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Abstract. We study the dynamics of the Dicke maser model in the limit as the number
of atoms becomes infinite and the coupling constant between the atoms and the radiation
field goes to zero. We find that the limiting Hamiltonian is integrable and obtain an explicit
closed form for the unitary time evolution operators. As a corollary we show that in the
limit the radiation emitted by the model is coherent in the sense by Glauber.

§ 1. Formulation of the Problem

We study the radiation emitted by a large system of atoms in a super-
radiant state. We make the electric dipole approximation for each atom,
supposing that the overall dimensions of the system are small compared
to the wavelength of the emitted radiation. The radiation is supposed to
consist of photons, but for notational simplicity we let the emitted
particles be bosons of unspecified nature.

We set up the Hilbert space and Hamiltonian in the standard manner
[6,8,15]. Each atom is described by a two-dimensional space €2, and
the system of n atoms by ®"C?. For the rth atom we introduce the spin
operators J acting on the rth component of ®"C? and satisfying the

commutation relations
DRI =i00; DRII=I0 DRI =g
JO=JO+iJ0;  JO=Jp—iJ; [J0,J9]=0 if r#s.

The single particle space for the emitted radiation is denoted by # and
the quantised radiation field is the boson Fock space &% over 4 :

F=COH D{®yn}D{RUn D~ (1.2)

For any f, ge s we have smeared creation and annihilation operators
a*(f) and a(g) on & with commutation relations

a(g) a*(f)—a*(f)alg)=<[f. 9> 1,

1.3
La(g), a(f)]=0. -2
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We let S =0 denote the single particle Hamiltonian on # and H, the
corresponding free Hamiltonian on &.
The Hilbert space for the composite system is

{®n ‘EZ} ®g;
and the Hamiltonian for the Dicke maser model is

n

Hy=Y wJ{+H,+ —i Y (JOa*(b)+ I a(b)} . (1.4)

r=1 r=1

Here b e  gives the mode of the radiation field to which the atoms are
supposed to be coupled; b is not supposed to be an eigenvector of S.
The coupling constant is taken as A/n because we desire a finite rate of
radiation in the limit n— o0, and it is expected that the rate of radiation
is proportional to the square of the number of atoms [8, p. 221]. This
contrasts with [10] where the coupling constant is taken to be A/[/ﬁ for
thermodynamic equilibrium reasons. In the above equations, and below,
we use expressions such as H, to denote both the operator on & and the
operator 1 ® H, on {®"C?*} ® Z.

The operator H, is a self-adjoint operator with the same domain
as H,. This is proved by noting that the third term in Eq. (1.4) is relatively
bounded perturbation of H, with arbitrarily small bound [13, p. 187].

We suppose that at time ¢ =0 the state of the atomic system is given
by the density matrix g, and that the state of the radiation field is given
by the positive normalised trace class operator ¢ on &. Since we are
interested only in the state of the radiation field at time ¢ we introduce
the map

M, T({®"C} @ F) > T (F) (1.5)

which is obtained by averaging out the atomic state. Here 7,(%) is the
space of self-adjoint trace class operators on #. M is a positive linear
trace-preserving map given explicitly by

tr[M(e)A] =tr[e(1® A)] (1.6)

where A is an arbitrary bounded operator on £Z.
The state of the radiation field at time ¢ is then given by

T,.(0)=M,[e" """ {0,®0} "] (1.7)
for t =0 and arbitrary ¢ € 7,(%). The limiting dynamics of the field is
given by

Ti(e)= lim T, ,(0) . (1.8)

The main result of the paper is to show that the limit does exist under
suitable assumptions, and that it can be written as an exact closed form.
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Before proceeding we draw the reader’s attention to two interesting
papers on related problems which have recently appeared [7, 10]. For
an account of the Dicke maser model with a finite number of atoms see
[6,18,21].

§ 2. Details of the Infinite Atom Limit

The form of the limit in Eq. (1.8) will depend on the initial states g,
of the system of atoms. To investigate this we define

Li=Y U Je=YJ0 (2.1)
r=1 r=1
so that
s, Jel=+J.; [Jy,J-1=2J5 (2.2)
and the Hamiltonian H, can be rewritten as
A
H,=wJ;+ Hy+ — {J_a*(b)+ J; a(b)} . (2.3)
Writing n
JE=Ji+ BB+ Ji=J_J, +J5(J5+ 1) (2.4
it is clear that
[J2%, H]1=0

which suggests reducing the problem with respect to the representation
of the Lie algebra sl(2,C) generated by Js, J.. sl(2,C) has exactly one
representation 7, of each dimension m and in the representation x,, J?
_has the constant value (m*> — 1)/4. It follows from standard formulae [16]
that

n+1

®"My= Gyl (2.5)
m=1

where the integers a, , are multiplicities and a, ,,; = 1. Therefore in
®"C?, J* takes values ranging from zero to n(n+ 2)/4.

