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Abstract. The spatial decay properties of the wave functions of multiparticle systems
are investigated. The particles interact through pair potentials in the class R + L?. The
bound states lie below the bottom of the continuous spectrum of the system. Exponential
decay, in an I? sense, is proven for these wave functions. The result is the best possible one
which will cover every potential in this class.

Introduction

In every exactly soluble quantum mechanical two body problem the
bound state wave functions fall off exponentially. The rate of exponential
decay depends only on the energy of the bound state and the masses of the
particles involved. For several particles intuitive arguments on bound
states near the bottom of the continuum suggest that for these systems too
the wave functions decay exponentially and that the rate of decay depends
only on the particle masses and the depth of the bound state below the
bottom of the continuum [15]. These I? wave functions are initially
just in the domain of the system Hamiltonian. When the potentials can be
written as the sum of a bounded function and an L? function with compact
support Kato [8] has shown that the wave functions are actually bounded
Holder continuous functions. Hunziker [7] and Simon [14] have
observed that one way to state a decay result is as an > domain condition.

For the class of potentials considered by Kato, Ahlrichs [1] has
shown that L? conditions imply pointwise decay. This rate of decay is
weaker than the I? decay but Simon [25] has recently shown that for a
slightly different class of potentials the pointwise decay is precisely the
same as the I? decay. We will prove the following theorem.

Theorem. Scalar particles withmasses m;(1 <i < N)interacting through
local potentials V;;€ R+ L have a bound state at energy —E, E>E,

* Based on a thesis submitted to Princeton University in partial fulfillment of the
degree of Doctor of Philosophy.
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where —E, is the bottom of the continuous spectrum for the system
Hamiltonian

1<i<j<N
H, is the free Hamiltonian with the centre of mass motion removed. The
wave function y for this bound state is in L*(R3N"3) and obeys the
Schroedinger equation

f]w=—Etp.

Then e D[?V2ME-Eor for every 0:0<0<1 and x measures the
positions of the N particles relative to their centre of mass.

M is the total mass of the system and r(x) is defined by Mr*(x) is the
moment of inertia of the N particles about their centre of mass.

. We recall that when the interparticle potentials are in >+ L2,
H is defined as the operator sum of Hy and V= )’ V;; on their common

domain D(H,). When the potentials are in R + L‘f,j H must be defined by
quadratic form techniques. In this case we cannot say that D(H)= D(FIO)
[14,p. 32].

Previous results have been mostly proven for particular applications.
Consequently the methods are fairly direct and generally use a con-
figuration space approach. Hunziker [7] and Combes [3] have proven
domain restrictions. The strongest result, [3], is that the bound state
wave functions belong to all the spaces. D, = D[|x|" (1 + I:IO)] for I? + L?
systems. Schnoll [13] uses differential equation methods to show that
if the potentials are continuous and bounded below then the wave
functions are actually continuous and are bounded by a decreasing
exponential. The rate of decay is weaker than ours. Schminke [20] has
extended these results to more general situations. More is known about
two body systems. Using a configuration space approach Simon [14]
proved our theorem for two body Rollnik system. de Alfaro and Regge
[12, p. 196] have given the best possible result for two body systems with
central potentials. They prove that if the central potential is in L'nL*(R?)

—k|x|

then there is constant A4, so that |1p(x)|<A—-e|T. Ahlrichs [1] has

recently proven a pointwise bound for several particle systems of the
type considered by Kato [8]. The method used in the paper was suggested
by a paper of Slaggie and Wichmann [15]. They used an integral equation
approach to obtain exponential decay for a three body system. Their
exact result seems to depend on the angular distribution of the three
particles and is slightly weaker than the theorem stated here. Nevertheless
they were the first to notice the analytic properties of the wave function
in momentum space which form the basis for our proofs.
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Section I gives the proof for two particle systems. This contains
all the ideas needed for several particle systems. In Section IT some
properties of the Weinberg-van Winter kernels are established and in
Section III the proof for several particle systems is given. An appendix
contains certain kinematic definitions.

Section I: Decay for Two Body Systems

The simplest two body system is when the potential is in L?. We can
extend this by an approximation argument to L*+ L? potentials and
finally by symmetrization and approx1mat10n to R+ L7 potentials.
A bound state wave function is an eigen function of H=H,+V at
energy —E(E>0).

Hy+V)yp=—Eyp. 1
Equivalently Ho+ Vv v M
Pp)= 2mE ImE [V(e—q) g dg )]

m is the reduced mass of the system.

 the Fourier transform of y.

A theorem of Paley and Wiener [10] provides the basic tool we
need to prove our result.

Theorem 1. A function f in [*(R") is in the domain of the multipli-
cation operators ¥ for all 0:0<0<1, if and only if its Fourier
transform f has a representative which can be extended to a function which

(a) is analytic in the complex tube T,

T,={x+iy:x,yeR" |yl <a}.
(b) has square integrable slices parallel to R, i.e.

[ 1fx+iyfPdy<co when |yl<a.
Rn

Proof. Paley and Wiener [10] or Titchmarsh [16].

