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Abstract. The spatial decay properties of the wave functions of multiparticle systems
are investigated. The particles interact through pair potentials in the class R-\-L™. The
bound states lie below the bottom of the continuous spectrum of the system. Exponential
decay, in an L2 sense, is proven for these wave functions. The result is the best possible one
which will cover every potential in this class.

Introduction

In every exactly soluble quantum mechanical two body problem the
bound state wave functions fall off exponentially. The rate of exponential
decay depends only on the energy of the bound state and the masses of the
particles involved. For several particles intuitive arguments on bound
states near the bottom of the continuum suggest that for these systems too
the wave functions decay exponentially and that the rate of decay depends
only on the particle masses and the depth of the bound state below the
bottom of the continuum [15]. These L2 wave functions are initially
just in the domain of the system Hamiltonian. When the potentials can be
written as the sum of a bounded function and an L2 function with compact
support Kato [8] has shown that the wave functions are actually bounded
Holder continuous functions. Hunziker [7] and Simon [14] have
observed that one way to state a decay result is as an L2 domain condition.

For the class of potentials considered by Kato, Ahlrichs [1] has
shown that L2 conditions imply pointwise decay. This rate of decay is
weaker than the L2 decay but Simon [25] has recently shown that for a
slightly different class of potentials the pointwise decay is precisely the
same as the L2 decay. We will prove the following theorem.

Theorem. Scalar particles with masses m^l^i^N) interacting through
local potentials Vtj s R + LJ have a bound state at energy —E, E> Eo

* Based on a thesis submitted to Princeton University in partial fulfillment of the
degree of Doctor of Philosophy.
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where —Eo is the bottom of the continuous spectrum for the system
Hamiltonίan

Ho is the free Hamiltonian with the centre of mass motion removed. The
wave function ψ for this bound state is in L2(R3N~3) and obeys the
Schroedinger equation

Hψ = —Eψ.

Then ψED[e

ΘV2M(E-Eo)r(x)^ j Q γ e v e r y 0 : o ^ 0 < l and x measures the

positions of the N particles relative to their centre of mass.
M is the total mass of the system and r(x) is defined by Mr2(x) is the

moment of inertia of the N particles about their centre of mass.

We recall that when the interparticle potentials are in L2-\-L™,
H is defined as the operator sum of Ho and V=YJ Vtj on their common

o* „
domain D(H0). When the potentials are in R + Lf, H must be defined by
quadratic form techniques. In this case we cannot say that D(H) = D(H0)
[14, p. 32].

Previous results have been mostly proven for particular applications.
Consequently the methods are fairly direct and generally use a con-
figuration space approach. Hunziker [7] and Combes [3] have proven
domain restrictions. The strongest result, [3], is that the bound state
wave functions belong to all the spaces. Dn = D[\x\n (1 + Ho)] for L2 + Lf
systems. Schnoll [13] uses differential equation methods to show that
if the potentials are continuous and bounded below then the wave
functions are actually continuous and are bounded by a decreasing
exponential. The rate of decay is weaker than ours. Schminke [20] has
extended these results to more general situations. More is known about
two body systems. Using a configuration space approach Simon [14]
proved our theorem for two body Rollnik system, de Alfaro and Regge
[12, p. 196] have given the best possible result for two body systems with
central potentials. They prove that if the central potential is in L'nL2(R3)

e~k\x\

then there is constant A, so that \ψ(x)\<A———. Ahlrichs [1] has

recently proven a pointwise bound for several particle systems of the
type considered by Kato [8]. The method used in the paper was suggested
by a paper of Slaggie and Wichmann [15]. They used an integral equation
approach to obtain exponential decay for a three body system. Their
exact result seems to depend on the angular distribution of the three
particles and is slightly weaker than the theorem stated here. Nevertheless
they were the first to notice the analytic properties of the wave function
in momentum space which form the basis for our proofs.
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Section I gives the proof for two particle systems. This contains
all the ideas needed for several particle systems. In Section II some
properties of the Weinberg-van Winter kernels are established and in
Section III the proof for several particle systems is given. An appendix
contains certain kinematic definitions.

Section I: Decay for Two Body Systems

The simplest two body system is when the potential is in L2. We can
extend this by an approximation argument to L2 + Z£ potentials and
finally by symmetrization and approximation to R + L™ potentials.
A bound state wave function is an eigen function of H = Ho + V at
energy — E(E>0).

( 0 + )ψ-Eψ. (1)
Equivalently

Ψ(P) = 2mE+p2 \y(p-q) m dq (2)

m is the reduced mass of the system.
ψ the Fourier transform of ψ.
A theorem of Paley and Wiener [10] provides the basic tool we

need to prove our result.

Theorem 1. A function f in L2(Rn) is in the domain of the multipli-
cation operators eθa^x\ for all 0 :O5^0<1, if and only if its Fourier
transform f has a representative which can be extended to a function which

(a) is analytic in the complex tube Ta

(b) has square integrable slices parallel to Rn, i.e.