If ¢ is an arbitrary density matrix on ®"C? we now define its (root
mean square) cooperation number y by

tr[oJ?] = un(un+2)/4

sothat 0= <1 (compare [6]). We also define the proportion y of
atoms in their excited state by

trleJ;]=yn—n/2 (2.6)

so that also 0 <y =< 1. We assume that u and y have limiting values for
the sequence of states g,, and ensure this in the simplest possible way.
Namely we assume that g, is a vector state

0. =&,®¢, 2.7)
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where PE =t unln+2)E,  limp,=p 8
and B&=Gumn—n2)E,.  lmy,=7. 29)

If m = p,n then the subspace L, of ®"C?* generated by &, and s1(2, €)
is m-dimensional and has a basis ¢, ..., ¢,, where

‘]+ (pszl/ S(m~5)¢s+1’ (210)

Joo=)(s—1)m—s+1)p,_,, (2.11)
J30,=(s—m/2—3)o,. (212)
Moreover by Eq. (2.9)
=0, (2.13)
where
yun—n/2=p-—mj2—%. 2.14)
Therefore 2 (
P B B A
TR T m T T 2,
and since 1 < p < m, letting n— oo yields
y—3<3u, (2.15)

a restriction on y and y which is not immediately apparent from Egs. (2.8)
and (2.9). For the sake of eliminating some degenerate cases, we assume
fi that
OmION R o<ust, p-di<dn (2.16)
For future reference we note that the integers m and p depend on n and
that the limiting behaviour is

. . {

Hm (m/n) = g1, lim (p/n) =7 — 5 + 5. 217

Since the subspace L, of ®"C? is invariant under s/(2, C), the sub-

space L,Q% of {®"C*}®F is invariant under the Hamiltonian H,
and therefore under the unitary group e'#+'. We may then take the
Hamiltonian H, of Eq. (2.3) as being defined on L,® & since the limiting
behaviour of Eq. (1.8) refers only to the second term of the tensor product.
The next step in analysing the sequence of Hamiltonians consists of
transferring them to a Hilbert space independent of n. For this purpose
we introduce the space [*(Z) of square summable sequences and the
orthonormal basis {e,},~ _,, where ¢, is the sequence whose mth term

is 0,,,. We let A, L,—2Z) (2.18)

be the isometric embeddings given by

a3 wo)= Lo, (2.19)
r r=1

=1
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so that

A,¢é,=¢, (2.20
independently of n. We also use A, to denote the corresponding iso-
metric embedding A LOF SPIRF =H (2.21)
and define the Hamiltonian K, on " by

K,=A,H, A} (2.22)

so that K, is unitarily equivalent to H, on the subspace A,(L,)®F of A
and equal to zero on the orthogonal complement of this subspace. If
0o =eo®e, then it is fairly obvious from Eq. (1.7) and the subsequent

calculations that A _
T,.(0)=M[e "'{o,®0o} ™. (2.23)

The operation M denotes taking the partial trace with respect to 1(Z).
We give an explicit expression for the self-adjoint operator K,. Let
B; . B., be the operators on I*(Z) defined by

By ne,=n"{(s+p)(m—s—p)te.,, 224
B_,e;=n"'{s+p—1)(m—s—p+1)}re,_,, (2.25)
B; ,e,={s+p—m/2—1/2}e; (2.26)
ifil—p<s<m-pand
B. ,e,=0 (2.27)
otherwise. It follows from Eq. (2.22) that
K,=wB; ,+ Hy+ A{B_ ,a*(b)+ B, ,a(b)} . (2.28)

Note that the factor n ! in the coupling constant has now been absorbed
into the operators B, ,. It is immediate from their definitions and
Eq. (2.17) that B, , converge strongly as n— o0 to the bounded operators

Bi €= ﬁesi 1 (229)
where
D [ ST Y S B
B—{</ 5 +2)< S +2)} . (2.30)
The proof of this is facilitated by use of the easily proved bound
IBs ull =m/2n < p/2+1 (2.31)

for all large enough n. The situation with B; , is more complicated since
one has to subtract a constant depending on n to obtain convergence.
If B, is the unbounded operator defined by

Bse,=se (2.32)



192 E. B. Davies

then m {

where the convergence is taken in the strong generalised sense [13].
The need to subtract this divergent constant is acceptable since addition
of a constant to K, makes no difference to T, , in Eq. (2.23).

