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Abstract. We study the dynamics of the Dicke maser model in the limit as the number
of atoms becomes infinite and the coupling constant between the atoms and the radiation
field goes to zero. We find that the limiting Hamiltonian is integrable and obtain an explicit
closed form for the unitary time evolution operators. As a corollary we show that in the
limit the radiation emitted by the model is coherent in the sense by Glauber.

§ 1. Formulation of the Problem

We study the radiation emitted by a large system of atoms in a super-
radiant state. We make the electric dipole approximation for each atom,
supposing that the overall dimensions of the system are small compared
to the wavelength of the emitted radiation. The radiation is supposed to
consist of photons, but for notational simplicity we let the emitted
particles be bosons of unspecified nature.

We set up the Hubert space and Hamiltonian in the standard manner
[6, 8, 15]. Each atom is described by a two-dimensional space C2, and
the system of n atoms by (x)"C2. For the rth atom we introduce the spin
operators J(r) acting on the rth component of ®"C2 and satisfying the
commutation relations

W\ JΠ = iJ? UP, 4r)] = iJP UP, -/Π = *•#>
Jir) = J r ) + i r ) ; J(? = J - U ; [J*r), J = 0 if

The single particle space for the emitted radiation is denoted by Jf and
the quantised radiation field is the boson Fock space ̂  over #f :

^ = CΘ^r@{®?ym^}Φ{(8)?ym^}Θ . (1.2)

For any f,geJ^ we have smeared creation and annihilation operators
α*(/) and a(g) on 2F with commutation relations

α(0)α*(/)-fl*(/)β(ff) = </,0>l,

[α(fif),α(/)]=0.
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We let S ̂  0 denote the single particle Hamiltonian on J f and PI$ the
corresponding free Hamiltonian on 3F .

The Hubert space for the composite system is

and the Hamiltonian for the Dicke maser model is

Hn= Σ ωJ? + H0+ {JVa*(b) + J<pa(b)}. (1.4)

Here b e Jf gives the mode of the radiation field to which the atoms are
supposed to be coupled; b is not supposed to be an eigenvector of S.
The coupling constant is taken as λ/n because we desire a finite rate of
radiation in the limit n-> oo, and it is expected that the rate of radiation
is proportional to the square of the number of atoms [8, p. 221]. This
contrasts with [10] where the coupling constant is taken to be λ/\/n for
thermodynamic equilibrium reasons. In the above equations, and below,
we use expressions such as H0 to denote both the operator on 2F and the
operator l(χ)#0 on {(g^C2}®^.

The operator Hn is a self-adjoint operator with the same domain
as PI0. This is proved by noting that the third term in Eq. (1.4) is relatively
bounded perturbation of H0 with arbitrarily small bound [13, p. 187].

We suppose that at time t = 0 the state of the atomic system is given
by the density matrix ρn and that the state of the radiation field is given
by the positive normalised trace class operator ρ on 3F. Since we are
interested only in the state of the radiation field at time t we introduce
the map

(1.5)

which is obtained by averaging out the atomic state. Here SΓ^) is the
space of self-adjoint trace class operators on 3F. M is a positive linear
trace-preserving map given explicitly by

= tr[ρ(l<8>>4)] (1.6)

where A is an arbitrary bounded operator on Ĵ .
The state of the radiation field at time t is then given by

Ί (1.7)

for t^O and arbitrary ρe^(J^). The limiting dynamics of the field is
given by

(1.8)

The main result of the paper is to show that the limit does exist under
suitable assumptions, and that it can be written as an exact closed form.
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Before proceeding we draw the reader's attention to two interesting
papers on related problems which have recently appeared [7, 10]. For
an account of the Dicke maser model with a finite number of atoms see
[6,18,21].

