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Abstract. It is shown that when a four dimensional source-free Einstein-Maxwell
space-time admits a group of motions leaving the electromagnetic field unchanged a
linear relation exists between two Maxwell fields and the covariant derivative of a Killing
vector. For the case in which the two electromagnetic fields are related by a duality rotation
it is seen that a purely geometric form of Einstein's equations may be derived. The be-
haviour of these under a class of quasi conformal transformations of the metric is shown
to lead to Harrison's theorem.

1. Introduction

While the geometric nature of the Einstein-Maxwell electromagnetic
field is now well established (Rainich, 1925; Misner and Wheeler, 1957)
there are nevertheless some aspects which are not very well understood.
A particular case in point is the fact that solutions of the equations may
be generated both from known solutions and from solutions of the
empty-space equations Gμv = 0 when a symmetry is present (Harrison,
1965 and 1968).

The object of the present paper is to establish a result which appears
to be of relevance in explaining solution generation and the role which
the Killing vector has in the transformation properties of the field
equations.

2. Einstein's Equations

We shall consider a four dimensional space-time which satisfies the
vacuum Einstein-Maxwell equations. These may be written

Rμv = 4π(FμσFξ + *Fμσ*F?) (2.1)

and ' (2.2)
*Fμy

]v = 0)

where the vertical bar denotes covariant differentiation.
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The electromagnetic field is taken to be non-null so that

F vF
μv = 0]

and μ v (2.3)

are not simultaneously satisfied.
We shall further assume that the space-time admits a group of

motions so that Killing's equations

£0μv = t>μ,v+l>v|μ = O (2.4)

are integrable. These relations define the Killing tensor

ξμv = Vμ\v ( 2 5 )

For the present work we shall consider a non-null Killing vector υμ

which generates the in variance group of Fμv. That is, we must have

£f μ v = 0 (2.6)

and the necessary and sufficient condition for this to be true is that a
coordinate system can be found in which Fμv is independent of one of
the coordinates (Yano, 1955, p. 54).

With respect to the Killing vector vμ the Lie derivatives of Fμv and
Fμv take the forms

V ̂ μ v = Aμ i v — Λv i μ

V-g

respectively where the vectors Λμ and Bμ are defined by

and A ^ ¥ ^ 1 (2.8)

From (2.7) it follows that at least locally - depending on whether or
not the space-time is simply connected - we may define scalar functions θ
and φ such that

μ | μ \ (2.9)

These functions are essentially electromagnetic potentials.
We are now in a position to prove the following assertion:
In the four dimensional source-free Einstein-Maxwell theory the

antisymmetric tensor

μv) (2.10)

is a solution of Maxwell's equations.
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Proof. Taking the projection of the Ricci tensor in the direction of
the Killing vector vμ we obtain by means of Maxwell's equations

μ μφ*Fχ. (2.11)

But the Killing tensor ξμv satisfies

e v |v = Λμvι>v. (2-12)

Hence, by Einstein's equations, we have

Γ" v

| v = 0 (2.13)

and Γμv satisfies the first of Maxwell's equations (2.2).
On the other hand we have

^|v = ί K | v - ^ v | μ ) ( 2 1 4 )

so the dual of the Killing tensor satisfies

* e v | v = 0. (2.15)

But in four dimensions the well-known identity

*FμσF! = Fμσ*Fΐ (2.16)

ensures that

(θ*Fμv-φFμ\ = 0. (2.17)

Hence

*Γμv\v = 0 (2.18)

and the proof is complete.
With this result we have shown that the assumption of the existence

of the invariant electromagnetic field F μ v , acting as the source of the
space-time, carries with it in Einstein's theory the existence of the Max-
well field Γμv related linearly to Fμv by (2.10).

At this stage we will consider that Γμv, as well as Fμv, is a source of
the space-time. On physical grounds this is not unreasonable since, if it
does not vanish, Γμv must have a non-trivial energy-momentum tensor

Tμv=-ί(Γμσry + *Γμσ*Γΐ). (2.19)

But the metric tensor gμv which determines Γμv is the same as that which
gives Fμv and the Einstein tensor Gμ v is unique to within the cosmological
term (Lovelock, 1971 and 1972). Thus, by Einstein's theory of gravitation,
we must have

G μ v = - 8 π T μ v (2.20)
or

Rμv = 4π(ΓμσΓ°v + * Γ μ σ *ΓJ) . (2.21)
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However, for reasons which we shall discuss later, while it is certainly
a sufficient condition on Γμv, that it satisfy (2.21), it would not in general
appear to be a necessary one and for the remainder of our work here we
shall consider the case in which Γμv and Fμv determine the same metric.