To prove our two body result we construct an analytic continuation
of { to a tube T(E) in C3. Quite formally if an extension existed it would
satisfy the continuation of (2).

—2m

AU s Py

(Vip—a)dla+indg. 3)

Starting from this equation we construct an I?(R?) valued extension
of { to the tube T(E) and then piece together these L* functions to give a
function which is analytic in the whole tube. T(E) is just T, with k*> = 2mE.
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Definition 1. K(z, E)is the integral operator on I*(R?) whose kernel is

—(;;Lz—}z%n—E— Vo—q (Vel?zeT(E).

Definition 2. U(t) is the translation group on L*(R3), i.e.
(U@ f1=fp+1).

Lemma 1. (a) K(z,E) is an analytic family of Hilbert Schmidt
operators in the tube T(E).
(b) The operators K(z, E) have the translation property

UK E) U(t) ' =K+t E). @)

(c) If —Ee app(lfl), 1 e o[K(z, E)] for every z e T(E).
(d) If P(z) is the projection onto this eigenspace then P(z) is an analytic
Jfamily of finite rank projections and

Ut P(z) U(t) ' =P(z+1). &)

Proof. (a) and (b) are obvious. Schroedinger’s equation and (b) show
that 1 e 6[K(t, E)] for all t € R3. The analytic Fredholm theorem (Reed
and Simon [11], Hunziker [6]) shows that (c) is true. (d) follows from
the Cauchy representation for P(z)

2niP(z)= [ [w—K(zE] 'do
lw=1|=¢
(when ¢ is small).

P(z)'is the projection onto the eigenspace of K(z, E) corresponding
to the eigenvalue 1. This is so if [A— K(z, E)] ! has a simple pole at
A=1. A simple calculation checks this at z=0 and the translation
property and analyticity in z show that it is also true for each z in T(E).

The next theorem enables us to choose an analytic family of eigen-
vectors from the different eigenspaces.

Theorem 2. If P(z) is an analytic family of finite rank projections on H
in a tubular domain D= A+ iR" (A is open in R") and

U P)U(t) ' =Pz +1)

for a unitary group U(t) (t € R") then when p € RanP(0), the vector valued
Sfunction U(t) @ has an analytic vector valued extension to the tube D.

Proof. If the self adjoint operator A4 is the generator of the unitary
group U(t) on H, the set & of entire vectors for A is dense in H [19].
So the linear span of the set P(0) & is just RanP(0). Thus we can choose
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entire vectors e, ... e, so that {P(0)e;:i=1...n} is an orthonormal
basis for RanP(0) and so any vector p € RanP(0) can be written as

v= 3 €y PO

Ifte R n
pO)=U@O)y= '; (e w) P U(®) &;

has an analytic extension to all of D given by

= ) (e ) P(z) e*e;.
i=1
This is well defined since e; € &. Notice that y(z) is in the range of P(z)
and that

n

() p(z) = Z W) U(t) P(z) e*“e;

i(%w)P&+0 U(r) e*e,

=p(z+1).

So y(z) cannot vanish at a single point without vanishing on a whole
hyperplane and so vanishing identically in D. Hence y(z) never vanishes
inside D.

Remark. The finite dimensionality of RanP(0) enters when we
observe that any dense subspace of Ran P(0) is of necessity all of Ran P(0).
The example P(z) =1 shows that finite dimensionality is critical.

Lemma 2. If Hy= —Ey, where Hy=H,+ V with Ve I*(R%), then
the Fourier transform of v, {, has an L[* valued extension {, to the tube
T(E) such that (o =10 and {,,,= U(t) (P, for ze T(E) and t e R>.

Proof. Lemma 1 and Theorem 2.
1, satisfies the integral equation

P(p)= (@) dq. (6)

sy 9

Lemma 3. If (o, is the family of I? functions defined by Lemma 2 then

(a) We can choose a representative for each 1, which is in Cy(R?>).
In this way ¥,(p) has a unique interpretation.

(b) For each fixed p, {,(p) is an analytic function of z in T(E).

(C) l:bz(p + t) = 1z)z-*-t(p)'

Proof. (a) 1, is the product of a C, function and the convolution
of two I? functions. (b) {, can be written as a power series in z whose
coefficients are I? functions. (¢) ¥, ,,(p)=LU®) ®.] (p) =P.(p +1).
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Definition 3. We can sensibly define an analytic function in T(E) by
¥(2)=.00).

Lemma 4. Ef’(p) is just the Fourier transform of y and for each q € R®,
with |q|* < 2mE 3
¥Y(- +iq)e [*(R%).
Proof. ¥(p+iq)=,,(p) and Py, € [?

¥(p) = [U(p) P61 (0)=L[U(p) $1(0) = p(p).

Theorem 3. If VeI*(R3) and v is a bound state of H=H,+V
at energy —E then
BV'Z—m—E'IxI]

weD[e

for each 0:0=0<1. m is the reduced mass of the system.

Proof. Lemma 4 and Theorem 1.