§ 2. Details of the Infinite Atom Limit

The form of the limit in Eq. (1.8) will depend on the initial states ρn

of the system of atoms. To investigate this we define

r=l r=l

so that
[J3,Λ] = ± Λ ; D/+,J-] = 2J3 (2.2)

and the Hamiltonian Hn can be rewritten as

Hn = ω J3 + HO + — (J- a*(b) + J+ a(b}} . (2.3)
Writing n

J2 = J2 + J2

2 + J2 - J_ J+ + J3(J3 + 1) (2.4)
it is clear that

which suggests reducing the problem with respect to the representation
of the Lie algebra s7(2,C) generated by J3, J+. s/(2,<C) has exactly one
representation πm of each dimension m and in the representation πm, J2

Jias the constant value (m2 — l)/4. It follows from standard formulae [16]
Λat

®nπ2= £ αn,mπw (2.5)
m= 1

where the integers an >m are multiplicities and αΛ > l l + 1 = l. Therefore in
®"C2, J2 takes values ranging from zero to n(w + 2)/4.

If σ is an arbitrary density matrix on ®"C2 we now define its (root
mean square) cooperation number μ by

so that 0 rg μ g 1 (compare [6]). We also define the proportion y of
atoms in their excited state by

tr[σJ 3 ]=yn~n/2 (2.6)

so that also O^y ̂  1. We assume that μ and y have limiting values for
the sequence of states ρn, and ensure this in the simplest possible way.
Namely we assume that ρn is a vector state

Qn = ίMn (2.7)
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where J2ξn = $ μnn(μnn + 2)ξn, lim μβ = μ (2.8)
n — > oo

Iim7 π = 7. (2.9)
— *•

= μnn then the subspace LΛ of (χ)"C2 generated by £Λ and s/(2, (C)
is m-dimensional and has a basis φl9 ...9φm where

(2.10)

_ ! , (2.11)

(2.12)

Moreover by Eq. (2.9)
ξn = <PP (2.13)

where
yBn-n/2 = p-ro/2-i. (2.14)

Therefore

2 2m μn 2μn

and since 1 ̂  p ̂  m, letting n -> oo yields

|y-il^iμ, (2.15)

a restriction on y and μ which is not immediately apparent from Eqs. (2.8)
and (2.9). For the sake of eliminating some degenerate cases, we assume
from now on that Λ ^ , , i , i

0 < / 2 ^ 1 , h/- i l< iμ . (2.16)

For future reference we note that the integers m and p depend on n and
that the limiting behaviour is

lim (m/n) = μ, lim (p/ή) = y _ — + A . (2.17)
n~* oo «— >• oo Δ 2,

Since the subspace Ln of (χ)"C2 is invariant under s/(2,(C), the sub-
space Ln®^ of {(^"C2}®^ is invariant under the Hamiltonian HΛ

and therefore under the unitary group eίHnt. We may then take the
Hamiltonian Hn of Eq. (2.3) as being defined on Ln® ̂  since the limiting
behaviour of Eq. (1.8) refers only to the second term of the tensor product.
The next step in analysing the sequence of Hamiltonians consists of
transferring them to a Hubert space independent of n. For this purpose
we introduce the space 12(Έ) of square summable sequences and the
orthonormal basis {£„}*= -oo where en is the sequence whose mth term

is<5 m n .Welet An:Ln^(Έ) (2.18)mn.

be the isometric embeddings given by

m

Σ^er-P (2.19)
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so that , „

independently of n. We also use An to denote the corresponding iso-
metric embedding .

(2.20)

iso-

(121)

and define the Hamiltonian Kn on Jf by

Kn = AnIinA*n (2.22)

so that Kn is unitarily equivalent to Hn on the subspace An(Ln)(S) 3? of Jf
and equal to zero on the orthogonal complement of this subspace. If
ρ0 = e0®e0 then it is fairly obvious from Eq. (1.7) and the subsequent
calculations that

Tn,t(Q) - M0-ίx»'{ί?o ® 0} eiκ^ . (2.23)

The operation M denotes taking the partial trace with respect to 12(Έ).
We give an explicit expression for the self-adjoint operator Kn. Let

#3,n> B±,n t>e the operators on 12(Έ) defined by

(2.24)

-i9 (2.25)

(2.26)

i f l — p^s^m— p and
(2.27)

otherwise. It follows from Eq. (2.22) that

na(b)}. (2.28)

Note that the factor n~ 1 in the coupling constant has now been absorbed
into the operators B± n. It is immediate from their definitions and
Eq. (2.17) that B± n converge strongly as n-» oo to the bounded operators

B±es = βes±, (2.29)
where

The proof of this is facilitated by use of the easily proved bound

\\B±J^m/2n^μ/2+i (2.31)

for all large enough n. The situation with J53 π is more complicated since
one has to subtract a constant depending on n to obtain convergence.
If B3 is the unbounded operator defined by

ses (2.32)
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then f / m i
lim B3.π- p-^--τm = B3 (2.33)
n-»oo [ \ L LI }

where the convergence is taken in the strong generalised sense [13].
The need to subtract this divergent constant is acceptable since addition
of a constant to Kn makes no difference to Tnt in Eq. (2.23).