§ 3. Integration of the Limiting Hamiltonian

It is clear from the above formulae that as n— co, K, converges in
some sense to the operator given formally by

K=wBy+ Hy + 2{B_a*(b)+ B, a(b)} . (3.1)

It turns out that there is an exact closed form for the unitary group ¢'*’,
the ultimate reason for this being that in the limit the operators J have
been replaced by the operators B which satisfy the simpler commutation

relations
[B;,B,]1=+B.; [B,,B.]=0. (3.2)

We have, in fact, a particular case of the phenomenon of contraction of
Lie algebras [11, 12].
We carry out all calculations in the Fourier transform representation.
We let 5
U:L(—n,n)-[*Z)
be the unitary isomorphism
1t .
(Ufh=7= | fO)e™""d0 (33)
)/ 2n
and, identifying I2(— r, )@ with the Hilbert space I*[(—n, 7), # 1= 4
of all square integrable # -valued functions on (— 7, 7), also let U denote
the corresponding unitary isomorphism

U:A >A . (3.4)
The operator .
L K=U*KU (3.5
is given formally by
~ ap
(Rv) (0)= —io 5 + Hop(6) 56

=Ap{e"a*(b)+e*?a(b)} w(h).
Defining the smeared field operators ¢ by

P(f)=2"*{a*(f) +a(f)} (3.7
for any f e, we get

. 8 , .
(Ry) ()= — i 22 + Hyp(0) + 21 28D(e by p(0).  (3.8)

00
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Instead of defining a domain of essential self-adjointness of K, we proceed
to a direct construction of the unitary group exp{ —iKt} and then
return to prove that K is indeed its infinitesimal generator.

We recall from [1, 4, 19] that for any f € # there is a unitary operator
W(f) on & given by

W(f)=exp[i®(f)] (3.9)
and satisfying the canonical commutation relations
W(f) W(g)=W(f +g)exp[iIm{f, g>/2]. (3.10)
Moreover the commutation relation between W and ' are
eHot W (f)e Hot = W('S'f) (3.11)

where we defined S as the single particle Hamiltonian on /. We define
a class of one-parameter unitary groups on J by means of cocycle
equations, a technique developed extensively in [17].

Theorem 3.1. The equation

Vi) () =™ " W{f(0. )} e (0 — ) (3.12)

defines a one-parameter unitary group on A if and only if @ and f satisfy
the cocycle equations

fO,s+1)=f(0,s)+e 5 f(0 —ws, 1), (3.13)

a(0, s +1)=a(0, s) + (0 — ws, 1) + Im { f(0, s), e 55 (0 — ws, 1)y/2 (3.14)
almost everywhere. All solutions of these equations satisfy

f6,00=0, «(6,0)=0. (3.15)

Proof. Itis clear that for all real ¢, Eq. (3.12) defines a unitary operator
V, on A, so we only have to verify the group equation.

(Vo V) (0) = eI WL f(0, 5)} e~ o3 (V) (0 — ws)
= OI W f(f, s)} e 1 Hos
et OO WL £(0 — ws, 1)} e Holyp (0 — ws — wt)
= OO0 W (0 ) Wie S f(0—ws,0}  (3.16)
e T (0 — (s + 1))
= exp[ia(0,s)+ia(@—ws,t)+iIm{ f(0,5), e S f(0—ws,1))/2]
WSO, s)+ e 55 (0 — ws, 1)y e Ho+D (0 — o(s + 1))

from which Egs. (3.13) and (3.14) follow. Putting ¢t =0 in these equations
yields Eq. (3.15).