When (2.21) is true the theorem of Misner and Wheeler (1957) asserts
that Fμv and Γμv must be related by a duality rotation. Thus there must
exist a constant ε such that

Γμv = Fμv Cosε + * F μ v Sine . (2.22)

From (2.10) we now see that

v φ = aFμv + b*Fμv (2.23)
where

and \ (2.24)
b = 4πφ + Sinε J

are electromagnetic potentials. If we define

λ = vσv
σ (2.25)

then from (2.23) we obtain

4π(λ0 -λ) = a2 + b2 (2.26)

where λ0 is a constant of integration. It now follows that

FμσFv+*Fμσ*F^ = (a2 + b2Γ1(ξμJ
σ

v + *ξμσ*ξσ

v) (2.27)

and we have shown that:
When Γμv acts as a source of the space-time the Ricci tensor Rμv is

given by

Kμv = . (Z.Zδj

Regarding (2.28) as Einstein's equations we have a form which depends
only on the metric tensor and Killing vector. Since these equations are
sufficient to determine the metric tensor completely, in this case, we
have formally proved the sufficiency of (2.22).

Finally it is worth remarking that while we have assumed Γμv to be
non-vanishing we have lost no generality since, when it is related to Fμv

by a duality rotation, it can be effectively transformed away by a gauge
transformation.

For the present work we are interested in the implications which
(2.28) has with regard to solution generation and we shall now look at
this aspect in more detail.
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3. Application to Solution Generation

Perhaps one of the principal results in solution generation is that
formally proved by Harrison (1965) to the effect that to each solution
of the equations Gμv = 0, which can be put in diagonal form, and which
depends only on three variables, there exists a corresponding solution
of the Einstein-Maxwell equations with an associated electromagnetic
potential.

Let us consider a diagonal metric

(ds)2 = aidx1)2 + β(dx2)2 + γ(dxψ + σ(dx4)2 (3.1)

for which the metric tensor satisfies

Gμv = 0 (3.2)

and is independent of x4. If we define the quantities

X = aσλ

Y = βσ\ (3-3)

and
Z = γσ J

the first six non-trivial components of the Einstein tensor Gμv may be
written:

(3-4)

Z

V \ V V V Ύ 7 y
ι 1 I ι 3 ι 3 ι 3

Y )3 2Y2 2YX 2ZY

~^2^-+4πE22 (3.7)

+ 4 π £ 3 3 ( 3 . 9 )

and, remembering that the curvature scalar R vanishes for both of the
cases which we are considering, we may write the last component G 4 4 as

σ2

G44= " p- + p- + p_ . (3.10)
2 ^ / χ y Z t \ σ ί / Λ \ σ ί / / \ ^ J J
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In the above relations the quantities ηx, ηy and ηz are defined by

X

and
2

=

YZ

Y

xz

ΎY

(3.11)

respectively, 4π£μ v is defined by

4πEμv = (3.12)

and subscripts 1, 2 or 3 on X, 7, Z and σ, and the brackets, denote
differentiation with respect to the appropriate independent variable.

The Killing vector vμ for the metric (3.1) has only one non zero
component υ4 = σ and the energy-momentum tensor, in the presence of
an electromagnetic field, calculated from the right hand side of (2.28),
has the components given by

4-—
β γ

= ~σ

(\
σ2λ\ +4π£ 1 22σ (λo~σ)

- 8 π Γ 1 3 =

- 8 π Γ 2 3 =

2σ2(λ0~σ)

4σ2(λ0-σ)

— <72 C3 λ§

2σ2(λ0~σ)

+ 4 π £ 1

(3.14)

(3.15)

(3.16)

(3.17)

4μ o-σ) [ α j8 γ

In addition, for the diagonal form (3.1), the potential functions a and b,
of (2.24), are found to be proportional and the electromagnetic potential θ
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is given by

2 = λ0-σ (3.20)

where c is a constant.
If we first consider the empty space field satisfying (3.2) we see that

the quantities — 4πEmn, for m and nξ {1,2,3}, may be equated to
quantities which are unchanged in form by quasi conformal trans-
formations of the form

α-> α ω = α

β-+βω=β

σ -> σ/ω = σ ..