ί \f(x + iy)\2dy<oo when \y\<a.
Rn

Proof. Paley and Wiener [10] or Titchmarsh [16].
To prove our two body result we construct an analytic continuation

of ψ to a tube T(E) in C3. Quite formally if an extension existed it would
satisfy the continuation of (2).

Starting from this equation we construct an L2(R3) valued extension
of ψ to the tube T(E) and then piece together these 1} functions to give a
function which is analytic in the whole tube. T(E) is just Tk with k2 = 2mE.
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Definition 1. K(z, E) is the integral operator on L2(R3) whose kernel is

Definition 2. U(t) is the translation group on L2(R3), i.e.

Lemma 1. (a) K(z9 E) is an analytic family of Hubert Schmidt
operators in the tube T(E).

(b) The operators K(z, E) have the translation property

U(t)K(z,E)U(t)-1 = K(z + t,E). (4)

(c) If-Ee σpp{H), 1 e σ[K(z, £)] for every ze T(E).
(d) IfP(z) is the projection onto this eigenspace then P(z) is an analytic

family of finite rank projections and

U{t)P(z)U(ty1=P{z + t). (5)

Proof, (a) and (b) are obvious. Schroedinger's equation and (b) show
that 1 e σ[K[t, Ej\ for all t e R3. The analytic Fredholm theorem (Reed
and Simon [11], Hunziker [6]) shows that (c) is true, (d) follows from
the Cauchy representation for P(z)

2πi P(z) = j [ω - K(z, £)] " ι dω
| ω - l | = ε

(when ε is small).
P(z) is the projection onto the eigenspace of K(z, E) corresponding

to the eigenvalue 1. This is so if [λ — K(z, E ) ] " 1 has a simple pole at
λ=ί. A simple calculation checks this at z = 0 and the translation
property and analyticity in z show that it is also true for each z in T(E).

The next theorem enables us to choose an analytic family of eigen-
vectors from the different eigenspaces.

Theorem 2. // P(z) is an analytic family of finite rank projections on H
in a tubular domain D — A + iRn (A is open in Rn) and

U(t)P(z)U(ty1=P(z + t)

for a unitary group U(t) (t e Rn) then when ψ € RanP(0), the vector valued
function U(t) ψ has an analytic vector valued extension to the tube D.

Proof. If the self adjoint operator A is the generator of the unitary
group U(t) on H, the set S of entire vectors for A is dense in H [19].
So the linear span of the set P(0) S is just RanP(0). Thus we can choose
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entire vectors e1 ... en so that { P ( 0 ) e i \ i = ϊ ...n] is an orthonormal
basis for RanP(0) and so any vector ψeRanPφ) can be written as

ψ= J (ei,ψ)P(0)eί.

lϊteR" l

ψ(ή=U(t)ψ= Σ (ehψ)P(t)U(ήei

has an analytic extension to all of D given by

ψ(z)= t (ei,ψ)P(z)eίzAei.

This is well defined since e{ e S. Notice that ψ(z) is in the range of P(z)
and that

U{t)ψ(z)= Σ (ehψ)U(t)P(z)eizA

ei

So ψ(z) cannot vanish at a single point without vanishing on a whole
hyperplane and so vanishing identically in D. Hence ψ(z) never vanishes
inside D.

Remark. The finite dimensionality of RanPφ) enters when we
observe that any dense subspace of RanP(0) is of necessity all of RanP(0).
The example P(z) = I shows that finite dimensionality is critical.

Lemma 2. // Hψ = -Eψ, where H0=H0 + V with VeL2(R3\ then
the Fourier transform of ψ, ψ, has an L2 valued extension ψz to the tube
T(E) such that ψo = ψ and ψz+t = U(t) ψz for z e T(E) and t e R3.

Proof. Lemma 1 and Theorem 2.
ψz satisfies the integral equation

1% (6)
Lemma 3. // <pz is the family of L2 functions defined by Lemma 2 then
(a) We can choose a representative for each ψz which is in C0(R3).

In this way ψz(p) has a unique interpretation.
(b) For each fixed p, ψz(p) is an analytic function of z in T(E).
(c) ψz(p + ή = ψz+t(p).

Proof, (a) \pz is the product of a C o function and the convolution
of two L2 functions, (b) \pz can be written as a power series in z whose
coefficients are L2 functions, (c) ψz + t(p) = \JJ{t) ψJ (p) = ψz(p +1).
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Definition 3. We can sensibly define an analytic function in T(E) by

Lemma 4. Ψ(p) is just the Fourier transform ofψ and for each q e R3,
wίth\q\2<2mE

Ψ{ + iq)eL2(R3).

Proof Ψ(p + iq) = xpiq{p) and ψiq e I2

Ψ(p) = lU(p) ψo ] (0) = lU(p) ψ] (0) = ψ(p).

