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Abstract. We give a complete classification of the finite dimensional solutions for the
Lie functional equations of SU(2}.

I. Introduction

In 1966 Dashen and Gellman posed the following [1] problem which
originated from their study of current algebras;

"Let L be a Lie algebra characterized by the CR

classify all the solutions of the functional equations

(i .2)
Several authors [2] attempted to solve this problem with the additional

(physical) requirement of Lorentz covariance on the operators
J(x) = (J1(x), J2(x), ΛM)- However, with this additional requirement
the problem acquires a new dimension of complexity. This is due to the
fact that the unitary representations of the Lorentz group are of infinite
dimension and hence the nature of the underlying Hilbert space may give
rise to complicated problems.

In this paper we analyze the system (1.2) for the SU(2) case [i.e. when
the original commutation relations (CR) (1.1) are those of 517(2)] and
give a complete classification of their finite dimensional solutions
without imposing the additional condition of Lorentz covariance.

We note that within the context of the original physical problem
which gave rise to the system (1.2) this classification might be considered
unsatisfactory as the Lorentz invariance of the required solution is
essential. Nevertheless, we feel that our solution is a useful first step
toward the solution of the more complicated problem.

We add that our work is interesting also from the mathematical
point of view as the solutions to (1.2) form a natural generalization of the
representation problem for Lie algebra.
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Our first step toward the solution is to observe that ^-(0) must
satisfy the CR of the original Lie algebra and, therefore, must form a
representation of it.

Having made this observation, we approach the general problem
in three steps. In Section II we find all the solutions of (1.2) when J(0)
form an irreducible representation of SU(2) (in its standard form).
We remark that the results of this section are not new [3] but we believe
that the method of their derivation is new and paves the way to the
treatment of the reducible case. In Section III we classify all the solutions
when J(0) is a finite dimensional reducible representations of SU(2) in
theform

where / is the highest weight of the representation and τ is a degeneracy
index in case we have to deal with several representations with the same /.
In relation to the material of this section, we note that Joseph [4]
attempted a similar classification with the additional requirement that
J^x) be in the form

Jt(x)= £ atjMHj n<co
j = ι

where Hj are matrices of constant entries. In this paper, however, no
apriori assumption on the form of the solutions is made and closed
exact expressions for the matrix elements of the operators J(x) are
derived. Finally in Section IV we deal with the general finite dimensional
case i.e. when J(0) is any finite dimensional representation of SU(2)
not necessarily in its standard form.

Before closing this section, we make the following two remarks:
1. Our assumption that J(0) is finite dimensional implies that /, τ

have a finite and discrete range. Moreover, this assumption means that
J(x) are finite dimensional matrix operators and hence all functional
analysis complications that appear when the range of these indices is
infinite (this happens naturally when we impose the Lorentz covariance
condition on the solutions) do not arise.

2. The proof of Theorem 2 depends strongly on the results given in
pp. 1 18-125 of Ref. [5]. It is recommended that the reader will familiarize
himself with this material before the reading of Section III.

II. The Irreducible Case

The basic SU(2) nonzero commutation relations (CR) in the raising

n ,.
lowering basis are Γ Ί Γ Ί

Ly + > J 3J — —J+> ly- j^aJ — J-

[J+,J_]=2J3;
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these relations lead to the functional equations

= - J+ (x + y), [J- (x), J3 (2.2)
LJ+(x),j-(yn = tJ3(x + y)

and
[J+ (x), J+ GO] = [J- (x), J_ ft)] = [J3(x), J3GO] = 0. (2.3)

If we assume that J+ (0), J_ (0), J3(0) form an irreducible representation
of S 17(2) of dimension (21 + 1) in its standard form [5], we then have that

» j u u w+i ^2.4)

where ' '"*'

(note the nonstandard indexing of the rows and columns).
We shall solve the functional equations (2) which involve 3(2/4-1)2

functions by reducing the problem in several steps to a scalar functional
equation

Lemma 1. (J3 (x))tj = At(x) δtj. (2.5)

Proof. If we denote the matrix elements of J3(x) by a^-(x) then the
relation

[J3(x),J3(0)]-0
implies that

and therefore
an(x) - A f(x) δ f ι / .