We cannot directly carry over all the steps in the I? proof to I* + L?
potentials. Lemma 3 cannot be proven directly. The approximation
argument we use is also the basis for the Rollnik proofs.

Definition 4. 1f Ve [* + L we can choose potentials V, € I? so that
[V =V, <2Land we can define operators

K(z, E)=Gy(z,E) V,
K,(z, Ey=Gy(z, E) V,.
In the momentum representation G, (z, E) is multiplication by
__ —2m
2mE+(p+2)*

Lemma 5. (a) K, (z, E) is a sequence of HS operators which converge
in norm to the compact operator K(z, E). Convergence is uniform on
compact subsets of T(E). The operators K(z, E) form an analytic family
of compact operators in T(E).

(b) U)K(z, EyU(t) ' =K(z+t,E) for zeT(E) and teR’

() If —Ee€o,,(H), 1eod[K(z,E)] for each zeT(E).

Proof. Very similar to Lemma 1.
Definition 5. If ¢ is so small that

(1—¢ 1+&)nspec[K(0, E)]={1}
then

(1—¢ 1 +e)nspec[K(z, E)] = {1}
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for all z in T(E) and we can define P(z) as the projections onto the
eigenspaces of K(z, E) corresponding to the eigenvalue 1 and if n is large
enough

1 -1
P(o)=—5—~ ’w_j”q [w—K,(z E)] 'do

is also well defined for each z in T(E).

Lemma 6. (a) P(z) and P,(z) are analytic families of projections
in the tube T(E). They each have the translation property (4).

(b) P,(2) converges in norm to P(z), uniformly on compact subsets of
T(E).

Proof. Straightforward.

Lemma 7. If VeI?>+L? and H=H,+V has a bound state vy at
energy — E(E > 0) then

(a) Its Fourier transform { has an L? valued analytic extension P,
which agrees with U (t) v when z € R3.

(b) If P,,=P,(2) ,, then P, , is also an L* valued analytic function
in T(E). For each n, the functions {, , are slices of analytic functions
¥ (z) which satisfy the Paley-Wiener condition.

(c) The slices §,, , converge in L* to the I* functions §,. The functions
1% '(2) converge at each point of T(E) to an analytic function Y’(z) on T(E).

Proof. (a) Theorem 2 and Lemma 6.
(b) Pu,e = PO D, =P, () U®) o
=U@) P,(0) Po=U(t) Pp,o -

Theorem 2 guarantees that P,(z) ¢, is a continuation of U(t) {, o to the
tube T(E). {, o is a linear combination of the eigenfunctions of K,(0)
whose eigenvalues are between 1 — eand 1 + &. Suppose these are 6" --- 6%
and that they correspond to eigenvalues 4, ... A,. Each 6{” has an L2
valued analytic extension @) to T(E).

6" =,K,(z, E) ).

For fixed z, this is a continuous function of p and for fixed p an analytic
function of z. So the I* valued analytic functions §, , are just slices
of an analytic function ¥,(z). The functions P, converge in I? to P,
and the convergence is uniform on compact subsets. We see that P ' (2)
is a Cauchy sequence at each point of T(E) from the Cauchy integral
formula which gives

~ -~ & -~ -~
18P, (2) - P, 2* < [ dy [ ax|¥,(z+x+iy)— P (z+x+iyl*. (7)
-0 R’
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Hence we can define an analytic function by
P(z) = lim ¥ (2). (8)

Theorem 4. If Ve I?>+ L and vy is a bound state of H at energy
—E(E >0) then for each 6:0<0<1

weD[eG /2mElx|] .

Proof. We need only check that P obeys the conditions of the
Paley-Wiener theorem. ¥(p) is just the Fourier transform of y and
Y(.+iy)=0;,(.)e [*(R® for each y:|y|*<2mE. The extension is
consistent because

lim () = lim ,(x +2)=P(x+2).

Theorem 4 is also true for two body Rollnik systems. When Ve R
or R+ Ly, H is defined by a quadratic form method [14]. While we
cannot say that D(H,)= D(H) we do know that

D(H)C Q(H,)=D(H;").
If p is a bound state of H with energy —E then
¢=(E+H) pe PR

and
d=Go(—E} VGo(—E) ¢. &)

Conversely any solution of (9) produces an eigenfunction of H at energy
— E. Both claims follow from

G(2)=G(2) [1 - G§(2) VG§(2)]™* G(2) (10)

[14, p. 45].

To prove exponential fall off for the wave function it is enough to
prove that ¢ has an analytic extension to T(E) which obeys the Paley-
Wiener conditions. This proofis very similar to that for I? + L® potentials.

Definition 6. K*(z, E)= G, (z, —E)* VGy(z, —E)* and if V, is a se-
quence of potentials in RN L? converging to Vin R then

K;\(z, E)=Go(z,— E)* V,Go(z, —E)*.

Lemma 8. (a) K (z, E) is an analytic family of HS operators on T(E).
For fixed z these operators converge to K*(z, E). The convergence is
uniform on compact subsets of T(E) and so K*(z, E) is an analytic family
of compact operators.

(b) Both K*(z, E) and K;(z, E) have the translation property (4).