We transform the cocycle equations into more comprehensible
differential equations.
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Theorem 3.2. Let f, a be solutions of the cocycle equations with
continuous first partial derivatives and let

9(0)= f S-0.0, pO)= 6—“ ©,0). (3.17)
Then f and o satisfy the dlfferemlal equations
%(0, s)=e 5590 — ws), (3.18)

%~ (0, 5) = B0 —ws)+Im< f(0,s), e S5g(0 —ws)y/2.  (3.19)
Conversely given g and B, these differential equations have unique solutions
satisfying the initial conditions

f06,00=0, «(6,00=0 (3.20)
and the solutions satisfy the cocycle equations.
Proof. Using Eq. (3.15) we may rewrite Eq. (3.13) as
f(B,s+1)— f(0,5) _-iss f(0—ws, t)— f(6—ws,0)

t t

which on letting t—0 becomes Eq. (3.18). Similarly Eq. (3.14) may be
rewritten as a(l,s+1)—all,s)  ad—ows,t)—ab—ws,0)

oy o o weon G
+_2_Im<f(9’5),e—i53 f(0—ws, 1) — f(0 —ws, 0)

t
which on letting t —0 becomes Eq. (3.19).
Conversely given g the differential equation (3.18) has a unique
solution with the said initial conditions and this solution is

£0,s)= f e Svg(0 — wu)du. (3.23)
Therefore u=0

£(0,s)+e 55 f(0—ws, 1)

(3.21)

t

e g0 —wuydu+ [ e 5Tg(0 —ws —wv)dv

I

]
u=0 v=0
s s+t .
= [ ey —ou)du+ [ e S“g(0 —wu)du
u=0 u=s

=f(0,s+1)

so f satisfies the cocycle equation (3.13).
Similarly the solution of the differential equation (3.19) is

(8, s) =0, (0, s) + o, (8, s) (3.24)
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where 00.9= | PO—wuwdu (3.25)
and s u u=0

a,0,9=% [ [ Im<e g0 —wv), e *g(0 — wu)) dvdu. (3.26)
NOW u=0 »v=0

oy (6, s)—Hxl(B ws, t)
f B0 — wu) du + j B — ws — wv)dv (3.27)

u=0 v=0
=o,(0,s+1)
so « satisfies Eq. (3.14) provided «, satisfies it.

o0, 5) + 0, (0 — ws, 1) + S Im £ (6, 5), €715 f(0 — ws, 1))

=1 [ [ Im<e 57g(0 —w), e S"g(0 — wu)) dv du
u=0 v=0

iSv

Im{e $°g(0 — ws — wv), e S*g(0 — ws — wuw)) dvdu

+
[NIE
(=]

Im{e S0g(0 — wv), e 5575 g(0 ~ ws — wu)) dv du

+
Nf=

=
I ey ] 2y
<

(3.28)

I

N

T80 — wy), e S*g(0 — wx)) dy dx

“
(=}
et
8
AN
(N

(S
— e
<o
=

(=]
=

— ([ e || —g
(=4

Im{e 57g(0 — wy), e 5%g(0 —wx)> dy dx

x=s y=s
s+t
+3 [ [ Im{e S7g(0—wy), e 5*g(0 —wx)) dy dx
y=0 x=s
= 0(2(9, s+ t)

which completes the proof of the theorem.

From now on we suppose that f, o are given cocycles with con-
tinuous first partial derivatives, and that f(6,t)e Z(S) for all 0,t. We
define a self-adjoint operator K by

V,=exp[—iKt] (3.29)

where V/ is given by Eq. (3.12). In order to find an explicit expression for
K we introduce some suitable domains. For any a >0 we define

F.={ped |yl =le"p| <o} (3.30)
where N is the number operator on & and
Fo= 7, (3.31)

giving #_ the Frechet space topology induced by all the norms |- |,.
The operators W(f) leave %, invariant for all f € 3#, as do the operators
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&(f). On this domain the map f— W(f) is strongly differentiable in
the following sense.

Proposition 3.3. Let h(t) be a differentiable # -valued function and
let we Z,,. Then t— W{h(t)} v is a differentiable map from R into F, and

—;7 W{h(@)}w = i[ —Im (R (), h(1))/2 + @ {H ()}] Wik@)}y . (3.32)

The proof of this proposition follows in a straightforward manner from
well-known results about the Fock space representation of the CCR’s
[1,2,19].

Lemma 3.4. Let &, C A be the space of all continuously differentiable
periodic functions from [—n,n] to Z,. Then 9, is dense in A" and in-
variant under exp[ —iKt] for all te R.