§ 3. Integration of the Limiting Hamiltonian

It is clear from the above formulae that as TΊ->OO, Kn converges in
some sense to the operator given formally by

It turns out that there is an exact closed form for the unitary group eiκt,
the ultimate reason for this being that in the limit the operators J have
been replaced by the operators B which satisfy the simpler commutation

relations [B3,B±] = ±B± [B+,B_] = 0. (3.2)

We have, in fact, a particular case of the phenomenon of contraction of
Lie algebras [11,12].

We carry out all calculations in the Fourier transform representation.

U:L2(-π,π)-+l2(Z)

be the unitary isomorphism

and, identifying L2(- π, π)®^ with the Hubert space L2 [(- π, π), &~\ = tf
of all square integrable J^-valued functions on (— π, π), also let U denote
the corresponding unitary isomorphism

l/ : j f-»Jf . (3.4)
The operator

K=U*KU (3.5)
is given formally by

= λβ{e~ίβa*(b) + e+iθa(b)} ψ(θ) .

Defining the smeared field operators Φ by

(3.7)
for any / e 3ff. ', we get

(Kψ)(θ)= -iω^+H0ψ(θ) + 2*λβΦ(e-iβb)ψ(θ). (3.8)
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Instead of defining a domain of essential self-adjointness of K, we proceed
to a direct construction of the unitary group exp{ — iKt} and then
return to prove that K is indeed its infinitesimal generator.

We recall from [1, 4, 19] that for any /e J f there is a unitary operator

W(f) on P given by ly(/) = eχp[iφ(/)] (3.9)

and satisfying the canonical commutation relations

W(f) W(g) = W(f + g) exp [i Im </, 0>/2] . (3.10)

Moreover the commutation relation between W and elHot are

eiHot W(f)e~ίHot = W(eistf) (3.1 1)

where we defined S as the single particle Hamiltpnian on Jf . We define
a class of one-parameter unitary groups on Jf" by means of cocycle
equations, a technique developed extensively in [17].

Theorem 3.1. The equation

(Vtψ) (θ) = eia(θ't} W{f(θ9 1)} e~ίHotψ(θ - ωt) (3.12)

defines a one-parameter unitary group on JΓ if and only if a and f satisfy
the cocycle equations

ms + t) = ms) + e-ίssf(θ-ωs,t), (3.13)

α(θ, s + ί) = α(θ, s) + α(θ - ωs, t) + Im </(θ, s), e~iSsf(θ - ωs, ί)>/2 (3.14)

almost everywhere. All solutions of these equations satisfy

) = 0, α(θ,0) = 0. (3.15)

Proof. It is clear that for all real r, Eq. (3.12) defines a unitary operator
Vt on JΓ, so we only have to verify the group equation.

(Vs Vtιp) (θ) = βία(0's) W{f(θ, s)} e~iHos(Vtip) (θ - ωs}

= eia(θ's)W{f(θ,s)}e~ίH°s

- e
ia(θ-ωsj} W{f(θ - ωs, ή} e-ίHotψ(θ -ωs- ωt)

)} W {β~ ίSsf(θ - ωS, ί)} (3.16)

from which Eqs. (3.13) and (3.14) follow. Putting t = 0 in these equations
yields Eq. (3.15).

We transform the cocycle equations into more comprehensible
differential equations.
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Theorem 3.2. Let /, α be solutions of the cocycle equations with
continuous first partial derivatives and let

Λ /• Λ

0(θ)= -^-(0,0), 0(0) = -^-(0,0). (3.17)

77z£ft / and a satisfy the differential equations

8f
-£- (0, s) = e~lSsg(θ - ωs), (3.18)

Conversely given g and β, these differential equations have unique solutions
satisfying the initial conditions

/(0,0) = 0, a(0,0) = 0 (3.20)

and the solutions satisfy the cocycle equations.