(¢) If Hy = — Ev, then the Fourier transform { of y has an L* valued
analytic extension {, to T(E).
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Proof. (a) and (b) are obvious. (c) follows if we show that $ has an
extension ¢, to T(E) and if we define

P.())=[2mE +(p+2)’17* $.(p).
(a) and (b) combined with é=K*(0, E) qZ) complete the proof.
Theorem 5. If Ve R+ L? and Hy = —Eyp then

pe D[eevm|x|]

forevery 0:0<0<1.

Proof. When Ve R an approximation argument using the families
K:(z, E) shows that the I? valued analytic family ¢, is just the family of
slices of an analytic function ®(z) in T(E). The slices of @(z) parallel to
R? are square integrable. This completes the proof for Ve R. When
VeR+L? an approximation argument using Rollnik potentials will
work.

Section II. Continuation of the Weinberg-van Winter Kernel into Tubes

In the two body system, three properties of K(0, E) were essential
in proving the I? result.

(A) K(0, E)= Go(—E) V was a compact operator on I*(R3).

(B) K(0, E) mapped L*(R?) into Co(R?).

(C) K(0,E) has an analytic continuation K(Z, E) to a family of
compact operators in a tubular domain in C3.

In a several particle system K (0, E) becomes the Weinberg-van Winter
kernel I(— E). First we will review the Weinberg-van Winter equation and
then we will prove analogues of (A), (B) and (C) for the kernel I(—E).
Some definitions are useful.

Definition 7. (a) If D is a decomposition of {1... N} into clusters
{C, ... C;} then Hy, = H, + V}, is the cluster Hamiltonian.

k
Vo= Y Y V.
j=1a,beC;j
(b) A decomposition D’ is finer than D if it contains more clusters and
each cluster in D’ is contained in one of the clusters of D. We write D’ D D.
(c) If D and D’ are cluster decompositions then D’ ? Dif D isa

strictly finer decomposition of D and if D is obtained from D’ by joining
just two of the clusters in D'.

(d) A string S of cluster decompositions is a sequence {D;... D}
of decompositions in which D; 2 D,y 2 ?Dk D, contains [ clusters so

that k <j.
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() f D'> D then Vi, =V, — V.

(f) The string S is disconnected if D, =+ {1 ... N}. It is connected if
k=1and D={1... N}. More generally a string {Dy, ... D,} is D connected
if D> D, and D disconnected if D, 2 D.

Definition 8. When the interparticle potentials V;;e >+ L7 the
disconnected part of the Green'’s function D(z) and the Weinberg kernel
I(z) are

D(z)= > Gpy(@ Voyoy 1Gpy_,(2) ... Gp,(2) Vp,p, - (11)
S={Dn...Dy}
k*1
The sum is over all disconnected strings S.
I(z2)= Y Gp(2) Vpypn_, --- Gp,(2) Vp,p, - (12)
S={Dn...Dy}
This sum is over all connected strings S.

Theorem 6. When z ¢ o (H) and all the interparticle potentials are in
I? + L the Weinberg-van Winter equation holds, i.e.

G(2)=D(2)+ I(2) G(z). (13)

D(z) is an analytic family of bounded operators when z ¢ ac(fl).

I(z) is an analytic family of compact operators when z ¢ o.(H).

Proof. Weinberg [18], van Winter [17].

Corollary. If — E is anisolated eigenvalue of Hand if H w=—Eythen

p=I(-E)y. (14)

Note that the converse is not true. There might be eigenfunctions of
I(— E) which are not eigenfunctions of H. These are the “spurious zeros”
of I. ([9], [4]).

When the potentials are in R + L? we need the factorized Weinberg-
van Winter equation.

Definition 9. The reduced Green’s functions R and R, are

R(z)=Go(2)"* G(2) Go(2) %, (15)
Rp(2) = Go(2)* Gp(z) Golz)*. (16)
The symmetrized disconnected part of the Green’s function is
Dg(z) = Z Rp,(2) (G§ Vonby s Gy) ... Rp,(2). (17)
S={Dn...Di}
k>1
The symmetrized connected part is
I(z) = Z (G§ VoD, Gy) Rpy oo RDZ(G% Vp,p, Gp). (18)

S={Dn...Dy}
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Theorem 7. When all the interparticle potentials are in R+ L7 and
z¢ a(H) the symmetrized Weinberg-van Winter equation is

R(z) = Ds(2) + Is(z) R(2) . (19)

D(z) and Iy(z) are respectively analytic families of bounded and compact
operators when

Proof. Simon [14, p. 185].