Theorem 3. // VeL2(R3) and ψ is a bound state of H = ίϊo + V
at energy — E then

for each θ: 0 rg θ < 1. m is the reduced mass of the system.

Proof. Lemma 4 and Theorem 1.
We cannot directly carry over all the steps in the L2 proof to L2 + L™

potentials. Lemma 3 cannot be proven directly. The approximation
argument we use is also the basis for the Rollnik proofs.

Definition 4. If VeL2 + L™ we can choose potentials VneL2 so that

II ^~~ KJIIOO < i a n d we can define operators

In the momentum representation Go (z, E) is multiplication by

-2m

Lemma 5. (a) Kn(z, E) is a sequence of HS operators which converge
in norm to the compact operator K(z, E). Convergence is uniform on
compact subsets of T(E). The operators K(z, E) form an analytic family
of compact operators in T(E).

(b) U(t)K(z9E)U(t)-ί=K(z + t9E) for zeT(E) and teR3.
(c) If -Ee σpp{H\ 1 e σ[K(z, £)] for each z e T(E).

Proof. Very similar to Lemma 1.

Definition 5. If ε is so small that

(1 - ε , 1 + ε)nspeclK(0, £)] = {1}
then

(1 - ε, 1 + ε)nspeclK(z, £)] = {1}
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for all z in T(E) and we can define P(z) as the projections onto the
eigenspaces of K(z, E) corresponding to the eigenvalue 1 and if n is large
enough

W ^ ί n
Z π i | ω - l | = ε

is also well defined for each z in T(E).

Lemma 6. (a) P(z) and Pn(z) are analytic families of projections
in the tube T(E). They each have the translation property (4).

(b) Pn(z) converges in norm to P(z), uniformly on compact subsets of
T(E).

Proof. Straightforward.

Lemma 7. // VeL2 + L™ and H = H0 + V has a bound state ψ at
energy —E(E>0) then

(a) Its Fourier transform ψ has an L2 valued analytic extension ψz

which agrees with U(t) ψ when z e R3.
(b) If ψn>z = Pn(z)ψz, then ψnz is also an L2 valued analytic function

in T(E). For each n, the functions ψn>z are slices of analytic functions
Ψn(z) which satisfy the Paley-Wiener condition.

(c) The slices ψnz converge in L2 to the L2 functions ψz. The functions
Ψn(z) converge at each point of T(E) to an analytic function Ψ(z) on T(E).

Proof, (a) Theorem 2 and Lemma 6.

(b) ψn,t = Pn(t)ψt = Pn(

Theorem2 guarantees that Pn(z)ψz is a continuation of U(t)ψn0 to the
tube T(E). \pn0 is a linear combination of the eigenfunctions of Kn(0)
whose eigenvalues are between 1 — ε and 1 + ε. Suppose these are θ^ ^

es λί ... λp. Each θψ has an 1}
valued analytic extension Θ^z to T(E).
and that they correspond to eigenvalues λί ... λp. Each θψ has an 1}

For fixed z, this is a continuous function of p and for fixed p an analytic
function of z. So the L2 valued analytic functions ψnz are just slices
of an analytic function Ψn(z). The functions ψΆtZ converge in L2 to <pz

and the convergence is uniform on compact subsets. We see that Ψn(z)
is a Cauchy sequence at each point of T(E) from the Cauchy integral
formula which gives

πδ2\Ψn{z)-Ψm{z)\2^ I dy J dx\Ψn{z + x + iy)-Ψm{z + x + iy)\2. (7)
-δ R'
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Hence we can define an analytic function by

Ψ(z)=limΨn(z). (8)
M-> 00

Theorem 4. // VeL2 + L™ and ψ is a bound state of H at energy
-E(E > 0) then for each θ: 0 ^ θ < 1

Proof. We need only check that Ψ obeys the conditions of the
Paley-Wiener theorem. Ψ(p) is just the Fourier transform of ψ and
ψ(. + iy) = ψίy(.)eL2(R*) for each y: \y\2 <2mE. The extension is
consistent because

lim ψn z(x) = lim <pn{x + z) = Ψ(x + z).
n —> oo ' w—• oo

Theorem4 is also true for two body Rollnik systems. When VeR
or R + L^iH is defined by a quadratic form method [14]. While we
cannot say that D(H0) = D(H) we do know that

If ψ is a bound state of H with energy — E then

and
(9)

Conversely any solution of (9) produces an eigenfunction of H at energy
— E. Both claims follow from

G(z) = Gt(z) [1 - Gt(z) VGUz)l ~' G%(z) (10)

[14, p. 45].
To prove exponential fall off for the wave function it is enough to

prove that φ has an analytic extension to T(E) which obeys the Paley-
Wiener conditions. This proof is very similar to that for L2 + L™ potentials.

Definition 6. Ks(z,E) = G0(z, -E)*VG0(z, -Ef and if Vn is a se-
quence of potentials in RnL2 converging to Fin R then

Ks

n(z, E) = G0(z9- £)* VnG0(z, -Ef .