Proof. Using Eq. (3.15) we may rewrite Eq. (3.13) as

+ ί)-/(0,s) _.Ss /(0-ωs,t)-/(0-ωs,θ) ._„

which on letting ί->0 becomes Eq. (3.18). Similarly Eq. (3.14) may be

rewritten as α(θ - ωs, ί) - α(θ - ωs, 0)

(3.22)

2

which on letting t->0 becomes Eq. (3.19).
Conversely given ^ the differential equation (3.18) has a unique

solution with the said initial conditions and this solution is

f(θ,s)= ] e-isug(θ-ωu)du. (3.23)
Therefore M = 0

= J e~isug(θ-ωu)du+ J έΓίS(s + ι;)0(0-ωs
u = 0 υ = 0

s s + ί

- j e~isug(θ-ωu)du+ J e~ίSug(θ -ωu)du
U=0 M = S

so / satisfies the cocycle equation (3.13).
Similarly the solution of the differential equation (3.19) is

(3.24)
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where α1(θ,s)= } β(θ-ωu)du (3.25)
and s „ «=o

0^(0, S) = ι } f lm<.e-is"g(θ-ωvle-is"g(θ-ωu)ydvdu. (3.26)

Now "=° "=°
α1(θ,s) + α1(θ-ωs, t)

S ί

= j β(θ-ωu)du+ J β(θ-ωs-ωv)dv (3.27)
u = 0 y = 0

= α1(θ,s + f)

so α satisfies Eq. (3.14) provided oc2 satisfies it.

α2(θ, s) + α2(θ - ωs, t) + i Im</(0, s), e-'Ss/(0 - cos, t)>

f

= i
x = 0 >'=0

ί x

+ i j j lm(e~iSyg(θ-ωy\e-iSxg(θ-ωx)ydydx
x=s y=s

s s + t

+ i J f Im<e~ίs>^(θ-ω3;),e"ίSxgf(θ-ωx)>d);ίix
y = 0 x = s

= α2(0,s + ί)

which completes the proof of the theorem.
From now on we suppose that /, α are given cocycles with con-

tinuous first partial derivatives, and that /(θ, ί)e^(S) for all θ, ί. We
define a self-adjoint operator K by

Ff = exp[-i£ί] (3.29)

where Vt is given by Eq. (3.12). In order to find an explicit expression for
K we introduce some suitable domains. For any α > 0 we define

^ = {ψE^:\\ψ\\^\\e«Nψ\\<π} (3.30)

where N is the number operator on S7 and

^00=0^. (3.31)
α

giving ^^ the Frechet space topology induced by all the norms || ||α.
The operators W(f) leave ̂  invariant for all /e Jf7, as do the operators
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Φ(/). On this domain the map f-*W(f) is strongly differentiable in
the following sense.

Proposition 3.3. Let h(t) be a differentiable 3?-valued function and
let ip E J^. Then f-> W{h(t)}ψ is a differentiable map from 1R into J^ and

4- W{Λ(t)}ψ = i[-Im<Λ'(ί),Λ(ί)>/2 + Φ{Λ'(ί)}] W{h(t)}ψ. (3.32)
at

The proof of this proposition follows in a straightforward manner from
well-known results about the Fock space representation of the CCR's
[1,2,19].

Lemma 3,4. Let S)^ £ Jf be the space of all continuously differentiable
periodic functions from [ — π, π] to J^. Then Q)γ is dense in Jf and in-
variant under exp[ — iKt] for all f e l R .

Proof. We show that ̂  is invariant under each of the separate
components of Vt in Eq. (3.12). lϊψe^1 then

dθ

~dθ

d

0,
 dΨ dw

δθ
: co.

dψ
<oo

', t)} ψ(θ) dip

*L
dθ

(3.33)

(3.34)

(3.35)

<oo

The lemma follows immediately from these estimates.

Lemma 3.5. The subspace &2 = &^n^(PI0) of tf is dense and in
variant under exp [ — iKt] for all t e 1R.