Corollary. A necessary but not sufficient condition that vy be an
eigenfunction of H corresponding to an isolated eigenvalue —E is

¢=I(—E)¢ (20)
¢=Go(—E)*yp. 2y

If we are to carry over the two body proof to several particle systems
we have to showthat I(— E) and [ (— E) have properties (A), (B) and (C).
(A) is already proven for us so only (B) and (C) must be checked. I(—E)
is built from all barely connected diagrams. Each such diagram can be
broken into a diagram which just fails to be disconnected followed by an
interaction which connects everything together. The barely disconnected
diagram represents an integral operator which leaves one of the N —1
momenta unchanged but which acts on functions of the remaining N — 2
momenta as a compact operator. This suggests that we use an induction
argument to prove (B) and (C). We must define some more kernels.
Cp is the sum of all the diagrams which are D connected and I;, the sum
of all diagrams which are barely D connected. )
Definition 10. When the potentials V;;€ I” + L? and z ¢ o (Hp) the D
connected kernel is just
Cplz)= Y GpuVoxdx-1Opx—y -+ Viis 10Oy - (22)

S={Dn... Dy}
Dy=D

where

The D connected Weinberg-van Winter kernel is

ID(Z)= Z GDN VDNDN~1GDN—1 GDk+l VDk+1Dk : (23)
S={Dx...Di}
Dr=D

Lemma 9. (a) Cy(z)and I,)(z) are analytic families of bounded operators

when z ¢ g (Hp), )
(b) When z ¢ 0,(Hp),
Gp(2)= DZD Cp(2) +Ip(2) Gp(2), (24)
Cp(z)=1p(2) Gp(2), (25)
Iy(z)= Z I,(2) Gp(2) Vpp - (26)

DDD
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Proof. (a) It is enough to show that when AIDB, V,gGg(2) is a

bounded operator. Hunziker’s theorem [6] shows that the total set
from which z is excluded is just o,(Hp).

(b) When Rez is very negative the perturbation series expansions
in terms of diagrams converge. Analytic continuation completes the
proof.

The analogue of Lemma3 would be that the kernel I(z) maps
L*(R*™3) into Co(R3V~3). We will prove a more general result for this
new class of kernels Ij,(z). These really act only on the internal momenta
of the clusters in D. A simple example of this is the three body system and
the decomposition D = {(12), (3)}, I)(z) = G, V;, (V;, € I*). We can choose
as coordinates the Jacobi scheme, (p, q); p is the relative momentum of 1
and 2, q is the relative momentum of 3 and the centre of mass of 1 and 2.
Ignoring mass factors I, has the kernel

In(pa, pr)=(z—p*—q*) ' Viy(g—7).

When pis fixed, I, is a HS kernel in g and r. More precisely we can examine
its action on the functions f(p, r) = g(p) h(r). Then

[Ip(2) g® K] (p,1) =[f (z = p* =1*) " Vialg— 1) k() dr] - g(p)
=[Ip(z—p*) h1 (@) 9(p).

I, is just the two body kernel G,V,,. It maps I*(R?) into Co(R3).
We generalize this simple example. Jacobi coordinates are described in
the appendix.

Definition 11. If Dis any cluster decomposition of {1 ... N} then we can
choose a set of Jacobi coordinates p,, and relative momenta pj, for the
clusters in D which together will form a complete set of momenta
describing the N particles in their centre of mass frame.

I[}(D), CoD), I*(D) and Cy(D)

are the spaces and of 12 and C, functions in the variables p;, and p,.
It is clear that [2(D)® L*(D)=L*(R3V3).

In the following theorems we ignore mass factors. These will be
taken into account with a little care later on.

Theorem 8. All the interparticle potentials are in L?(R?). Each operator
Ip(z) when acting on_functions in I*(R*73) of the form f®g, with
feI*(D) and g € I*(D) can be written in the form

[Ip(z) f ®9] (pp, Bp) = [Ip(z — $3) f1(Pp) - 9Bp) - 27)

fD({) is an analytic family of HS operators acting on I*(D) when
Z ¢ o-c(HD)‘
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Proof. We argue inductively on (26). Each item in (26) has a very
simple form in the appropriate Jacobi frame. If D' > D we can choose a
Jacobi frame p;, which contains the relative moméntum, p, of the two
clusters in D’ which are joined together to form a single cluster in D, i.e.

Pp=(Pp' D).
If

S(pp, Pp)=F(pp)- G(p)- H(pp)
then

Uy Gp(2) Vppl [FRG® H] (pp, P, Pp)
=[pgp(z— B3~ 1) F1(pp) - [VopGl(p)- H(p) (28)

=[Jpp(z—Pp) F®G] (ppy, p) - H(Pp)
Here P
gp(2)=(z—hp)

sz,=fIO,D,+ Vp is the Hamiltonian describing the internal structure
of the clusters in D'. It is a self adjoint operator on I*(D) and
o(hp)=o(Hp).

If all the potentials are in I?>(R?) it is not hard to check that Jp, ,(z)
extends from vectors of the type F® G to a HS operator on all of Z2(D).

Explicitly if {a;} and {b;} are bases for L*(D) and I*(DD')=L*(R?),

Z [ Jpp(2) ai®bj”2
ij=1

= Z H(ingD«(Z -p?a)(pp)- (Vb pb)) @I

i,j=1

IIA

S Wipgn(z—p2)lus (Vorob) @)

j=1
< sup {Ily (2 = P*) s Iz = Ep: =p*) ™" Vi pls}
<00,
—E,, =info(hy) and we assume that for every D’ 2 D
Sl;p Hp(z = p*)lgs <0 .
The decomposition D = {(12), (3) ... (N)} is the first step in the induction

argument. This is just the two body situation. I, is the sum of these HS
operators Jp, , and so the theorem is true.