Proof. We show that &, is invariant under each of the separate
components of ¥, in Eq. (3.12). If y € &, then

lHol aw

20¢ VO = a9 2”% S (339
N_ W - “fﬂ (3.34)
|5 =|wisen g'g

(3.35)

|- Im@ feselZ)

The lemma follows immediately from these estimates.

Lemma 3.5. The subspace %,=%,n%(H,) of A is dense and in
variant under exp[ —iKt] for all te R.

Proof. The invariance of this domain under e~ *#°* and under y(0)
- (0 — wt) is obvious, so we only need to show that if e &, then
W{f(,0)}yp0) e P(H,) for all e[ —m,x].

iHo W{f (6,0} w(6) = lims™ ' [¢"o* — 1] W{[ (6, 1)} w(6)
= lims™ '[W{e' f(0, 1)} e yp(6) = W{1 (6, 1)} w(6)]
= lim W{e' f(0, )} s " [ p(0) — w(6)]
+lims™ [W{e'™ f(0, 1)} = W{f (0, )} 1w (0)

=W{f(6,1)}iH,y(0)
+i[ —Im{iSf(0,1), (0, 1)) + @{iS f(6, )} ] W{f(6, )} w(6)
by Proposition (3.3).

(3.36)
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Lemma 3.6. Let ¥ be a dense subspace of a Hilbert space ¥~ and
A(t), B(t) two uniformly bounded families of operators such that & is
invariant for both families and t— A(t)y and f— B(t)y are differentiable
for all we ¥. Then t— A(t) B(t)y is differentiable for all e ¥ and

d dA dB
- (AW BOY = T BO+A0) v (337)

Proof. Since A(t) and B(t) are uniformly bounded and strongly
differentiable on & they are strongly continuous on ¥". Supposing
we and ||A(t)]| £k, |B(t)|| <k for all ¢

. d dB
i 5 LA +9) B+~ A0 Bl - 5 By =405 v]

=limls™ [A(t+5)— A@] [B(t +5) - B(O)]y

+s At +5)—A@)] B()w+s P A@) [B(t+s)— B(®)]y
dA dB
mivTS B(I)W*A(t)d—twu

< tim | 449 40} [s7 B+ 00— By - 47 |

+ {4 +5) - A(t)}—w"

+ [s” HA@E+5)— A@)} — ‘fi—t} B(t)lp“

+ 1 A(2) [s‘ YB(t+s)— B(1)} — -dﬁ} w“]

<lim [21(
s—0

[S'I{B(t-i's) B(t)}”i—ﬂ “
+ “{A(t +5)—A@)} (% w)”

4 [S"l{A(t—FS)—A(t)} - d—A] (B(t)w)“

+k

o= 2}

which proves the lemma.
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Lemma 3.7. The operator K is essentially self-adjoint on 9, and is
given on this domain by
A .0
() (0)= —io -0 + How(0) - D {g(0)} w(6) — O v(6). (338)
Proof. Each of the separate terms of Eq. (3.12) is differentiable on &,
and leaves &, invariant. By Lemma (3.6), V, is differentiable on &, and
the derivative may be calculated in the standard manner. Using Eq. (3.32)
this yields at t=0
5 . Oa [0 , 0
(—iKy) (0)=i——(6,0)p(0) +iP —f((?, 0)f w(6) — iHy w(6) — oo
ot ot 00
which gives Eq. (3.38) on simplification. The above calculation shows
that 2, C P(K) and since %, is invariant under exp[—iKt], K is
essentially self-adjoint on &, by [20].
Theorem 3.8. The operator

(Kyp) (0) = — i g—z +Hop(0) + 22 Apde™ "N w(®) (339

is essentially self-adjoint on 9,. The unitary group

{exp[—iKt]p} ()= *OW{f(0, )} e Hotp(—wt)  (3.40)
where .
f(6, t)=—2%/1/3e‘”’ j ey dy . (3.41)

u=0
Proof. We apply Lemma (3.7) with =0 and
g(@)= -2 Ape b (3.42)

Then the cocycle f is derived from Eq. (3.23). It is not difficult to show
that f, « have continuous first partial derivatives and that f(6, t) € Z(S)
for all 6,t. It follows from Eq. (3.41) and Eq. (3.19) that o is actually
independent of 6.

