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Abstract. It is shown that the initial data which gives rise to stationary black hole
solutions extremizes the mass for a given angular momentum and area of the horizon.
The only extremum of the mass for a given area of the horizon but arbitrary angular
momentum is the Schwarzschild solution. In this case, and when the angular momentum
is small, the extremum of the mass is a local minimum. This suggests that the initial data for
the Schwarzschild solution has a smaller mass than any other initial data with the same
area of the horizon. If this is the case, there is no possibility of proving the occurrence of
naked singularities by methods suggested by Penrose and Gibbons. Together with Carter's
theorem, the fact that the extremum is a local minimum indicates that the Kerr solutions
are stable against axisymmetric perturbations.

Introduction

It has been known for some time that a star of more than about two
solar masses can undergo gravitational collapse and produce a black
hole. If the collapse is not exactly spherical, the black hole will be initially
in an excited state and gravitational radiation will propagate out to
infinity and across the event horizon into the black hole. The gravitational
radiation reaching infinity will reduce the mass of the system as measured
from infinity. [1,2] while the radiation falling into the black hole will
cause the area of the event horizon to increase [3,4]. If the solution is
axisymmetric, the angular momentum will be conserved. Even if the solu-
tion is not exactly axisymmetric, it is probable that not all the angular
momentum can be radiated away. One would therefore expect the black
hole would settle down finally to a stationary equilibrium state which
minimized the mass and maximized the area of the event horizon for a
given angular momentum. If the black hole is rotating, this stationary
state must be axisymmetric [4-6] and be (ί, φ) symmetric, i.e. invariant
under t-^—t and φ-+—φ [7,8]. It therefore seems reasonable on
physical grounds that among all (ί, φ) symmetric sets of initial data,
those which give rise to stationary black hole solutions minimized the
mass and maximize the area of the event horizon for a given angular
momentum. In fact to determine the position and area of the event
horizon, the boundary of the region from which it is not possible to
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escape to infinity, requires a solution of the complete time evolution
problem and not simply a knowledge of the initial data. However the
initial data is sufficient to determine the location in the initial surface
of the apparent horizon [4, 6], the outer boundary of the region of the
initial surface which contains outer trapped surfaces. An outer trapped
surface is a spacelike 2-surface Ά such that the outgoing future-directed
null geodesies orthogonal to Ά are converging. If the solution is not
stationary, the apparent horizon will lie behind the event horizon and
its area will be less than that of the event horizon. It therefore follows
that one would expect that, among all (ί, φ) symmetric sets of initial data,
those sets of initial data which give rise to stationary black hole solutions
should minimize the mass and maximize the area of the apparent horizon
for a given angular momentum. In this paper I shall show that indeed
the mass is extremized for a given area of the apparent horizon and angu-
lar momentum. The Schwarzschild solution is the only extremum of the
mass for a given area of the apparent horizon but arbitrary angular
momentum. At the Schwarzschild solution the mass is a local minimum.
This shows that the Schwarzschild solution and spherically symmetrical
gravitational collapse are stable against axisymmetric perturbations.
It also indicates (modulo certain unproved theorems about function
spaces) that the initial data corresponding to the Schwarzschild solution
has smaller mass than any other initial data with the same area of apparent
horizon. If this is the case, it shows there is no possibility of proving the
occurrence of naked singularities by the method proposed by Penrose
and elaborated by Gibbons [9]. The idea was to find time-symmetric
initial data which had a smaller mass than the Schwarzschild solution
with the same area of apparent horizon. Such an initial state could never
settle down to a Schwarzschild solution if the area of the horizon in-
creased and the mass decreased.

I shall also show that the extremum of the mass must be a local
minimum if the angular momentum is small. Together with Carter's
theorem [8] this shows that the Kerr solutions are stable to axisymmetric
perturbations.

1. The Initial Data

A set of initial data for the empty space Einstein equations consists
of a 3-dimensional manifold £f on which there are two symmetric tensor
fields hab and χab [10, 6]. The tensor field hab is positive-definitive and
the two fields must obey the constraint equations

χab\\chbc-χbcl\ah
bc = o, (l)

