓΩ + Ω2)a)L - ΓM! ,

VM, Mf+ = (μ0 + (Ψ2 + MΩ+ - ΓΩ+ + ί2ί2+)α)L' + ΓM'+ .

Invariance under α -» α + 1 is equivalent to

Mί2 + Γ£2 + f22 = 0, (31)

Ψ2 + Mί2+ - ΓΩ+ + ΩΩ+ = 0 . (32)

Combination with the Lemma 5 and 6 yields

Lemma 7. The existence of a longitudinal HS φ implies the existence
of a one-dimensional group of longitudinal HS containing φ.

Lemma 8. // two one-dimensional groups φt and ψt of longitudinal
PIS contain a common element φτι=Ψτ2> ^i ^ 0, ίnen

φt.Tl'T2ί==Ψt f°r any t

Lemma 9. Two different totally autoparallel Cauchy surfaces ^ , ̂ 2

in Jt imply the existence of a translation φ such that φ(^}

l) = ̂ 2.

Proof. Choose α = 0 at 5^ and let α = a(xA) at 5 2̂. The collineations
implied by Lemma 5 can be written

α -> fcα , α - OL(XA) -> /(α - a(xA)) .

Combining these collineations with fc = 2, 1 = 1/2, we have

α-> 2(a(xA) + i (α - α(x^))) = α + α(xx) , q.e.d.

Lemma 10. Γ/zβre cannot be ίwo different one-dimensional translational
groups on a horizon Jt.

Proof. If the groups are different, we find, for any ray p, a combination
of translations which is not the identity and which keeps p fixed. In fact,
we shall have a whole one-dimensional group Φp of such translations.
Obviously, there is a dense subset &" of & such that, if p e ̂ , then Φp

induces a one-dimensional group of null rotations in Tp(Jf) for every
pep. Therefore, components of all quantities related to a frame L, M
must be numerically the same as those related to the frames (L',MX)
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= Φp*(A M) : L = L, M' = M + ξ(t) L, t is the parameter of the group Φp.
Now, the corresponding components of the left hand side of (16) are
related as follows

(l.h.s. of (16))' = (l.h.s. of (i6))-ξ(t)Ψ2

invariance is possible only if
Ψ2 = Q (33)

on p. But p are dense in ̂ , so (33) holds everywhere. Equation (22) and
(23) then implies that there is a rescaling after which Ω = 0. In the corre-
sponding frame L, M

VMM = λ+ L-ΓM, PMM+

μ, λ, Γ being constants along rays and [L, M] = 0. According to Lemma 5,
L generates a one-dimensional translational group. There must be
another linearly independent translation generator, say, L = ηL, where η
is a non-constant real function on Jt, Lη = 0. In the frame L, M' — M,
Ω' = M(lg|f/|), and must satisfy (31) and (32) with (33). For y = lg\η\,
these equations read in the component formalism

2 (34)
8xAdxB dxA 8xB AB dxc '

The integrability conditions of (34) yield either y — const or K = 0.
In the second case, & is a torus and periodic coordinates XA can be
chosen so that Γ%B — 0. The only non-zero solution of (34) is, then

with η°, ηQ

A constants. This function shows no periodicity unless all
ηA = 0, giving y = const. But this is the old group generated by L, q.e.d.

(The compactness of & was used here; our linear solutions for η
work all very well in the null plane of Minkowski space-time.)

Theorem 1. The group J^ of all longitudinal HS of a given horizon Jί
can be of the following four types, at most:

1) identity
2) one-dimensional two-component collineation group,
3) one-dimensional translation group,
4) two-dimensional two-component group generated by 2) and 3).

We shall see later that all three types really exist. Next, we turn our
attention to the so-called transversal groups. In general, any HS φ
must map null curves into null curves, i.e. rays into rays. Thus, it induces
a diffeomorphism φ : &-*&, φ = π° φ°π~l, on <?, which clearly must
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be an isometry. Let Ή be the group of all HS of Jί. Denote by
4J = πc(£°π~^ and by π^:^-^ the homomorphism defined by πg(φ)
= π ° φ ° π ~ 1 . The kernel of πg is the group Jtf of all longitudinal HS of Jt.
<& is called transversal group of Jί. The possible structures of isometry
groups of a compact orientable surface are well-known, we have, therefore

Theorem 2. The component of the identity of the transversal group $
of a given horizon Jί can be of the following four types

1) identity,
2) SO (2) (axial symmetry),
3) S0(3) (sphere),
4) S O ( 2 ) x S O ( 2 ) (torus).