Having given a rigorous meaning to K we now reverse Eq. (3.5) and
define the self-adjoint operator K on £ by

K=URKU*. (3.43)

We identify & with the space I’[Z, # ] of all #-valued square-summable
sequences and define &, CI*[Z, #] as the space of all sequences of
finite support with values in #, N9 (H,).

Lemma 3.9. K is essentially self-adjoint on 95 and is given on that

domain by
K=wB;+ Hy+ A{B_a*(®)+ B, a(b)}. (3.44)
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Proof. We define &, C A as the space of C* periodic functions from
[—=n, 7] to &#,. Since K is essentially self-adjoint on 2, =2, 2(H,)
it is also essentially self-adjoint on &, 2(H,); this makes use of Eq. (3.39).
Therefore K is essentially self-adjoint on 2N 2(H,) where 95s=U2%,
is the space of all sequences y € [>[Z, #] such that

0]

Y InP*ly)2 <o (3.45)

for all k=1,2,3,... and all «>0. It follows from Eq. (3.44) that K is
also essentially self-adjoint on Z;.

We can now return to describe the sense in which the sequence of
self-adjoint operators K, of Eq. (2.28) converge to K.

Theorem 3.10. If m 1
=p— — — — 3.46
then (K, — a,1) converges to K in the strong generalised sense. Therefore
forallteR and all ye A

lim g7 &nman Dty — = iKiy, | (3.47)

the limit being a norm limit.
Proof. 1t is clear that 2;C Z(K,) for all n and that

lim (K, - a, )y =K (3.48)

for all p € 2 ;. Since K is essentially self-adjoint on &; we have generalized
strong convergence by [13, p. 429]. Strong convergence of the unitary
groups is then a consequence [5, 13].

§ 4. Time Evolution of the Field

The time evolution of the field is given for finite n by Eq. (2.23). The
limiting behaviour of this for large n is determined from Eq. (3.40) and
Eq. (3.47). We work entirely in the space ¥ and first give a formula for
the partial trace operation

M:T(A)> T(F). (4.1)
Lemma 4.1. If ye A then
2n
Myp)= | pO)@y©) do. 4.2)
6=0

Proof. The element ¢ =M(p®p) of J,(F) is the solution of the
equation
trleA]l=<(1®@ Ay, y) (4.3)

where A is an arbitrary bounded operator on #.
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Then 27
trfoA]= | <Aw(0),p(0)) do
0

= T Ao vO 1140 @4

2n

=tr|4 £ {p(O)Q@p(6)”} db|.

Note that putting A =1 gives
2n

tr[My@p)l= | trly@O)@y(0)"1d0

2n

= | lwp®)I*de (4.5)

0
= |wl? =tr[y®yp~],
from which it follows by linearity that
A tr[M =tr (4.6)
for all g & 7.(H) [M(eN =trle]
We can now prove the main theorem of the paper.
Theorem 4.2. For all g€ (%) and all t =0
lim T, (o) = Ti(0) (47

the limit being taken in the trace norm, where
2n
To)= 5 | Wif605e  "oe ™ W{f0,0)*d) (43
T g=0
and f(0, t) is given by Eq. (3.41).

Proof. Since M is a linear contraction it is sufficient to prove the
theorem in the case where g is a vector state, say ¢=@® ¢~ for some
unit vector ¢ € #. Then

lim [17,,.(0)~ T(@
= lim | M(e ™" 0y @ ') — M(e "' 0o @™,

S hm “e—i(K,.—anl)tQO®Qei(f(n—an)t _ e—itho®QeiKt“"

= lim [[{e7®r" Ve @@} @ {e 'K Ve, @@}~ (4.9)
— {e_iKteo®(P}®{e—iKteo®(p}~“tr
é 31-9332 ”e—i(Kn"anl)t(eO@(p) _ e_iKt(e()@qD)H

=0
by Theorem (3.10).
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We now describe the connection of the above result with the theory of
coherent states, introduced into quantum optics by Glauber [9, 14].
We recall the decomposition

C@t}f@{@sym%}@{@sym%}@' (410)
For any y € o we define the unit vector () € # by
{Pla=exp[—llwl?/2]1(n) " @"p (4.11)
and the vacuum vector Q by
Q=0=10000Q@ . (4.12)
The coherent states are related to the free Hamiltonian and the Weyl
operators by inor,
e HHoly = oISy, (4.13)
See [3, 14]. W()Q={i2"*f}. 4.14)