R* + (χabh
ab)2-χabχcdh

achbd = 0 (2)
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where habhbc = δa

c, the double stroke || denotes covariant differentiation
in £f with respect to the metric hab, K* is the curvature scalar of hab.
A development {Jί, θ, gab) of the initial data (y, hab, χab) is a 4-dimensional
manifold Jί on which there is a Lorentz metric gab which satisfies the
empty space Einstein equations and an embedding θ: £f -+Jί which is
such that θ{Sf) is a spacelike surface in Jί, hab is the induced metric
θ*(gab) or 1st fundamental form of Sf and χab is the 2nd fundamental
form, θ*(na;b% where it is the unit timelike vector orthogonal to θ(Sf)
in Jί. The initial data is axisymmetric if it is invariant under, i.e. has
zero Lie derivative with respect to, a vector field ka in ̂  whose orbits
are closed curves which vanish on a 1-dimensional axis. The development
of an axisymmetric set of initial data will also be axisymmetric, that is
there will be a Killing vector field Ka in Jί which coincides with θ%(ka)
on θ(£f). In such an axisymmetric solution one can define the angular

momentum L as A
1 Ayah

where dΣab is the surface element of a 2-surface Ά in Jί. The angular
momentum is the same for all homologous 2-surfaces Ά. It can be

evaluated directly from the initial data: L= + —— j χabk
a dΣb where

dΣ is the surface element of a 2-surface 3P in &.
The initial data is said to be (ί, φ) symmetric if it is axisymmetric,

if the vector ka is orthogonal with respect to hab to a family of 2-surfaces
in £f and if there is an isometry of the development which maps θ{£f)
into itself but reverses the direction of rf and Ka on Q(£f\ The necessary
and sufficient condition for an axisymmetric set of initial data to be
(ί, φ) symmetric is that χab should be of the form

where Ja is an axisymmetric vector field orthogonal to ka. The angular
momentum can then be expressed as

L=^\JadΣa(k%). (3)
π

The first constraint equation will be satisfied if

(kbkbJ
a\a = 0 (4)

and the second constraint equation will be satisfied if

R* = 2JaJa(k%). (5)
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One can solve this equation by a method of Lichnerowicz. Choose a
spatial metric hab and find a Ja which satisfies Eq. (4) in this metric.
One now defines a conformally related metric hab = V4hab where V is
some positive function on ίf. In the metric hab9 Eq. (4) will be satisfied by

Ja = V-6Ja. (6)

Eq. (5) will be satisfied by the initial data (hab9 Ja) if V is chosen to satisfy

VR*-$V2V = 2V-ΊJaJbh
ab(kckdhcd) (7)

where K* and V2 refer to the metric hab.
The initial data will be asymptotically flat if hab = ηab + O(r~2) and

Ja = 0{r~4') where ηab is the flat space metric on ίf. In this case, one can
define the total mass of the system as

m=-^- lim f W]]adΣa. (8)
2π - i

The apparent horizon d$~ in θ(£f) is defined to be the outer boundary
of the region <T of θ{9) which contains outer trapped surfaces. d$~ will
be a marginally outer trapped surface, i.e. the outgoing null geodesies
orthogonal to it will have zero convergence. This implies that

(Xab + Wa\\b)™amb = 0 (9)

where wα is a unit vector orthogonal to d?Γ in Sf and nf and ma are
complex conjugate null vectors lying in d$~ and satisfying mam

a=ί.
Since Ja will be orthogonal to dβΓ, the first term in (9) will be zero. There-
fore wα||fl = 0 which shows that d$~ is an extremal surface in 9* i.e. the
area is unchanged to 1 st order under a small deformation. The condition
that it is the outer boundary of the region containing outer trapped
surfaces implies that in fact it is a surface of minimal area. Thus its area
will be less than or equal to the area of the intersection of the initial
surface with the event horizon, the boundary of the region from which
it is not possible to escape to infinity. The two horizons will coincide and
their areas will be equal if and only if the development of the initial data
is stationary.

3. The Variational Formula

The mass m defined in the last section depended only on the spatial
part of the metric. In a stationary metric, that is one that admits a Killing
vector Ka, one can define another quantity m which depends only on the
time-like part of the metric.