Lemma 8. (a) Ks

n(z, E) is an analytic family of HS operators on T(E).
For fixed z these operators converge to Ks(z, E). The convergence is
uniform on compact subsets of T(E) and so Ks(z, E) is an analytic family
of compact operators.

(b) Both Ks(z, E) and Ks

n(z, E) have the translation property (4).
(c) // Hxp — — Eψ, then the Fourier transform ψ of ψ has an L2 valued

analytic extension <pz to T(E).
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Proof, (a) and (b) are obvious, (c) follows if we show that φ has an
extension φz to T(E) and if we define

ψz(p) = [2m£ + (p + z)2] -± φz(p).

(a) and (b) combined with φ = Ks(0, E) φ complete the proof.

Theorem 5. If VeR + L™ and Hψ=-Eψ then

for every

Proof. When VeR an approximation argument using the families
Ks

n(z, E) shows that the L2 valued analytic family φz is just the family of
slices of an analytic function Φ(z) in T(E). The slices of Φ(z) parallel to
R3 are square integrable. This completes the proof for VeR. When
VeR + L™ an approximation argument using Rollnik potentials will
work.

Section II. Continuation of the Weinberg-van Winter Kernel into Tubes

In the two body system, three properties of K(0, E) were essential
in proving the L2 result.

(A) K(0,E) = Go( — E) Fwas a compact operator on L2(R3).
(B) f (0, E) mapped L2(R3) into C0(R3).
(C) K(0, E) has an analytic continuation K(Z,E) to a family of

compact operators in a tubular domain in C3.
In a several particle system K(0, E) becomes the Weinberg-van Winter

kernel /(— E). First we will review the Weinberg-van Winter equation and
then we will prove analogues of (A), (B) and (C) for the kernel I( — E).
Some definitions are useful.

Definition?, (a) If D is a decomposition of {1 ... JV} into clusters
{Cί ... Ck} then HD = H0+ VD is the cluster Hamiltonian.

vD= Σ Σ vαb.
j=ί α,beCj

(b) A decomposition D' is finer than D if it contains more clusters and
each cluster in D' is contained in one of the clusters of D. We write D' D D.

(c) If D and D' are cluster decompositions then D'jD if D' is a

strictly finer decomposition of D and if D is obtained from D' by joining
just two of the clusters in D'.

(d) A string S of cluster decompositions is a sequence {Dj... Dk}
of decompositions in which DjDDj+1D DDkDι contains / clusters so

that k g>j.
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(e)
(f) The string S is disconnected if Dk + {1 ... N}. It is connected if

k = 1 and D = {1 ... N}. More generally a string {DN ... D^isD connected
if D D Dι and D disconnected if D{ D D.

Definition 8. When the interparticle potentials Vtj eL2 + L™ the
disconnected part of the Green's function D(z) and the Weinberg kernel
I(z) are

β ( * ) = Σ GDw(z) V ^ ^ G ^ ^ ί z ) . . . GD2(z) F D 2 D l . (11)
S = {DN...Dk}

fcΦl

The sum is over all disconnected strings S.

!(')= Σ GDN{z)VDNDN_ί...GD2{z)VD2Dί. (12)
S = {DN...D1}

This sum is over all connected strings S.

Theorem 6. When zφσ (H) and all the interparticle potentials are in
L2 + L™ the Weinberg-van Winter equation holds, i.e.

G(z) = D(z) + I(z)G(z). (13)

D(z) is an analytic family of bounded operators when z φ σc(H).
I(z) is an analytic family of compact operators when z φ σc(H).

Proof. Weinberg [18], van Winter [17].

Corollary. If —E is an isolated eigenvalue of H and if Hψ = — Exp then

ψ = I(-E)ψ. (14)

Note that the converse is not true. There might be eigenfunctions of
I( — E) which are not eigenfunctions of H. These are the "spurious zeros'1

of/ ([9], [4]).
When the potentials are in R + L™ we need the factorized Weinberg-

van Winter equation.
Definition 9. The reduced Green's functions R and RD are

R(z) = G0(z)--G(z)G0(zyK (15)

RD(z) = G0(z)-- GD(z) G0{z)-* . (16)

The symmetrized disconnected part of the Green's function is

Ds{z)= Σ RDκ(z)(GtVDNDlt_1Gt)...RDk(z). (17)
S = {DN...Dk)

fc>l

The symmetrized connected part is

Is(z)= Σ t t t t
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Theorem 7. When all the interparticle potentials are in R + L? and
z φ σ(H) the symmetrized Weinberg-van Winter equation is

R(z) = Ds(z) + Is(z)R(z). (19)

Ds(z) and Is(z) are respectively analytic families of bounded and compact
operators when

Proof. Simon [14, p. 185].