Theorem 4.3. If the field is in the vacuum state at time zero then at
time t >0 it is in a random phase, coherent state and the expected number
of particles emitted up to time t is

tr[T(QRQ)N] =42 (y — % + %)(—H % 4 %) IA@)]I* (4.15)

where

t
h(t) = j SO=Sup dy (4.16)

Proof. The state at time t is

2n
TQE8) = 5 | V(0.0 ™ QOIVf0. e ™a] do
2n

— 5 T VL@ 218 IWIf6.032) do

(4.17)

2n

f {273 f0. 0y @{i27% f(0, 1)}~ dO

b
2n
2n

= T e hOy@tiApe hoy a6

which is what is called a random phase coherent state [9]. The formula
(4.15) for the expected number of particles follows from

(NY D =yl?, (4.18)

which is obtained by an easy calculation from Eq. (4.11).
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We should like the number of particles emitted to increase linearly
with t. We first show that this is impossible if the radiation field consists
of a single mode.

Theorem 4.4. Suppose that the quantum field consists of a single mode
with energy w, per particle. Then the number of particles emitted up to
time t remains bounded if w =+ w, and increases with the square of t if
w= (,01 .

Proof. The Hilbert space # is now one-dimensional and if w % w,
we obtain from Eq. (4.16)

h(t)= ('@~ — 1) b/i(w — w,), (4.19)
which remains bounded, while if w = w,,
h(t)= bt (4.20)

SO

t[T(Q®D)N] = 12 («/~ % + iz‘-)(—y+ % + iz‘—) bI2¢2. (4.21)

We overcome this difficulty by the standard procedure of assuming
that the quantum field has a continuum of energy levels [16, p. 734].
We suppose, precisely, that the single particle space # is infinite-
dimensional and that the Hamiltonian S on J# has absolutely continuous
spectrum equal to (0, c0); for simplicity we also suppose that the spectrum
is multiplicity free. All these assumptions, except the last, are satisfied
for the quantised electromagnetic field. We also suppose the energy w
of the atomic transition is positive, w > 0.

Lemma 4.5. There is a unitary isomorphism of # with L*(0, o)
under which S becomes the self-adjoint operator

(Sv) (x) =xp(x). (4.22)

The element h, of 1*(0, c0) is given by
h() = —ib(x) (@9 — 1}/(w—x). (4.23)

Proof. This is a straightforward consequence of spectral theory.

Taken in conjunction with Theorem (4.3) the following theorem
shows that if the quantum field has a continuum of energy levels, then
a linear rate of increase in the number of particles emitted is the normal
occurrence.

Theorem 4.6. Let b be a continuously differentiable function in [*(0, o).
Then as t— o
(A% = 2n|b(w)|*t + O(t?). (4.24)
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Proof. For technical reasons we calculate in the larger space L*(RR),
supposing b(x) =0 for x <0. We define

—

Yo(x)=Q2n)7* [ e du=Q2m)"* (e”* —1)/ix (4.25)
0

so that yy(0)=(27)" %, |wol =1 and wp, is continuously differentiable.
We also define )
¥1(x) =b(x + ) — (27m)* b(w) wo(x) (4.26)

so that v, is continuously differentiable, y,(0)=0 and
hy(x + ) =i, (x) {e™' — 1}/x
+1i(2m)* b(e) wo(x) {e — 1}/x.

We estimate the norms of the two parts of the right hand side separately.

(4.27)

}) [wy(x) {e” ™ —1}/x)* dx

o (4.28)
<4 [ lp )/ dx < oo
since y,(0) =0, this giving a bound independent of . Also
Wo(x) {e™ ™ = 1}/(—ix)
t
= | e ™ yo(x)ds
s=0

t 1 ) )
=Q2n)"* [ [ e ™ duds

o (4.29)
=07t | mon@e ST dsdu

s=0 u=—-o0

0 t

=Q2n)~* | { {0 1](u——s)ds}e_""“du

u=—o \Ls=0
=(Q2n)"* _f Qe > du

where
0 if x<0
x if 05x<t

@ (x)= 1 if 1<x<rt (4.30)

t+1—x if 1<xZt+1
0 if x=2t+1.
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Therefore

{ po(x) {7 — 1}/x]? dx

© (4.31)
= | lpIdx=t+0(1).
Putting these results together gives
Il = 2m)* |b(ew)l £* +O(1) (4.32)

from which Eq. (4.24) follows.
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