^ \ (10)
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where the integral is taken over a 2-surface Ά near infinity. If the metric
satisfies the empty space Einstein equations near infinity, m — m. It was
shown in [11] that in a stationary axisymmetric (t, φ) symmetric black
hole metric

m=~A + 2ΩHLH+--~ J RabK
adΣb (11)

4π 4π y_m

where K is the surface gravity of the black hole & defined by la.bl
b = κla,

la = Ka + KaΩH is the tangent vector to the generators of the event

horizon, A is the area of the event horizon and LH= — - — f Ka.b dΣab

is the angular momentum of the black hole. This formula holds whether
or not the metric is a solution of the empty space Einstein equations.
In a stationary axisymmetric (ί, φ) symmetric metric which satisfies the
empty space constraint equations

( g ) n a = 0, (12)
one can express m as

m=-^A + 2ΩHLH+-^ J RKadΣa. (13)

One can use Eq. (13) to derive the difference δfh between the values of
m for two nearby axisymmetric (ί, φ) symmetric metrics which satisfy
the empty space constraint equations. The calculation is similar to that
given in [11]. The variation in the term involving the scalar curvature
R gives \

- - ό - ί {{Rcd-\gcdR)fcd + 2fU}K"dΣa (14)

where fab = δgab= ~gacgbdδgcd. But

2f\c,d]K
a = 2(Kafcto« - Kdf}c'a% (15)

since fcd;aK
a + fadK

a

;c + facK
a

;d = 0 because the perturbation is sta-
tionary. One can therefore transform the last term in (14) into the
2-surface integral \

- — ί (K'f^-K*/}<••<*) dΣad (16)

where ^ is a 2-surface in 9* near infinity. The integral d& gives
SK

— - — A — 2δΩHL. The integral over 0* gives δm — 2δm. Therefore
4π

^ ^ faKadΣ°. (17)

This formula holds for all variations through stationary axisymmetric
(ί, φ) symmetric metrics which satisfy the empty space constraint
equations.
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Suppose (hab, Ja) is a set of (t, φ) symmetric data which satisfies the
empty space constraint equations and which has a development (Jί, θ, gab)
which is stationary i.e. which admits a Killing vector Ka. Let (h'ab, J'a)
be another set of (t, φ) symmetric initial data on Sf which satisfies the
empty space constraint equations and which has the same angular
momentum and area of the apparent horizon as (hab9 Ja). By a diffeo-
morphism of 9> one can arrange that the apparent horizon of (h'ab, J'a)
coincides with that of (hab,Ja). One can then find a stationary axi-
symmetric and (t, φ) symmetric metric g'ah on Jί which satisfies the
empty space constraint equations and which is such that h!ab and χ'ab

are respectively the first and second fundamental forms of θ(£f). The
metric g'ah can be defined on θ(£f) as

θt(h'ab)-riarib (18)

where ήa = otKa + βKa and

2Ja = a(βa~%. (19)

It can be shown that the apparent horizon must be topologically spherical
and that the region outside the apparent horizon must be simply con-
nected [4]. Solutions to Eq. (19) will exist in this region. One can then
define g'ab at other points oϊJί by dragging it along by the vector field Ka.
This will give a stationary metric g'ab on the part of Jί that is outside
the event horizon in the metric gab. By continuing the metric g'ab across
the event horizon one obtains a metric whose event and apparent horizons
both coincide with the event horizon in the metric gab and which, outside
the event horizon, is stationary, axisymmetric and (t, φ) symmetric and
satisfies the empty space constrain equations (though not necessarily the
full Einstein equations). If the initial data (h'ab, J'a) is near (hab, Jfl), i.e. of
the form (hab + δhab,Ja + δJa\ then the metric g'ab will be of the form
gab + δgab

 a n d one can use Eq. (17) to show that δm is zero. This shows
that the initial data which gives rise to a stationary black hole solution
extremizes the mass among all (t, φ) symmetric initial data with some

angular momentum and area of the apparent horizon. Conversely, the
(t, φ) symmetric data which extremizes the mass for given angular momen-
tum and area of the apparent horizon will give rise to a stationary black
hole solution.

4. An Explicit Form of the Variational Principle

In order to make the variational principle more explicit it is con-
venient to introduce a special coordinate system in ίf. By the conditions
that the initial data be (ί, φ) symmetric, the metric hab is Of is invariant
under the generator ka of spatial rotations and ka is orthogonal with
respect to hab to a family of 2-surfaces in 5 .̂ The 2-surfaces can be labelled



A Variational Principle for Black Holes 329

by the coordinate φ with φ=0 identified with φ = 2π. In the 2-surfaces
φ = 0 one can introduce coordinates ρ and z such that ρ = 0 on the axis,
ρ2 + z2 = 1 on the apparent horizon and such that the metric induced
by hab on the 2-surface φ = 0 has the conformally flat form e2ζ(dρ2 -f dz2).
The coordinates ρ, z can then be defined on the other surfaces φ = con-
stant by dragging them along with ka. The metric hab then takes the form

(ρ ) + ρ2e2ipdφ2 (20)
where

ρ2e2ψ = frk*hab. (21)