Lemma 2. (J+ (χ))f j = Bt(x) δij+1
(2.6)

Proof. Let us denote the matrix elements of J+ (x), J_ (x) by b /x
and ctj(x) respectively, the relations

[J3(0),J+(x)] = J+(x)

[J_(x),J3(0)]=J_(x)
then imply that

and therefore

Now we want to relate B^x), C((x) to A^x).
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Lemma 3. B^x) = ̂ (A^x) - A^^x))

Ci(x) = ai + 1(Ai+l-Ai(x)).

Proof. We use the CR

[J3(x),J+(0)] = J+(x)

[J_(0),J3(x)] = J_(x)

to obtain the desired formulas.
Now we relate the At to each other

Lemma 4. The A^x) satisfy the following recursive relation

αM ί-ιW + α?+ι^+ιM = (α? + α?+1-2)>l ί(x). (2.8)

Proof. We simply use the CR

and (2.7) to obtain this formula.
From (2.8) we see that it is enough to fix A^x)

Lemma 5. Al(x) = le?'x αe# n . (2.9)

Proof. We use the CR

to find that

2At(x + y) = (£t (x) C, _ l (y) - Ct(x) B, + , (x))

which for i = I gives that

2^(x + y) - af(Xz(x) - A^^x)) (At(y) - A^v(

but by (2.8) αM ϊ-ιW = (α?-2)>lI(x)

and therefore A^x) must satisfy the functional equation

Al(x)Al(y) = l

whose solutions of the form

Theorem 1. The solutions to functional equations (2.2)— (2.3) when
J(0) is an irreducible finite dimensional representation of Si/ (2) in its
standard form are in the form
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Proof. We proved Al(x) = lea'x. We now use the relations (2.8) to
show that J3(x) = £α'-xJ3(0) and the relations (2.7) to give the same for

III. The Reducible Case

We consider now the case when J(0) is a direct sum of irrdeucible
representations in their standard form i.e.

where the matrix elements of D] are given by (2.4).

Theorem 2. The general form of J3(x), J+ (x), J- (x) is

(3.1)

+ cfi'(x) mδmm,δn, + ci'+',.,(x) y(l + I)2 - m2 <5m mAr-1,

+ cίi'(x) 1/0 - m) (I + m + 1) <5;r<5m,,m+1 (3.2)

(3.3)

Proof. For fixed x the following CR must hold

[J3(x),J3(0)] = 0, [J3(x),J+(0)] = 7+(

[J+(x),J_(0)]=2J3(x),

[J_ (x), J3(0)] = J_ (x) , [J_ (x), J+ (0)] = - 2 J3(x)

[J.(x),J.(0)]=0.
(J.o)

It is now important to realize that for any fixed x these CR are exactly
the same CR investigated by Gelfand [3], p. 118-125. Thus the general
form of the operators J+(x), J_(x), J3(x) must be exactly the same as
those for L3, L+ 5 L_ found by him. In our case, however, the constants
cj^cjj+i >£/'-"/ will depend on x and hence the formulas (3.1)-(3.3)
(we use the notations introduced by Gelfand).
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Theorem3. The functions c}j+l(x), cτ

l'^l j(x), cτ

n

τ(x) must satisfy the
following functional equations

(3.7)

cf_' l f l(y) = 0 , (3.8)

cίϊι.,00 [<#!./ + ι(x) (l-m + 2)- cίiτ(x) (/ - m)]

(3.9)

m-l)] (3.10)

τ(x + y) - cί;<(x)c^(y)) = cf_l

 M(y) cfr_ t(x) (/ + m - 1) (/ + m)

Proof. We use the relation

and formulas (3.1)-(3.3) to obtain these functional equations.
To analyze these relations we note that (3.8), (3.7) imply that

(312)

for all x, y. Moreover, since / is dummy, we can rewrite these relations
in the form ,,τ ( } } τ>τ ( }cι+ι,ι(X) _ A cι-ι,ι\X) _ D (τ iτ\

cτ'τ (γ} ~ -Γ ' cτ'τ /γΛ ~ ΰl ' VΛ*>
Cl,l-ΐ(X) Λl Cl,l+ΐ(X)