Proof. The invariance of this domain under e~iHot and under ψ(θ)
-+ψ(θ — ωt) is obvious, so we only need to show that if ψ e&
W{f(θ,t)}ιp(θ)e®(H0) for all βe[-π,π].

iH0 W{f(θ9 1)} ψ(θ) = lims
s->0

, ί)}

- l [ W { e i S s f ( θ , t)} eiH°sψ(θ) - W{f(θ, t)} ψ(θ)-]

= lim W{eίSsf(θ, t)} s~l [_eίHoS

Ψ(θ) - ψ(ffβ

+ lims-1 \_W{eίSsf(θ, t)} - W{f(θ, t)}] ψ(θ)

= W{f(θ,t)}iH0ιp(θ)

(3.36)

by Proposition (3.3).
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Lemma 3.6. Let & be a dense subspace of a Hubert space y and
A(t\ B(t) two uniformly bounded families of operators such that & is
invariant for both families and t-+A(t)ψ and f-^B(t)\p are differentiable
for all ψe&. Then t->A(t)B(ήψ is differ entiable for all ψe& and

(3.37)

Proof. Since A(t) and B(t) are uniformly bounded and strongly
differentiable on g they are strongly continuous on y. Supposing

and \\A(t)\\^k, \\B(t)\\^k for all t

lim
s-»0

dA_

~άt

— lim + s)-

s)-A(t)']B(t)ψ + s'1 A(i)

dB

~άt

^°[\

(A(t + s)-
dB

-ψ

-4(0

B(t)ψ

dB

4-

dB

~dT

s)-A(t)}-
dί

(B(t)ψ)\\

dt Ψ

-0

which proves the lemma.

dB

+ 5) -

dB
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Lemma 3.7. The operator K is essentially self-adjoint on 3)2

 and is
given on this domain by

(Kψ) (θ) = -iω^ + H0ψ(θ) - Φ{g(θ)} ψ(θ) - β(θ) ψ(θ). (3.38)

Proof. Each of the separate terms of Eq. (3.12) is differentiable on Q)2

and leaves Q)2 invariant. By Lemma (3.6), Vt is differentiable on 3)2 and
the derivative may be calculated in the standard manner. Using Eq. (3.32)
this yields at t = 0

dψ
(-iKψ)(θ) = i-^(θ90)ψ(θ) + iΦ\^(θ90)\ψ(θ)''iH0ψ(θ)--ω-

Ct [ Ct J uu

which gives Eq. (3.38) on simplification. The above calculation shows
that 3)2 £ @(K) and since Q)2 is invariant under exρ[— iKf], K is
essentially self-adjoint on @2 by [20].

Theorem 3.8. The operator

/~)lM

(3.39)

is essentially self -adjoint on 22 The unitary group

= eίoc(t} W{f(θ, t)}e'iHQt\p(θ - ωt) (3.40)
where

iθ } ei(ω~s}ubdu. (3.41)

Proof. We apply Lemma (3.7) with β ΞΞ 0 and

g(θ)=-2-λβe-iθb. (3.42)

Then the cocycle / is derived from Eq. (3.23). It is not difficult to show
that /, α have continuous first partial derivatives and that f ( θ , t) e 2(S)
for all θ,f . It follows from Eq. (3.41) and Eq. (3.19) that α is actually
independent of θ.

Having given a rigorous meaning to K we now reverse Eq. (3.5) and
define the self-adjoint operator K on JΓ by

K=UKU*. (3.43)

We identify jf with the space I2 [Έ, J^] of all J^- valued square-summable
sequences and define ^3ζl2[Έ, J^] as the space of all sequences of
finite support with values in ^r\@(H0).

Lemma 3.9. K is essentially self-adjoint on ^3 and is given on that
domain by

K = ω£3 + HO + λ{B_ a*(b) + B+ a(b)} . (3.44)
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Proof. We define ^4 £ JΓ as the space of C00 periodic functions from
[ — π,π] to JV Since K is essentially self-adjoint on @2 = @ίn@(H0)
it is also essentially self-adjoint on ̂ 4n @(H0); this makes use of Eq. (3.39).
Therefore JK is essentially self-adjoint on ^5n^(HQ) where ^5 = U@4

is the space of all sequences ψ e /2 [X, J5'] such that

Σ \n\2k \\ip\\l <oo (3.45)
«= —oo

for all fc= 1,2,3, ... and all α>0. It follows from Eq. (3.44) that K is
also essentially self-adjoint on ®3.