In order to apply the procedure given in Section 2 for solving the
constraint equations, choose an hab of the form (20) with ζ= — β and
ψ = β where β goes to zero like (ρ2 -f z2)'1 at infinity and like ρ2 on the
axis. The first constraint equation will be satisfied if

V(ρ2e^Ja) = 0 (22)

where the symbol V refers to the flat space metric in cylindical coordinates
ρ, zφ. If one defines λ as 2 log F, Eq. (7) becomes [12]

V2λ=-±V(λ + β)V(λ + β)-±ρ2e-*λ+2βJJ-V(\ogρ)Vβ (23)

where V2 and V and scalar products are taken in the flat space metric in
cyclindrical coordinates. Defining J to be e+3βJ, one can express
Eqs. (22) and (23) in the form

0 (24)

J-V{\ogρ) V(μ-λ) (25)

where μ = λ + β. Eq. (25) has to be solved with the boundary conditions

λ = μ + O{r~2) as r->oo (26)

where

λ = μ + O{ρ2) as ρ->0, (27)

— = -ί when r = 1 . (28)
or

Condition (28) expresses the fact that the sphere r = 1 is the apparent
horizon in the unperturbed metric hab. In performing the variations
there is a sufficient freedom in the choice of coordinates that one can keep
the apparent horizon at r= 1. In this case

^ = 0 when r = l . (29)
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I shall impose a different condition to (29) in the following section but in
this section it is more convenient to consider unrestricted variations.

In this coordinate system the mass and angular momentum can be
expressed as ,

m= - — J eλVλ dΣ, (30)
4ττ â

L=--±- J e

2JdΣ. (31)
oπ e y

To perform the variation of m subject to the constraints (24) and (25) one
constructs the quantity

I = m-J^-A-ΩHL+4- f ΩV(ρ2J)ρdρdz
oπ 8π γ'Lcj-

(32)
V(μ-λ))ρdρdz.

The stationary black hole solutions will be given by those initial data for
which I is an extremum under variations in which K, ΩH, Ω, and ξ are
held constant and J, λ, and μ are varied subject to (26) and (27). In
performing this variation, δm and (5Lare calculated from Eqs. (30) and
(31). In the unperturbed metric the apparent horizon d$~ is at r = 1 and

has area ,4 = 2π \ e2λ sinθ dθ where tan0 = ( —J. In the varied metric
b \ z I

the apparent horizon will in general not be at r = 1 but since the apparent
horizon is a minimal surface, its movement does not alter its area to first

order. Thus δA = 2π f e2λ2δλ sinθ dθ.
b

The variation with respect to λ gives the equations

V(ρVξ) = 09 (33)

ξ = 0 w h e n r = l , (34)

e2λ=-—-- w h e n r = l , (35)
4 π or

4πξ = eλ w h e n r = co . (36)

Eq. (33) with the boundary conditions (34) and (36) has a unique solution

4πξ = eλo(ί-r-2) (37)

where λ0 is the value of λ at r = oo. The variation with respect to μ gives

Λ ς W (38)
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Multiplying this equation by ξ~ \ one sees that at r = 1,

ir = -i. ( 3 9 )

δr

Together with (28) this implies that

dβ
δr

= 0. (40)

This in turn implies that the null geodesies orthogonal to the 2-surface
δ?Γ have zero shear. This is a necessary condition for the solution to be
stationary, for in a stationary solution the apparent horizon will coincide
with the event horizon which will have zero shear [4-6].

The variation with respect to / gives the equations

— VΩ=ξe~*μJ, (41)

Ω = ΩH when r = 1, (42)

Ω = 0 when r = oo . (43)

Eqs. (24), (25), (38), and (41) form a system for determining λ, μ, and /.
If one considers variations in which the area of the apparent horizon is
held fixed but the angular momentum is allowed to vary, one obtains an
extremum of m only when ΩH — 0. In this case Ω = L = J = 0 and the
unique solution is

( ) ί ) (44)

This gives the Schwarzschild metric. Carter's theorem [8, 13] shows that
the solutions of Eqs. (24), (25), (38), and (41) are locally unique for a given
area of the apparent horizon and a given angular momentum. However
it has not been ruled out that there can be two or more disjoint solutions
when the angular momentum is non-zero.