Corollary. A necessary but not sufficient condition that ψ be an
eigenfunction of H corresponding to an isolated eigenvalue — E is

φ = Is(-E)φ (20)
where

φ = G0(-E)-*ψ. (21)

If we are to carry over the two body proof to several particle systems
we have to show that /( — E) and Is( — E) have properties (A), (B) and (C).
(A) is already proven for us so only (B) and (C) must be checked. I( — E)
is built from all barely connected diagrams. Each such diagram can be
broken into a diagram which just fails to be disconnected followed by an
interaction which connects everything together. The barely disconnected
diagram represents an integral operator which leaves one of the N — 1
momenta unchanged but which acts on functions of the remaining N — 2
momenta as a compact operator. This suggests that we use an induction
argument to prove (B) and (C). We must define some more kernels.
CD is the sum of all the diagrams which are D connected and ID the sum
of all diagrams which are barely D connected.

Definition 10. When the potentials Vu eL2 + L™ and z φ σc(HD) the D
connected kernel is just

CD(Z)= X GDN

VDNDN-1GDN-1'"
VDk+lD1cGDk. (22)

S = {DN...Dk}
Dk = D

The D connected Weinberg-van Winter kernel is

ID(Z)= Σ GDNVDNDN-ιGDN_1...GDk+ίVDk+lDk. (23)
S = {DN...Dk}

Dk = D

Lemma 9. (a) CD(z) and lD(z) are analytic families of bounded operators
when z φ σc(HD%

(b) Whenzφσc{HD\

GD(z)= Σ CD,(z) + ID(z)GD(z), (24)
D'DD

CD(z) = ID(z)GD(z), (25)

h(z)= Σ W*) GD'(z) W (26)
D'DD
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Proof, (a) It is enough to show that when ADB, VABGB(Z) is a

bounded operator. Hunziker's theorem [6] shows that the total set
from which z is excluded is just σc(HD).

(b) When Rez is very negative the perturbation series expansions
in terms of diagrams converge. Analytic continuation completes the
proof.

The analogue of Lemma 3 would be that the kernel I(z) maps
L2(R3N~3) into C0(R3N~3). We will prove a more general result for this
new class of kernels ID(z). These really act only on the internal momenta
of the clusters in D. A simple example of this is the three body system and
the decomposition D = {(12), (3)}, ID(z) = GQV12 (V12 e L2). We can choose
as coordinates the Jacobi scheme, (p, q); p is the relative momentum of 1
and 2, q is the relative momentum of 3 and the centre of mass of 1 and 2.
Ignoring mass factors ID has the kernel

ID(pq,pr) = (z-p2-q2y1 V12(q-r).

When p is fixed, ID is a HS kernel in q and r. More precisely we can examine
its action on the functions /(p, r) = g(p) h(r). Then

= [ϊD(z-p2)K](q).g(p).

ΪD is just the two body kernel G0V12. It maps L2(R3) into C0(R3).
We generalize this simple example. Jacobi coordinates are described in
the appendix.

Definition ίί. If D is any cluster decomposition of {1 ... N} then we can
choose a set of Jacobi coordinates pD and relative momenta pD for the
clusters in D which together will form a complete set of momenta
describing the N particles in their centre of mass frame.

L2(D), C0(D), L2φ) and C0(D)

are the spaces and of L2 and C o functions in the variables pD and p0.
It is clear that L2(D)®L2(D) = L2(R3N-3).

In the following theorems we ignore mass factors. These will be
taken into account with a little care later on.

Theorem 8. All the interparticle potentials are in L2(R3). Each operator
ID(z) when acting on functions in L2(R3N~3) of the form f®g, with
feL2(D) and ge L2(D) can be written in the form

UD(z)f®gl (pD, PD) = UD(Z - PDΩ (PD) g(PD) ( 2 7 )

ϊD(z) is an analytic family of HS operators acting on L2(D) when
zφσc(HD).
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Proof. We argue inductively on (26). Each item in (26) has a very
simple form in the appropriate Jacobi frame. If Df D D we can choose a
Jacobi frame pD which contains the relative momentum, p, of the two
clusters in D' which are joined together to form a single cluster in D, i.e.

PD = (PD'>P)

If
f(PD,PD) = F(PD')'G(p)Ή(PD)

then

UD'GD>{Z) VD>D\ [_F®G®H-\ (pD.,p,pD)

= UD>9D'(Z'Pi-P2)F] (PD) ' IVD DG] (p) H(pD) (28)

Here

W * " PD) F® G] (PD;

hD> = HOtD, + VD. is the Hamiltonian describing the internal structure
of the clusters in D'. It is a self adjoint operator on L2(Df) and
σ(hD) = σ(HD).

If all the potentials are in L2(R3) it is not hard to check that JDD(z)
extends from vectors of the type F®G to a HS operator on all of L2(D).

Explicitly if {αj and {&,.} are bases for L\D) and L2(DD') = L2{R%

^ Σ\\\\ΪD gD (z-p2)\\Hs(vD Db}{p)\\2

S ™?{\\ϊD,{z-p2)\\2

HS\\{z-ED,-p2yι VD,D\\2

HS}
P

< 00 .