_ Theorem 9. If all the interparticle potentials V,;€ [*(R?), then
I, (z) maps I*(D) into C,(D).



332 A. J. O’Connor

_ Proof. Again by induction. The hypothesis is that for each D'D> D,
Ip(z) maps I*(D’) into C,(D’) and that

1y (2) f llco S mp2) 1 f I 2 (29)

where my, is finite away from o.(hp) and my, (z)—0 as Rez— — 0. The
contribution to I(z) f from the decomposition D’ is just

U gp(z= 1) VB 5 f1(0p) = [pn(2) £1 ()
VP I[*(D)— [*(D') is a family of maps depending continuously on p.

[V f1(pp) =] fbprq) Vip—q)dg.

So J, p maps the functions F® G, where F e I*(D') and Ge I*(DD’)
into C,(D) functions and that

[Jpp(2) F ® Gllcopy = Mp(2) IF ® Gl 12y
mp(z) = S‘LI? mp(z— pz) [z+Ep — P2] 1 Vool
P

Jpp can be extended to all of 1?(D).
Now we must prove that I,(— E) has an analytic continuation to a
family of compact operators in some complex tubular domain.
Definition 12. If D is a cluster decomposition of {12 ... N} which has
k internal coordinates then T,(z) C C3* is the tube

{p+iq:Rez— E, > g}, for all decompositions D’ B) D}.

—ED=infa(fID) and g}, is the length of the vector q , described

in the appendix.
Note. When Rez' > Rez, Tj(z') D Tp(2).

Theorem 10. If every V;;e [*(R?), I,(—E) has an extension to an
analytic family of HS operators Ip(zp, —E) when zpe Ty(E). Each
Ip(zp, — E) maps I*(D) into Cy(D).

Proof. Our induction hypothesis is:

For each D’ 2 D, I,.(z) has the properties

(1) Tt is an analytic HS valued function of z.

(2) It has an analytic extension to Tp(z).

(3) It maps I*(D’) into Cy(D").

gp(2) is an analytic family of bounded operators on I*(D’) and has
property (2). We also assume )

_ (4) When zis more than an arbitrary minimum distance from o (Hp),

[Ip:(2)[|gs is uniformly bounded.

(5) Up(2) f1(pp) is a continuous function of both z and py..

(6) Both I,.(z) and g, (z) have the translation property.
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We can start the induction with D= {(12), (3), ...,(N)}. This is just
the two body situation and has already been checked. Recall Eq. (26).
We extend Jp, p(—E) to Jy p(zp, — E) by defining

[Jp p(zp, —E) a®b] (pp, p)
=[Ipgp(zp, —E—(p+2?) al(pp) - [Vppb] ()

(30)

where
aeI*(D)), bel?*(R%).

pp=(pp>p) and zp=(zp,2).

If z, € T(E) then zj, € Ty, (E). Again Jp (zp, —E) extends to a HS
operator whenever zj, € Tp(E). In (30), V. pb is already a C,, function of p.
By induction [I g, (—E — (z + p) 2 b] (pp) is a C, function of p and pp,.
Properties 4, 5 and 6 are easily checked. So I,,(—E) has all the right
properties. It is a little more complicated to prove these for
gp- Equation (24) becomes

gp(—E)=4p(—E) + I(—E) gp(— E) (31)

where Ap(—E) is Y App(—E)4pp(—E) is the extension to L*(D)
D'5D

of the operator defined by

[4p p(—E)a®b] (pp) = [ju'gz)’(_E __pz) al (pp) - b(p)

where ae [*(D), be [*(R® and p,=(py,p). Each 4, ,(—E) can be
extended to an analytic family of bounded operators 4y p(zp, —E) on
I*(D). Each ID can be extended to ID(ZD, — E). We might hope to define
an extension of g, by

9p(zp, —E)=[1—1Iy(zp, —E)]" '+ Ap(zp, —E). 32

This will only be possible when 1 ¢ a[fD(zD, —E)]. Since fD is built from
lower order kernels it has the translation property. This combined with
the analytic Fredholm theorem shows that 1€ o[l,(zp, —E)] if and
only if 1 € ¢[I,,(— E)]. In this case — E is called an exceptional point of I,.
The exceptional points are isolated. If —E is not exceptional (32) is an
extension of g, with property (2). If — E is an exceptional point there is an
apparent singularity in (32). This is however a removable singularity.
There is a neighbourhood N which contains no other exceptional points
besides —E. When ze N — {—E} we can define g,(w, z) for w € Tp(z).
We also know that the equation

gp(x, —E)=Ap(x, —E)+ Ip(x, —E) gp(x, —E) (33)
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has a solution when x is real, viz.,
gplx, — E)= Up(x) gp(—E) Up(—x)

since —E¢ a(fID), T= () Tpy(z) can be made arbitrarily close
zeN—{—E
to T,(E) by taking N sufﬁcierﬁtly)small.