Given a set of initial data which extremizes the mass for a given
angular momentum and area, one can use Eqs. (18), (19) to relate na to
the Killing vector Ka with respect to which the metric is stationary.
One can then drag the coordinates ρ, z, and φ on ^ along Ka and intro-
duce a time coordinate t such that Kat;a= 1 and ί = 0 on ^ . In these
coordinates the stationary axisymmetric (t,φ) symmetric black hole
solution which arises from the initial data can be expressed as

d s 2 = - ί 6 π ξ e d t + e ( d ρ + d z )
(45)

+ ρ2e2μ(dφ-Ωdt)2.
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5. The Second Variation

For initial data which gives rise to a stationary black hole solution,
the quantity / is an extremum under all variations of λ, μ, and /. This
means that the 2nd order change δ2l is a quadratic functional of δλ, δμ,
and δJ. Similarly the mass m is an extremum under variations which
preserve the constraint Eqs. (24) and (25), and leave the angular momen-
tum and area of the apparent horizon unchanged to 1 st order. It therefore
follows that (52m, the 2nd order change in m for a given angular
momentum and area of the apparent horizon, will be equal to δ2l for
variations which to 1 st order satisfy the constraint equations and leave
the angular momentum and area unchanged.

In order to evaluate δ2l it is necessary to calculate the 2nd order
change δ2 A of the area of the apparent horizon produced by 1 st order
variation in λ, μ, and /. In general the apparent horizon d$~ will suffer
a 1 st order displacement from the surface r=ί to a new surface d3Γ'
by such a variation. This displacement does not affect the area to 1 st
order but has to be taken into account in calculating δ2 A. For variations
in λ, μ, and / in which δA is zero, one can use the coordinate freedom to
make a coordinate transformation which makes δλ and δ2λ zero on
r = 1. Because the new apparent horizon d&~' is a minimal surface in the
varied metric h'ab, its area will be less than that of d?Γ in the metric h'ab.
But the area of dZΓ in the metric h'ab is equal to the area in the unvaried
metric hab since δλ = δ2λ = O. Thus δ2 A ^ 0. Because K ̂  0 one therefore
has

δ2m^m(δ'λ0)
2-δλ0(2πyί J eλV(δλ) dΣ

r — oo

j 2 2 4 2 δJ (46)

Eq. (46) holds for all δλ, δμ, and δJ which obey the constraint equations
to 1st order and are such that δL = O and, on r= 1, δλ = O. For such
perturbations the change δλ0 in the value of λ at infinity is zero. Thus
the right hand side of (46) is positive definite apart from the term
— &(δμ)J δJ. This term is zero for the Schwarzschild metric in which
J = 0. Thus among (ί, φ) symmetric initial data with a given area of
apparent horizon, the Schwarzschild initial data corresponds to a local
minimum of the mass. Since the Schwarzschild initial data is the only
extremum of the mass for a given area, this indicates, modulo certain
unproved global theorems about function spaces, that any (ί, φ) symmetric
initial data will have a greater mass than the Schwarzschild initial data
with the same area of apparent horizon.
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One can also show that δ2m is positive definite when / is sufficiently
small. As r-*oo, J = 0 (r~4) and μ = λ0 + O(r~2). Therefore there will
be some upper bound C to e~2μr2\J\ in Sf-F. Then

Q μ^ ^ ρ { ) ( μ ) - 2 . (47)
But

J ξ(δμ)2r-2ρdρdz=- J V(ξ(δμ)2) (Vlogήρ dρ dz

£ J 2ξδμ\V{δμ)\r-γρdρdz

g i \ ξ(δμ)2r-2ρdρdz+2 J ξ(V(δμ)fρ dρ dz.

Therefore

J ξ(δμ)2r-2ρdρdzS4 J ξ(V(δμ)f ρ dρ dz. (48)

Using this in (45) one sees that

- ρ dρ dz .

This will be positive definite if 32 C 2 < 1.
It follows that stationary black hole solutions with sufficiently small

/ will be stable against axisymmetric perturbations since they will
correspond to local minima of the mass for given angular momenta and
areas of the apparent horizon. In particular the Kerr solutions will be
stable for small values oϊa/m. It then follows from Carter's theorem [13,8]
that the Kerr solutions must be stable to axisymmetric perturbations
for all values of a/m less than 1, since if there were a value of (a/m) at
which the Kerr solutions ceased to be local minima of the mass for a
given angular momentum and area, there would be a 1 st order stationary
axisymmetric perturbation of the Kerr solution with that value of (a/m).
Such a stationary perturbation is shown not to exist by Carter's theorem.
A similar result is reached in [14].

I am very grateful to James Bardeen, Brandon Carter, and Gary
Gibbons for a number of useful discussions and suggestions.
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