The discrete groups, also well-known, are not interesting for us.
Our investigation on HS is nicely completed by proving the following
"Decomposition Theorem" :

Theorem 3. Let & be the group of all PIS of a given horizon Jί, ffl
the subgroup of all longitudinal symmetries ana <& the transversal group.

First, we show the following

Lemma 11. Let φt be a one- dimensional group of HS on Jί with space-
like trajectories which are not closed. Then, there is a whole two-dimensional
group of HS on Jί containing φt as a subgroup, a one-dimensional longi-
tudinal subgroup ψt and a one-dimensional subgroup Φt with space-like
closed trajectories such that Φt = φt.

Proof. According to the Theorem 2, φt is isomorphic to SO(2), so
there is a minimum parameter value ί= T>0 such that φτ is identity
on &. Because the trajectories of φt are not closed, φτ is not the identity
on Jt and must, therefore, be purely longitudinal. The Lemma 7 then
implies, that there is a whole group, ψs, say, of longitudinal HS; let us
choose s such that ιpτ = φτ. For a fixed t, φ_t°ψs°φt is again a longi-
tudinal group, containing ψτ = φ_t° ψτ° φt, hence (p-t° ψs°φt — V5?
because of the Lemma 8. But the last identity means that any φt commutes
with any ψs. Then Φt

:='ψ-t

oφt must be a one-dimensional group with
space-like closed trajectories in Jί, satisfying Φt = φt, q.e.d.

In fact, we have shown the Theorem 3 in case that *8 is one-
dimensional. If ̂  has more dimensions, we can construct, for any one-
dimensional subgroup of ,̂ the corresponding group with space-like
closed trajectories in M, as in the proof of the Lemma 11. Then, it must
be shown that i) all elements of these "closed" subgroups commute with
all elements of Jf , ii) these "closed" subgroups generate a group whose
trajectories in Jί are two-dimensional.
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i) Denote by N the dimension of ,̂ by N — n the dimension of 3?
and choose a basis for the Lie algebra of ^ such that the last N — n
elements Hn+ί, ...,HN form a basis for the subalgebra of Jtf. Each Gt

from the remaining n elements G 1 ? . . . , Gn generates a one-dimensional
subgroup ̂  of ̂  and the vector fields Gi = π9*(G;) form a basis of ̂ . The
generator Gt can be chosen in such a way that (Si all have closed tra-
jectories, according to the Lemma 11. Then, we show that all elements of

,̂ z = l , . . . , w 5 commute with all elements of ffl. Choose h e J4?
<g( = h~l - $i h is another one-dimensional transversal subgroup of ̂
such that π^(^ ) = πg(&i), so there is a generator G of ^\ fulfilling π^G )
= π^(Gi). Hence, the vector field Gt — G( generates a subgroup ̂  of Jf,
if GI — G'ι φ 0. The trajectories of ̂  and ̂  are both closed; starting from
a common point p, they must have, according to the Theorem of Rolle,
equal tangents at some point, q, say, before returning to p. But this means
that Gi(q^ — G'i(q2) for any two points ql9 q2 on q and q is a fixed ray of
J^. This is possible only if J^ is trivial or a translation group. In the
second case, J^ is the only translational subgroup of Jf according to the
Lemma 10, and its fixed ray is a property of the horizon which must be
symmetric with respect to ̂ . Hence, J^ is trivial, Gt = G , and ̂  =^! ,
q.e.d.

ii) First, we need the following results on HS:

Lemma 12. The generator X = xL + z+M + zM+ of a HS must
satisfy the equations

(M + Γ)z = Q, (M-Γ)z++(M+-Γ+)z = 0, Lz = 0, (35)

L(Lx) = 0, M(Lx)=-(Ψ2-ΨΪ)z. (36)

Proof. The Eqs. (35) are nothing but the Killing equation (17)
written in the complex formalism. The Eq. (36) follows from the first
equation of [8], p. 236, setting Y=Z = L and Y=M, Z = L, and from
Eqs. (35) and (14).

To show ii), we choose a special case ^ = 50(3). The proof for a
torus, which is, according to the Theorem 2, the only rest to be removed,
then, is similar and even simpler (and less physically interesting, [6]),
so we shall not give it here.