— ED. = inf σ(hD>) and we assume that for every D'DD

sup \\ID'(z — p2)\\HS< °o
P

The decomposition D = {(12), (3)... (N)} is the first step in the induction
argument. This is just the two body situation. ID is the sum of these HS
operators JD,D and so the theorem is true.

Theorem 9. // all the interparticle potentials VijeL2(R3), then
ϊD(z) maps L2(D) into C0(D).
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Proof. Again by induction. The hypothesis is that for each D' D D,
ϊD(z) maps L2(D') into C0{D') and that

I | / D ' W / I I C O ^ ^ W I I / I I L 2 (29)

where mD> is finite away from σc(hD) and mΌ, (z)->0 as Rez-> — oo. The
contribution to ϊD(z)f from the decomposition D' is just

\IΏ.gD.{z-p2) Vβ,DΠ (PD) = UD'DMΩ (PD)

Vp : L2(D)->L2(D') is a family of maps depending continuously on p.

So JD>Ό maps the functions F(χ)G, where FeL2(D') and GeL2{DD')
into C0(D) functions and that

mΰ(z) = sup mD\z - p2) [z + ED, -p2γι \\ VD,D\\
P,D'

JDD can be extended to all of L2(D).
Now we must prove that ID( — E) has an analytic continuation to a

family of compact operators in some complex tubular domain.
Definition 12. If D is a cluster decomposition of {12 ... N} which has

k internal coordinates then TD(z)c C3k is the tube

{p + iq : Rez — ED> > q^D> for all decompositions DfDD}.

— ED = inϊσ(HD) and q%D is the length of the vector qDD described
in the appendix.

Note. When Re z' > Re z, TD(z') D TD(z).

Theorem 10. If every VijeL2(R% ΪD( — E) has an extension to an
analytic family of HS operators ID(zD,—E) when zDeTD(E). Each
ϊD(zD, -E) maps L2(D) into C0{D).

Proof. Our induction hypothesis is:

For each D' D D, ΪD(Z) n a s t n e properties
(1) It is an analytic HS valued function of z.
(2) It has an analytic extension to TD\z).
(3) It maps L2{D') into C0(D').
gD(z) is an analytic family of bounded operators on L2(Df) and has

property (2). We also assume

(4) When z is more than an arbitrary minimum distance from σc(HD),

\\ΪD'(Z)\\H§ i s uniformly bounded.
(5) 1 7 D ' ( Z ) / ] (PD) i s a continuous function of both z and pD>.
(6) Both ID(z) and gD(z) have the translation property.
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We can start the induction with D = {(12), (3), ...,(N)}. This is just
the two body situation and has already been checked. Recall Eq. (26).
We extend JD,D(-E) to JDD(zD, -E) by defining

UD>D(ZD> - £ ) a® b~] (PD>> P)

U Z)2) a] ipD) - \VD.Db] (p)

where
aeL2(Df), beL2(R3).

PD = (PD'> P) a n d ZD = (zD'>z) -

If zDe TD(E) then zD, e TD(E). Again JDD(zD, —E) extends to a HS
operator whenever zD e TD(E). In (30), VD.Db is already a C o function of p.
By induction \1D gD( — E — {z + p)2)b~\ (pD) is a C o function of p and pD,.
Properties 4, 5 and 6 are easily checked. So ΪD( — E) has all the right
properties. It is a little more complicated to prove these for
gD. Equation (24) becomes

gD(-E) = ΔD(-E) + ϊD(-E)gD(-E) (31)

where AD( — E) is £ JD/D( —£) J ^ ^ —£) is the extension to L2(D)
D'DD

of the operator defined by

IAD.D(-E)a®bl (pD) = UD.gD>(-E-p2) a] (pD) b(p)

where ael}(D'\ beL2(R3) and pD = (pD>,p). Each J D , D ( —E) can be
extended to an analytic family of bounded operators ΔDD(zD, —E) on
L2(D). Each ΪD can be extended to ϊD(zD, -E). We might hope to define
an extension of gD by

gD(zD, ~E) = [1- ϊD(zD9 -E)Y' AD(zD, - E). (32)

This will only be possible when 1 φ σ\ID(zD, — £)]. Since ΪD is built from
lower order kernels it has the translation property. This combined with
the analytic Fredholm theorem shows that leσ[ϊD(zD, — £)] if and
only if 1 e σ[/D( — £)]. In this case — E is called an exceptional point oϊϊD.
The exceptional points are isolated. If — E is not exceptional (32) is an
extension ofgD with property (2). If — E is an exceptional point there is an
apparent singularity in (32). This is however a removable singularity.
There is a neighbourhood N which contains no other exceptional points
besides —E. When zeN- {-E} we can define gD(ω,z) for ωeTD(z).
We also know that the equation

gD{x, -E) = ΔD(x, -E) + ϊD(x, -E)gD(x, -E) (33)
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has a solution when x is real, viz.,

gD(x, -E)=UD(x)gD(-E)UD(-x)

since —Eφσ(HD), T= f] TD(z) can be made arbitrarily close
z e N - {- E}

to TD(E) by taking N sufficiently small.
This situation is an example of Hartogs basic phenomenon. We

illustrate this with scalar valued analytic functions. Everything extends
to operator valued functions.