This situation is an example of Hartogs basic phenomenon. We
illustrate this with scalar valued analytic functions. Everything extends
to operator valued functions.

We have a function F(z, w) of two complex variables which

(1) is analytic in both z and w when ze T and we N — {0}

(2) when z is real is analytic in w around w=0.

(Here T and N are open neighbourhoods of 0 in the appropriate
complex spaces.)

Then any singularity in F(z, w) at w =0 is removable.

Proof. Bochner and Martin [2, p. 141].

Now we have only to prove the translation property for gy,.

Up(t) gp(z, —E) Up(t)~ T= Ap(z+t, —E) (34)
+Ip(z+1t, —E) Up(t) gpl(z. —E) Up() "

On solution of (34) is gp(z+t, —E). If —E is not an exceptional point
the solution of (34) is unique, and so

Up(t) gp(z, —E) Up(t) " =gp(z +1t, —E) (35)

gp(z, —E) is analytic in both z and E and the exceptional points are
isolated so (35) will hold everywhere. This completes the proof.
One more lemma is needed.

Lemma 10. (a) If all the interparticle potentials V;;e I*(R%) and if
f € L*(D) then for each fixed p

Up(z. —E) f1()

is an analytic function of z in Tp(E).
_®) If f, is an I?(D) valued analytic function when ze Ty(E) then
[Iy(zp, —E) f,] (p) is an analytic function of z for fixed p.
Proof. (a) follows by examining each individual term Jp , on the
appropriate functions in Z?(D). (b) is a simple extension of (a).
Finally we restate these results when D= (12 ... N). This is the really
important case.
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Corollary to Theorem 10. When the interparticle potentials V; ;€ L*(R?)
and then

(@) I(—E) has an analytic extension to a family of HS operators
I(z, —E) for ze T(E).

(b) I(z, —E) maps [*(R*N3) into Co(R3V73).

(©) If f, is an analytic family of functions in L*(R*N73) then
[I(z, —E) f,](p) is an analytic function of z for each fixed pe R3N73.

Proof. A restatement of Theorem 10 and Lemma 10.

Section III. Decay in Several Particle Systems

The method of proof for several particle systems is exactly the same
as that for two particle systems. We have almost finished the proof
by proving Theorem 10. One geometric lemma is needed.

Lemma 11. The tubular domain
S(Ey={p+iqeC* 3:|g*<E—E,,
—E,=info,(H)}
lies inside T(E).
Proof. If p+iqe T(E) then for each cluster decomposition D’
lap|? <E—E,, —Ep =info(Hp). (36)

Hunziker’s theorem says that —E, < —E,,. So if |g|> <E — E,, (36) is
always true.

Theorem 11. If H=H, + Y. Vi; is the Hamiltonian for a system of

i<j
N particles interacting through I* potentials and if
Hy=—Ey, —E<—E,=infc(H)
then
pe D[eomr(x)]

for each 0:0=0 < 1. M is the total mass of the system and r(x) is defined
by Mr?*(x) being the moment of inertia of the system of N particles when
their relative configuration is specified by the vector x € R3N 3,

Proof. v satisfies the Weinberg-van Winter equation
w=I(—E)y. (37

I(—E) has an extension to an analytic family of compact operators in
S(E) and since 1 ea[I(0, —E)], 1 eo[I(z, —E)] for every ze S(E). The
analytic family of projections P(z) onto these eigenspaces have the
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translation property and so Theorem 2 gives an extension of {p to an
analytic family of I? functions .. Theorem 10 enables us to conclude
that each ¢, is a C,, function and that ¥(z) = {,(0) is an analytic extension
of P(p) to S(E). The slices of ¥ parallel to R*¥~2 are square integrable
and so we can apply Paley and Wiener’s theorem. To complete the
proof we need only reinsert the mass factors that have been ignored so far.
Suppose p; ... py_; is a set of Jacobi coordinates for the momenta
of the N particles in their centre of momentum frame and that
. N-1
Hy= ) 3A4pf. (38)
i=1

If
. N-1
0;=(GA)*p;, then Hy= Z 0.
i=1

If %, ...xy_, is a set of conjugate position coordinates to p; ... py_
we can define a set of transformed x's by

Xi=(%Ai)~%xi'

Then p-x=¢-X. So far we have dealt with the coordinates
(0;:i=1... N—1) and we have shown that if 6 if defined by

é(Ql o On-1)=P{@; ... Pn-1) (39)

then 0(X) decays as e VE~EolXl,
Now B
0(X)=e'*"*6(0) do
=[e?*P(p)dp=1w(x).
So
p(x) e D[VE~Fo X (40)

for each 6: 0 < 0 < 1. We now have to calculate | X| in terms of the original
coordinates x; and the masses m;

XP=2Y A7 =200, (“1)

Q(x) is the moment of inertia of the N particles about their centre of mass.
We can prove this by induction. py_, is the relative momentum of two
clusters C; and C,. The remaining momenta are internal momenta of
these two clusters. xy_; can be interpreted in the same way. Then

Q(x)=Qc,(0) + Qc, () + Ay x5 -y . (42)
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If all the particles in C; have the same velocity and those in C, the same
velocity then only py_, is nonzero. This shows that

AN—1=MC_11+MC_21‘ (43)

Using (40) and (41) we complete the proof.