(3.21)

On the other hand, in the presence of a vacuum electromagnetic field,
these same quantities are equated to ( — 8πT w n — 4πEmn). Moreover,
in the latter case, the last of Einstein's equations, corresponding to (3.10),
may be written

oηy\/λ0-σ )2 \ σηz]/λ0 - σ )3

= 0 . 0.22)

If we now suppose that {ά, β, % σ} represents a solution of the Ein-
stein-Maxwell equations while {α, β, γ, σ} satisfy Gμv = 0 then the trans-
formation (3.21) takes (3.22) into G 4 4 = 0 if ω is chosen so that

σ]/λo-σ dxn σ dxn n = l , 2 , 3 . (3.23)

But this same condition ensures that the quantities ( — Sπfmn — 4πEmn)
have the same form, as functions of σ, as —4πEmn, i.e. the equations

μ μ (3.24)

go over to just

G μ v - 0 . (3.25)

Thus we see that to the empty space metric {α, /?, y, σ} there corresponds
the Einstein-Maxwell metric {ά, β, % σ} and vice versa. This is Harrison's
theorem.
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It is readily verified that ω is given by

while the electromagnetic potential, determined by <τ, is given by

(3.27)

These expressions agree exactly with those given by Harrison and we
have seen here that they arise as a consequence of the geometrical form
(2.28) of Einstein's equations.

Finally, if we consider the class of solutions for which λ0 is zero, the
following result is readily obtained:

The Einstein-Maxwell metric

(ds)2 = aidx1)2 + β(dx2)2 + γ(dx3)2 - σ(dx*)2 (3.28)

determines a further Einstein-Maxwell metric

(ds)2 =ω[μ{dx1)2 + β{dx2)2 Λ-y(dx2>)2~\- — (dx4)2 (3.29)

ω

by means of the equation

ω' - ) = 0 (3.30)

where
ω v = ω,v (3.31)

and covariant differentiation is with respect to the metric tensor gμv

= Diagonal (α, /?, y, — σ). The electromagnetic potential for the first
metric is given by

2 = σ (3.32)

where c is constant.

4. Conclusions

The relevance of the space-time symmetry to solution generation has
been clearly indicated by the geometric form of Einstein's equations and
the examples which we have just considered. However, in arriving at the
Eqs. (2.28) we only established the sufficiency of the condition that the
two electromagnetic fields Fμv and Γμv be related by a duality rotation.
In determining whether this condition is necessary or not we might gain
further information on the role played by the Killing vector.
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An approach which indicates that it is not necessary for the two
fields to be related by a duality rotation lies in considering the relative
orientations of the tetrads of eigenvectors which belong to the three
tensors (ξμσξ

σ

v + *ξμσ*ξσ

v)ΛFμσF°v+*Fμσ*F°) and (ΓμσΓ° + *Γμ σ*ΓJ).

For an arbitrary tensor of the form

where Fμv is antisymmetric, the tensor

fμv = 4γπ(Fμv Sin/7 + *FμvCosη)

where

is a projection operator on to one of its eigenvectors (Woolley, 1973).
It follows that the linear relation (2.10) is equivalent to a relation between
the above operators which may be associated with the three tensors ξμv,
Fμv, and Γμv. If we take the dual relation into account we have two linear
relations between eigenvectors. We may then use the linear independence
of the eigenvectors as justification for taking one tetrad as a base set in a
linear vector space - the eigenvectors of the other two tetrads being
expanded in terms of these. When this is done we arrive at a fully
determined system of algebraic equations for the rotation coefficients
and the solution of these may be reduced to finding the roots of a quartic.
The main conclusion which is reached is that the expansion of the eigen-
vectors associated with Γμv in terms of those belonging to F μ v , is not,
in general, one such that Γμv and Fμv need be related by a duality rotation,
i.e. from purely algebraic considerations, Γμv need not act as a source
of the space time.

While the full meaning of the relation between the two electro-
magnetic fields remains to be studied it is apparent that the Killing
tensor vμ\v is related in quite a fundamental manner with the Einstein-
Maxwell electromagnetic field.
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