We can now return to describe the sense in which the sequence of
self-adjoint operators Kn of Eq. (2.28) converge to K.

Theorem 3.10. // m i
an = p- - (3 46)

(Kn — an 1) converges to K in the strong generalised sense. Therefore
for all t e IR and all ψ e Jf

lim ίΓ^"-""1^ = <τ ί x fv; , (3.47)
n— * oo

the limit being a norm limit.

Proof. It is clear that ®3 ζ @(Kn) for all n and that

\im(Kn-ani)ιp = Kψ (3.48)
~

for all ψ E ̂ 3 . Since X is essentially self-adjoint on ̂ 3 we have generalized
strong convergence by [13, p. 429]. Strong convergence of the unitary
groups is then a consequence [5, 13].

§ 4. Time Evolution of the Field

The time evolution of the field is given for finite n by Eq. (2.23). The
limiting behaviour of this for large n is determined from Eq. (3.40) and
Eq. (3.47). We work entirely in the space JΓ and first give a formula for
the partial trace operation

(4.1)

Lemma 4.1. // ψ e JΓ then
2π

H J ψ(θ)®ιp(ΘΓ dθ . (4.2)
0 = 0

Proof. The element ρ = M(^®ip) of ^s(^} is the solution of the
equation

>> (4.3)

where ^4 is an arbitrary bounded operator on Ĵ .
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Then 2π
tr[ρΛ] = j <Aψ(θ)9ψ(θ)ydθ

o

= f tr\:A{ψ(θ)®ψ(ΘΓ}1dθ (4.4)
0

= tτ\A j [ψ(θ)®ψ(ΘΓ}dθ].
[ b J

Note that putting A = 1 gives
2π

tr[M(φ®v?)] = J tr[φ(θ)®φ(0Γ]dθ
b

= J* ||v(θ)||2dβ (4-5)
b

from which it follows by linearity that

tr[M(ρ)]=tr[ρ] (4.6), ,,for all ρ e
We can now prove the main theorem of the paper.

Theorem 4.2. For all ρ e ̂ (̂ 0 αwd all t^O

jlimTM(ρ)=T t(ρ) (4.7)

ίfee Kmiί beingf ία/c^n in ίfee ίrαce norm, w/iere

Tf(ρ)=^ f W{f(θ9t)}e^iHotρeiHotW{f(θ9t)}*dθ (4.8)
2π θ=0

and f(09 i) is given by Eq. (3.41).

Proof. Since M is a linear contraction it is sufficient to prove the
theorem in the case where ρ is a vector state, say ρ = φ®φ~ for some
unit vector φeέF. Then

lm||TΠ>)-Tt(ρ)||tr

^ lim |ie- i(κ"-α"1)'ρ0®ρe i(κ"-α")1-e- ί*'ρ0®ρe ίκtl|tr
«-* CXD

= lim \\{e-ί(K"-a"1)'e0®φ}®{e'ί(K"~anί}te0®φ}~ (4.9)
-

^ Iim2\\e-i(κ"-a"1)'(e0®φ)-e-'κ'(e0«->• 00

= 0
by Theorem (3. 10).
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We now describe the connection of the above result with the theory of
coherent states, introduced into quantum optics by Glauber [9, 14].
We recall the decomposition

Jf}θ . (4.10)

For any ψ e Jti? we define the unit vector ψ e 3* by

{v}n = exp[-||V||2/2](n!)-*®> (4.11)

and the vacuum vector Ω by

. (4.12)

The coherent states are related to the free Hamiltonian and the Weyl
operators by

e, lHot\p~={e φ}~, (4.13)

See [3, 14]. W(f)Ω = {i2^f}\ (4.14)

Theorem 4.3. // the field is in the vacuum state at time zero then at
time t > 0 it is in a random phase, coherent state and the expected number
of particles emitted up to time t is

tr[T((Ω®Ω)IV] = Wy- -1 + y)(~y+ y + y) IW)!!2 (4 15)

where

h(t)= } ei(o>-S)ubdu. (4.16)