We have a function F(z, vv) of two complex variables which
(1) is analytic in both z and vv when zeTand weN — {0}
(2) when z is real is analytic in vv around vv = 0.
(Here T and N are open neighbourhoods of 0 in the appropriate

complex spaces.)
Then any singularity in F(z, vv) at vv = 0 is removable.
Proof. Bochner and Martin [2, p. 141].
Now we have only to prove the translation property for gD.

UD(t)gD(z, -E)UD(ty1=AD(z + t, -E)
(34)

t,-E)UD(t)gD(z,-E)UD(t) -1

On solution of (34) is gD(z + t, —E). If — E is not an exceptional point
the solution of (34) is unique, and so

UD(t) gD(z, -E) UD(tΓ1 = gD(z + t, -E) (35)

gD(z, —E) is analytic in both z and E and the exceptional points are
isolated so (35) will hold everywhere. This completes the proof.

One more lemma is needed.

Lemma 10. (a) // all the interpartίcle potentials Vijel}(R2>) and if
fe L2(D) then for each fixed p

is an analytic function of z in TD(E).
(b) // fz is an L2(D) valued analytic function when zeTD(E) then

[ID{zD, —E)fz~\ (p) is an analytic function of z for fixed p.

Proof, (a) follows by examining each individual term JDD on the
appropriate functions in L2(D). (b) is a simple extension of (a).

Finally we restate these results when D = (12 ... N). This is the really
important case.
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Corollary to Theorem 10. When the interparticlepotentials VijeL?{R3)
and then

(a) I( — E) has an analytic extension to a family of HS operators
I(z, -E)forzeT(E).

(b) I(z, -E) maps L2(R3N~3) into C0(R3N~3).
(c) // fz is an analytic family of functions in L2(R3N~~3) then

[/(z, — E)f2~\ (p) is an analytic function of z for each fixed peR3N~3.

Proof. A restatement of Theorem 10 and Lemma 10.

Section III. Decay in Several Particle Systems

The method of proof for several particle systems is exactly the same
as that for two particle systems. We have almost finished the proof
by proving Theorem 10. One geometric lemma is needed.

Lemma 11. The tubular domain

{p + iqeC3N-3:\q\2<E-E0,

-E0 = Mσc(H)}

lies inside T(E).

Proof. If p 4- iq e T(E) then for each cluster decomposition D'

\qD\2 <E-ED., -ED. = inϊσ(HD). (36)

Hunziker's theorem says that —E0<—ED>. So if \q\2<E — Eo, (36) is
always true.

Theorem 11. If H = H0+ Σ Vtj is the Hamiltonian for a system of

N particles interacting through L2 potentials and if

Hψ=-Eψ, -E<-Eo = inϊσc(H)
then

W G J)Γe

θV2M(E~Eo)r(x)Ί

for each θ: 0 ̂  θ < 1. M is the total mass of the system and r(x) is defined
by Mr2(x) being the moment of inertia of the system of N particles when
their relative configuration is specified by the vector xeR3N~3.

Proof, ψ satisfies the Weinberg-van Winter equation

ψ = I(-E)ψ. (37)

/( — E) has an extension to an analytic family of compact operators in
S(E) and since leσ[/(0, - £ ) ] , leσ[/(z, - £ ) ] for every zeS(E). The
analytic family of projections P(z) onto these eigenspaces have the
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translation property and so Theorem 2 gives an extension ofφ to an
analytic family of L2 functions ψz. Theorem 10 enables us to conclude
that each ψz is a Co function and that Ψ(z) = ψz(0) is an analytic extension
of ψ{p) to S(E). The slices of Ψ parallel to R3N~3 are square integrable
and so we can apply Paley and Wiener's theorem. To complete the
proof we need only reinsert the mass factors that have been ignored so far.

Suppose p1 ... pN-i is a set of Jacobi coordinates for the momenta
of the TV particles in their centre of momentum frame and that

Ho=NΣΪAiPf. (38)

If

Qi = (iAi)-pi then H 0 = Y ρ , 2 .