To proceed, we observe that ctl(x), etc. are independent of m and
therefore the functional equations (3.10), (3.9) must also be independent
of m. This implies that either cJ+ l ί Z(x) = cf'_ τ

1 > z(x) = 0 or

l ( x ) . (3.14)

The first possibility is trivial as the general solution is then simply
ΣΘe^D; where α f are independent. [This can be either from Theorem I
or the relation (3.11).] We proceed therefore to investigate the other
possibility. In this case (3.9)-(3.11) reduce to [using (3.13)].

tf-M./OO cfr(x) + cf;M(x) cK(y) = c}';ltl(x + y) , (3.15)

cΐ:ltl(x) cτ

n

τ(y) = c?lτ

u(x + y) , (3.16)



Current Lie Algebra 213

(3.17)

Thus we see that cί'_!u(x), c/+ ι,/(x) satisfy the same functional equation.
To solve (3.15)-(3.17) let us be given a chain of representations which

we want to couple and let L be the maximal weight in the chain then
for this L (3.17) reduce to

whose solution is
c τ

L

τ

L x ) = ea'xτ,τ

(since cτ

L

τ

L(0) = δτ,τ). Equation (3. 14) then implies that for all representa-

tions in the chain tf(x) = ir*δ^ (3.18)

To find cM + 1(x) and c/ + l j i(x), we substitute (3.18) in (3.17) and rewrite

the coefficients of cJj+iM cί+ι,jM' £/,'?+ iMc/'+i ./OO ^n powers of w,
then it is easy to see that either CΪJ+ 1 (x) or cj+ ί t l ( x ) is zero (since the relation
must be true for all m and Ah Bl are constants) or

c / + l f i (x) = K /c I f ί + 1(x). (3.19)

In the latter case we still have to solve (3.15), but if we substitute (3.18)

then we find that |χ| = Σχ; (3.20)

where Pf is a constant. The relation (3.19) then implies that

Cι + ι,ι(x) = Qτι\x\f'xδτtτ,. (3.21)

A similar analysis now applied to the other two CR's shows that
they finally lead to the same equations and hence impose no new
restrictions on the c's.

Thus we proved the following theorem:

Theorem 4. // J(0) = Σ θ D] then the general solution of the functional
l,τ

equation (2.2)-(2.3) is given by either of I., 2. given below or a combination
of them :

1. J(x) = £©exp(αί x) D], αj e Rn, where αj are unrelated.
l,τ

2. In the form (3.1)-(3.3) where cίίτ(x), cj+ l f /(x), cΐj+1(x) are given
by (3. 1 8), (3.20), (3.21) where α is fixed for each chain of coupled representa-
tions.

Remark. Note that we did not require hermiticity of Λ(x), J2(*\
J3(x) but if we make this requirement then Ql = Pf.
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IV. The General Case

Theorem 5. // J(0) is a representation of SU(2) such that

/(0)=I7 Σ®DΪ U-1 (4.1)

where D] are irreducible representation of SU(2] in standard form, then
the general solution of (2.2)-(2.3) with the boundary value J(0) is of
thefarm J(x)=UD(x)U-> (4.2)

where D(x) is any solution o/(2.2)-(2.3) with D(Q) = Σ®D}.

Proof. Let D(x) be a solution of (2.2)-(2.3) with D(0) =
then obviously J(x) = t/D(x) I/"1 satisfies (4.1) and, moreover,

Ui(*\ Jj(y)l = UDt(x) U'1 UDj{y) U~ 1

- l/D/y) i -^Diίx) IT1 = iε i < / kC7Dk(x + 3;) I/'1 (4.3)

= MUM* + y}
thus J(x) is a solution of (2.2)-(2.3) with the proper boundary conditions.

On the other hand suppose J(x) is any solution of (2.2)-(2.3) satisfying
(4.1) then

D(x)=U-1J(x)U
satisfies

and is a solution of (2.2)-(2.3), therefore, it must be one of given by
Theorem 4 which implies

J(x)=UD(x)U-1

which is the desired result.
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