When the potentials are in L? + L? we again choose potentials V"
in I? which converge in L* to V;;. The corresponding kernels I,(z, —E)
converge to I(z, —E) uniformly on compact subsets of T(E). This is
enough to extend the two body arguments to several particle systems.
For Rollnik potentials we extend the symmetrized Weinberg-van Winter
equations (19), (20). Again the Rollnik potentials V;; are approximated
in R norm by potentials in RN L2, The symmetrized kernel I(V; ;) depends
continuously on the potentials V;; since

145(Vi)) = LW, ) = Cy sup 1Vi;— Willx -

With these remarks every two body argument generalises and we are
lead to the final theorem.

Theorem 12. H = H, + Y. Vi; is the Hamiltonian for a system of
i<j
N particles interacting througljl potentials in R+ L?. y is an eigenfunction
of H at energy —E. —E is an isolated eigenvalue if H.
Then
pe D[eel/mr(x)]
for each

0:0s0<1, —E,=info,(H).

M is the total mass of the system and Mr?(x) is the moment of inertia
of the N particles about their centre of mass.

Remarks. (a) Itisalso possible to apply this method to spin dependent
forces of the types considered by van Winter and Brascamp [22] or
Balslev and Combes [24, 21].

(b) If the underlying space is R", n> 3, the basic result is unchanged
provided the potentials are in some I? space for p>n/2. If VI?, p>n/2,
V is Kato tiny relative to H, [23] and is also H, compact. An approxi-
mation argument gives an extension to the spaces I + L.

(c) Using results of Kato [8] on the boundedness and Holder
continuity of wave functions for a wide class of potentials, Ahlrichs [1]
proved a pointwise exponential bound. The rate of decay is not however
the best possible. Recently Simon [25] has given a momentum space of
Kato’s result for a slightly different class of potentials. For this class he has
strengthened the I? decay given here to pointwise decay with the same
exponent.
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(d) Combes and Thomas [26] have recently given a more direct
proof. It applies to dilatation analytic potentials. This method applies
to point eigenvalues embedded in the continuum (but away from
thresholds). This is an important advantage over the present method.
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Appendix. Kinematics of Several Particle Systems

We have N particles with momenta p; and masses m; (1 <i<N).
Their kinetic energy is H,, and H, is their kinetic energy relative to their
centre of mass. With any string of cluster decompositions we can
associate a set of Jacobi coordinates which diagonalize I:IO.

Definition A1. S is a string of cluster decompositions {Dy, Dy _, ..., Di}.
The clusters in D; are labelled C;(1), ..., C;(j). D;_, is obtained from D;
by combining the clusters C;[a(j)] and C;[b(j)] together to form a
single cluster. Then the internal Jacobi coordinates for S are

p;- 1 = relative momentum of C;[a(j)] and C;[b(j)]inDfor N=j=k+1,
ie. (M,+M,) p;_, = M,P,— M,P,.

M,, P, and M,, P, are the total mass and momentum of C;[a(j)] and
C;[b(j)] respectively. To completely specify the N — 1 relative momenta
we supplement these internal coordinates by a further k—1 vectors.
There are many ways of doing this. Viewing the k clusters in D as
particles with specified masses and momenta we can take any string S’
of cluster decompositions of {1 ... k}.

S'={D,,...,D;}

Dy ={(1),(2), ..., (k)}
D,={(12...k)}
D;>.D; ;.

For any string S’ we can take the set of relative Jacobi coordinates
{q --- qi—}- The total set {q, 0} = {41, ---» Gk 1 Q> ---» Ox— 1} Of MOMenta
form a set of Jacobi coordinates for the system.

Note. The particular value of ¢ depends on the S" we choose.
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Theorem A 1. For any set of Jacobi coordinates we can find positive
numbers A; so that
. k=1 N-1
Hy= ) A+ ) Ao}
i=1 i=k
Proof. Induction.
Definition A2. If a string S ends with a decomposition D we define
vectors pp, and ¢, by

Pp= {Ak%gka cees A§—1QN—1} >
qp= {A%CIL- ee A%—l‘]k—l} .

Note. (a) H, = p + q3.

p3 is the internal kinetic energy of the clusters and g3 is the relative
kinetic energy of the clusters. Since p), is fixed by S, g3 must be independent
of the choice of §'.

(b) If D'> D, D containing [ clusters and Dk clusters (I > k), we can
find a string S={Dy ... D, ... D,} where D,=D', D, = D. Then

po ={Ato, ... AR _1on-1}
Pp= {Ak%gk‘ ceey A]%—IQN—I}
Ppp = {Ak%gk, vy A;%+ 101+ 1} .

Then (1) p} = p} + p}p and so pj, is independent of S'.
(2 If D'>D, pj = e}

and
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