If x1 ...xN_ί is a set of conjugate position coordinates to px .../?#_!
we can define a set of transformed x's by

Then p x = ρ X. So far we have dealt with the coordinates
(QI : i = 1 ... N — 1) and we have shown that if θ if defined by

( 3 9)

then Θ(X) decays as
Now

So y

^ ^ ^ l χ l (40)

for each 0 :• 0 :§ 0 < 1. We now have to calculate |X| in terms of the original
coordinates x} and the masses

(41)

is the moment of inertia of the JV particles about their centre of mass.
We can prove this by induction. pN-i is the relative momentum of two
clusters C1 and C 2 . The remaining momenta are internal momenta of
these two clusters, x^-i c a n be interpreted in the same way. Then

= QCι(x) + Gc2(*) + ^ N - i ^ - 1 (42)
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If all the particles in C1 have the same velocity and those in C 2 the same
velocity then only pN-ι is nonzero. This shows that

Λ^^M^ + M^. (43)

Using (40) and (41) we complete the proof.
When the potentials are in L2 + L™ we again choose potentials Vjf

in 1} which converge in L°° to Vtj. The corresponding kernels In(z, —E)
converge to I(z, —E) uniformly on compact subsets of T(E). This is
enough to extend the two body arguments to several particle systems.
For Rollnik potentials we extend the symmetrized Weinberg-van Winter
equations (19), (20). Again the Rollnik potentials Vtj are approximated
in R norm by potentials in RnL2. The symmetrized kernel Ijy^ depends
continuously on the potentials Vtj since

WWij) - /.TOII ^ CN sup II Vi} - WtJ\\R .

With these remarks every two body argument generalises and we are
lead to the final theorem.

Theorem 12. H = H0+ £ Vtj is the Hamiltonian for a system of

N particles interacting through potentials in R + L™.ψ is an eigenfunction
of H at energy —E.—E is an isolated eigenvalue if H.

Then

ψeθleΘV2M(E~Eo)Hx)']
for each

0 : O ^ 0 < 1 , - E 0 = infσc(iϊ).

M is the total mass of the system and Mr2(x) is the moment of inertia
of the N particles about their centre of mass.

Remarks, (a) It is also possible to apply this method to spin dependent
forces of the types considered by van Winter and Brascamp [22] or
Balslev and Combes [24, 21].

(b) If the underlying space is Rn, n > 3, the basic result is unchanged
provided the potentials are in some LP space for p > n/2. If VLP, p > n/2,
Fis Kato tiny relative to Ho [23] and is also Ho compact. An approxi-
mation argument gives an extension to the spaces LP + L™.

(c) Using results of Kato [8] on the boundedness and Holder
continuity of wave functions for a wide class of potentials, Ahlrichs [1]
proved a pointwise exponential bound. The rate of decay is not however
the best possible. Recently Simon [25] has given a momentum space of
Kato's result for a slightly different class of potentials. For this class he has
strengthened the L2 decay given here to pointwise decay with the same
exponent.
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(d) Combes and Thomas [26] have recently given a more direct
proof. It applies to dilatation analytic potentials. This method applies
to point eigenvalues embedded in the continuum (but away from
thresholds). This is an important advantage over the present method.
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Appendix. Kinematics of Several Particle Systems

We have N particles with momenta pt and masses mi (1 ^ i ^ N).
Their kinetic energy is Ho and Ho is their kinetic energy relative to their
centre of mass. With any string of cluster decompositions we can
associate a set of Jacobi coordinates which diagonalize Ho.

Definition A/. S is a string of cluster decompositions {DN, DN_u...,Dk).
The clusters in D} are labelled Cj(ί)9..., Cj(J). Dj_ί is obtained from Dj
by combining the clusters C}[a(j)~\ and C, [£>(/)] together to form a
single cluster. Then the internal Jacobi coordinates for S are

Pj-ι= relative momentum of CjlaijJ] and Cj[b(j)] in D for N ^j ^ k -f 1,

i.e. (Ma + Mb) Pj_! = MaPb - MbPa .

Ma,Pa and Mh,Pb are the total mass and momentum of Cy[α(/)] a n ( i
Cj[b{j)'] respectively. To completely specify the N — 1 relative momenta
we supplement these internal coordinates by a further k — 1 vectors.
There are many ways of doing this. Viewing the k clusters in D as
particles with specified masses and momenta we can take any string Sf

of cluster decompositions of {1 ... k).

S' = {Dk,...,Dι}

For any string S' we can take the set of relative Jacobi coordinates
{q1 ... ^ _ J . The total set {^,ρ} = {^1,...,ς[Λ_1;ρΛ,...,ρiV_1} of momenta
form a set of Jacobi coordinates for the system.

Note. The particular value of q depends on the S' we choose.
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Theorem Al. For any set of Jacobi coordinates we can find positive
numbers A{ so that

k - l N - l

4 = Σ Aiif+ Σ Aiβf.
i=l i = k

Proof. Induction.
Definition A2. If a string S ends with a decomposition D we define

vectors pD and qD by

Note, (a) H0 D U
p% is the internal kinetic energy of the clusters and q% is the relative

kinetic energy of the clusters. Since pD is fixed by S, q2

Ό must be independent
of the choice of S'.

(b) If D'DD, D containing I clusters and Dk clusters (Z>fc), we can
find a string S = {DN ... Dι... D J where Dι = D', Dk = D. Then

and
PDD' =

Then (1) p2

Ό = p2

Ό, + p\Ό> and so p^D> is independent of S'.
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