Proof. The state at time ί is

1 2π

T,(Ω®ί2)=—- f ίW{f(θ,t)}e-iao'Ω]®ίW{f(θ,t)}e-tBotΩ]-dθ
2π 0i0

t 2π

' ^"'""Λί)}β]®[^{/(^ί)}β]~"^
2π 8i0,

= ~ \ {iλβe-ίβh(t)}~®{iλβe-iβh(t)}~-dθ,
^π ei0

which is what is called a random phase coherent state [9]. The formula
(4.15) for the expected number of particles follows from

~> = ||φ|!2, (4.18)

which is obtained by an easy calculation from Eq. (4.1 1).
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We should like the number of particles emitted to increase linearly
with t. We first show that this is impossible if the radiation field consists
of a single mode.

Theorem 4.4. Suppose that the quantum field consists of a single mode
with energy ωλ per particle. Then the number of particles emitted up to
time t remains bounded if ω φ α^ and increases with the square of t if
ω = ω^.

Proof. The Hubert space 2tf is now one-dimensional and if
we obtain from Eq. (4.16)

h(t) = (e

l(ω~ω^ - i)b/i(ω - ωO , (4.19)

which remains bounded, while if ω = ωί ,

h(t) = bt (4.20)
so

tr[τt(β®fl)N] = λ2 (y- y + y)(-Λ/+ y + y) M2 '2 (4 21)

We overcome this difficulty by the standard procedure of assuming
that the quantum field has a continuum of energy levels [16, p. 734].
We suppose, precisely, that the single particle space 3C is infinite-
dimensional and that the Hamiltonian S on 2f has absolutely continuous
spectrum equal to (0, oo); for simplicity we also suppose that the spectrum
is multiplicity free. All these assumptions, except the last, are satisfied
for the quantised electromagnetic field. We also suppose the energy ω
of the atomic transition is positive, ω > 0.

Lemma 4.5. There is a unitary isomorphism of Jf with L2(0, oo)
under which S becomes the self -adjoint operator

(Sψ)(x) = xψ(x). (4.22)

The element ht of L2(0, oo) is given by

ht(x)= -ib(x){eί(ω'x}t-i}/(ω-x). (4.23)

Proof. This is a straightforward consequence of spectral theory.
Taken in conjunction with Theorem (4.3) the following theorem

shows that if the quantum field has a continuum of energy levels, then
a linear rate of increase in the number of particles emitted is the normal
occurrence.

Theorem 4.6. Let b be a continuously differ entiable function in L2(0, oo).
Then as t -> oo

(4.24)
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Proof. For technical reasons we calculate in the larger space L2(1R),
supposing b(x) = 0 for x ̂  0. We define

) - (2πΓ* J e'ixu du = (2π (4.25)

so that φ0(0) = (2π) % ||φ0| =1 and ψ0 is continuously differentiable.
We also define

Ψι(x) — fc(x -h ω) — (2π)^ fc(ω) ιpo(x) (4.26)

so that tp! is continuously differentiable, 1/^(0)^0 and

ht(x + ω) = iψι(x){eίxt-i}/x

+ i(2π)-b(ω}ιp0(x){eixt-i}/x.

We estimate the norms of the two parts of the right hand side separately.

(4.27)

J \Vl(x){e-ixt-i}/x\2dx
- 00

00

^4 J \ψι(x)/x\2 dx< co
— oo

since tp^O) = 0, this giving a bound independent of t. Also

Ψo(x){e~ixt-l}/(-ix)

= f ,-'»!

(4.28)

J e-ixs~ίxududs

(4.29)

= (2π)-* J
s — 0 u — — oo

= (2π)
t

M = — GO I S = 0

00

j φt(u)e-ixudu

where

f (x) -

0

x

1

if x ^ O

if O ^ x ^ l

if 1 ^ x g ί (430)

r - f l - x if ί ̂  x ̂  ί

0 if x ̂  t + 1
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Therefore

J \ψ0(x){e-lx'-i}/x\2dx

(4-31)
= J \φt(x)\2dx =

Putting these results together gives

+ 0(l) (432)

from which Eq. (4.24) follows.
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