Choose spherical coordinates & and φ on &. The generators of <§
can be chosen

G,=

d
>ιn <p-τy

d

d
dφ

3
-f- ctg i? cos φ

oφ

ctg \7 sin φ _
oφ
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If α is an affine coordinate on Jί, generators G l 5 G2, G3 can be of the
form g d d

G! = sinφ —— + ctg#cosφ—— + xί-—9 (37)
tf# dφ dot

- — ctgθ sinφ — h x 2 ^ τ ~ >

G3 + x3 . (39)

The symmetry represented by (37), (38), and (39) implies Ψ2 — const over
the horizon, and, because of (23), Ψ2 — Ψ2 = 0. We can, therefore, choose
α in such a way that Ω = 0, if L = d/δα. α is determined up to a trans-
formation α/ = ^α + α(θ, φ), where ^ is a constant. The vector field M
taken tangent to the surface α = 0 remains, then, tangent to any surface
α = const. In such a coordinate system

IVl — IVl _ Λ ~r jVjf —~ ,

where Md and Mφ are some complex functions independent of α, and
we have from (37), (38) and (39) Gt = xiL + zϊM + z{M

+. The Eqs. (36)

α + 0f(3,φ) z = l , 2 , 3 , (40)

4 being constant. Each group ^ has two fixed rays (^ls e.g., 5 = π/2,
φ = 0, π), and because its trajectories are closed, at these rays, the corre-
sponding xt must be zero. Hence,

ξ l = ξ 2 = ξ 3 = 0 , (41)

π Λ / π
2 5-;--ι i 2 , π ) = 0 , (42)

«2 4,-=- =fl2K-,^ =0, (43)
π

2"' 2

In addition to this, αf's must be continuous:

aα,(0.y) = gα,(π,φ) = Q^ j =

^(^9 dφ

The general form of a generator of J^ is H = (η a-\-l(9',φ))d/dct,
where f/ is a constant, because of Eq. (36). If there is an H with η φ 0, we
can specify α further as follows

α' = α+-(/(θ,φ)-l),
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keeping everything valid and reducing H to

(45)

The commutators [Gί? H] must be zero because of i), or, with the help
of (37)-(40), (42), and (45), η a—Q. Let at = Q for all i=l,2,3. Then,
the Theorem follows immediately. Suppose, therefore, that one at differs
from zero for any choice of the affine coordinate α. Then, all generators
of 2tf must have the form H = 1(9, φ) d/doί and generate translations.
According to the Lemma 10, there is at most one linearly independent H.
i) yields Γττ „-. ,„ Λ a / 3 n . . ~ ~J [H, G^\ = — (G ί/)δ/3α = 0, ι=i,2, 3,

or, / = const. Thus, we can choose the affine parameter α so that the
following relations hold 3

H = ——,

α3(3,φ)=0. (47)

(46) and (47) reduce to the following construction of the surfaces α = const:
Choose a point p with θ = 0. Let C(p, q) be the segment of the trajectory
of <^1 going through p, on which φ = π/2 and 0 ̂  θ ̂  π, &(q) = π. Then,
the surface α = const is ̂ 3 C(p, ^f).

The following must be generators of some HS in Jί

[G! , G2] — G3 = sin φ —^— cos φ ~-~ + ctg 9 cos φ

daΛ d
——-r-.

dφ / da

They all generate longitudinal groups, therefore

B, (48)

Va2 Va\ n / Va2 - O C l i X ^ . . Λ .
smφ-— cosφ-—— +ctg#lcosφ— hsmφ—— = C, (49)

where A, B, C are some reals. (48) have the general solution

aι=B + f(S) sin(φ - g(9)), a2= -A + f ( 9 ) cos(φ - g(Sj), (50)
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where / and g are arbitrary functions of 9. With (50), (49) is equivalent to

(/ ctg S + /' ) sing - fg' cos g = C . (51)

(44), (42), (43), and (50) imply

/(π) = 0, (52)

(46), (50), and (53) imply
/(θ)cos0(θ) = 0. (54)

From (54), we have either
/(θ) = 0, (55)

or
cos # = 0. (56)

(53) and (55) yield α1 = α2 = 0, (51) and (56) imply /' + /ctgθ=±C,
which has the general solution of the form

-—.
smθ

Then, (52) can only be satisfied, if C = D = 0, and we have again al = a2 = 0,
which is a contradiction.
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