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Abstract. The problem of diagonalizing the transfer matrix for the two dimensional
Ising model with all boundary spins equal to +1 is solved by use of the spinor method.
This provides a simple proof that the spontaneous magnetization is actually given by the
well known formula for the long range order with toroidal boundary conditions, and this
means that the critical temperature is precisely that temperature above which the state is
unique and below which it is non unique. An expression for the magnetization at finite
distance from the boundary is also given, and a simple derivation of the formula for the
surface tension between two coexisting phases is presented. Finally the relation between
the degeneracy of the spectrum and the phase transition is discussed.

Introduction

In this paper we consider the problem of calculating the pair corre-
lations and the spontaneous magnetization of a two-dimensional Ising
spin system with nearest neighbour interaction and no external field
in a rectangular box A completely surrounded by -h spins. The calculation
is achieved by the use of the transfer matrix method appropriately
modified to account for the boundary conditions chosen.

The significance of considering the situation where all spins on the
boundary of the box are fixed to +1 depends on the following facts,
which can be proved by simple arguments using the G.K.S. inequalities
[9,10]:

In the presence of an external field h ̂  0 all the correlations <σ^>Λ>yl, +
= / Π σp) h.Λ, + nave limits (σAyhf + as the sides of the box tend to infinity,

\peA I

(when h > 0 the limits are completely independent of the boundary con-
dition). The <cr4>fc, + are translationally invariant and
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They are continuous from the right in h, and the average magnetization

m(h)= lira ——- Y <OΛ Λ + = <σπ>h +, m(h) is also equal to the right
Λ^ ' ' P*Λ ' dFlT.h)

hand derivative of the limiting free energy: m(h)= — -̂̂ —. (F(T, h) is

completely independent of the boundary condition.) From these facts it
follows that the spontaneous magnetization m* = limm(h) is equal to

h 10

<σ >0 + and also equal to the "long range order" lim <σ σ^\.
d(p,q)-»oc

In all calculations of this quantity the more symmetric toroidal boundary
conditions have been used, but with these it has only been possible to
show that one obtains m* for temperatures outside an interval around
the critical one [10]. Our calculations show that <σpσg>0 + is given by
the expression as a Toeplitz determinant valid with toroidal boundary
conditions when p and q lie on the same row or column of the lattice and
hence that the formula for m* obtained from it really gives the true
value. (Recently this has also been proved by Benedetto, Gallavotti et al.
(private communication). They show by a general argument that all
<σ,ι>o with \A\ even are the same with toroidal and + boundary con-
ditions.)

We also find a formula for the magnetization at finite distance from
the boundary of an infinite lattice, whose asymptotic form is left as a
challenge to the analysts. Moreover we show how the surface tension
between two coexisting phases can be computed very directly.

The idea of considering the + boundary condition is very natural
from the point of view of the general theory of infinite Gibbs states of
lattice systems in which extremal states describe pure phases of the
system. In fact Gallavotti and Miracle-Sole [5] have shown that in the
Ising model well below Tc the two states defined by the families of
correlations <<J4>0 + and (GA)O.- f°r A finite are in fact precisely the
two extremal states, and that they describe a pure up- or down-magnetized
phase respectively.

In [9] it was shown for general ferromagnetic spin systems that if one
defines the critical temperature Tc as that temperature above which
there is a unique Gibbs state (i.e. the (σAy0 are independent of the
boundary conditions) and below which there are several different Gibbs
states (e.g. those defined by (σAyo< + and <<J4>o,-)> then Tc is precisely
that temperature where m*(T) becomes positive. Our calculation hence
conclusively shows that in the Ising model Tc defined in this way is also
that temperature where the limiting free energy F(T, 0) has a singularity
(since F(T,h) is independent of the boundary conditions).

It is interesting to compare the relation between the spectrum of
the transfer matrix and the occurrence of the phase transition for the
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toroidal and + boundary conditions. In the former case the maximum
eigenvalue is simple above Tc and asymptotically degenerate below Tc,
and this sudden near degeneracy is directly related to the fact that m*
becomes positive [7]. In the latter case the situation turns out to be
different; both above and below Tc there is an exact two-fold degeneracy,
and above Tc there is an additional near degeneracy of the same order of
magnitude as in the toroidal case. However the expression for e.g. ra*
in terms of the eigenvectors of the transfer matrix is not changed by the
extra degeneracy, so there is no direct relation between it and the posi-
tivity of m* below Γc, which is the characteristic feature of the phase
transition [9]. Hence it is not so clear in what sense the degeneracy is
related to the phase transition.

1. The Transfer Matrix and Its Diagonalization

We consider a rectangular (M + 1) x (N + 1) lattice, with columns
and rows numbered by m = 0,..., M, n = 0 N respectively and having
interaction energies Jί and J2 in the vertical and horizontal directions as
indicated in Fig. 1.

In order to impose the boundary condition that all spins on the end
rows and columns are equal to +1 we use the device of modifying the
interaction constant in columns 0 and M to a value J0, which will become
-f oo before N and M tend to infinity. By forcing the spins on rows 0 and
N to be all -f i we then get the desired boundary condition. The elements
Mfoσ') of the symmetric transfer matrix are indexed by the possible
configurations σ,σ' on two adjacent rows, and they are equal to the
contribution to the Boltzmann factor coming from these rows:

K, "
M(σ,σ') = expΛP 9 Z w U m - l u m ' T

\ Z 1

M- 1

. jζ V ' 4- fC (

1

κ,-A ,-,

J,
h

1

Jo

K0(σ0σ'Q -

.(1)

Tdirection
of transfer

M

Fig. 1. The rectangular lattice
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The partition function is then given by

Z = K
Jθ~

- lim
(2)

where + denotes the configuration on a row having all σm — -h 1 and
the interaction energy in one end row is included. The pair correlation
in a row is given by

<τn

and similar expressions are valid for other averages. (When J0— +00.)
We are going to use the spinor method as explained in [6] and [1] to

find the eigenvalues and eigenvectors of the transfer matrix. The initial
steps of it is to express the transfer matrix with the help of Pauli spin
operators and spinors as follows. Let X be the 2M + 1 dimensional vector
space which is the tensor product of M + 1 2-dimensional vector spaces.
In each such space choose basis vectors denoted by | + >w, | — >„
n = 0,..., M, and denote the corresponding basis vectors of X by

In each 2-dimensional space let the Pauli spin operators be defined
by the matrices

1 0

0 -1

+ -

0 -z

0<ry= . Λ , °z= < „ (4)

and let the corresponding operators in X be defined by

m — 0 M,u = x,y,z.
o m M

Then the σ^ commute for different m-values and anticommute for the
same m-values, and σ*σ£ = zσ£ (cycl.) The transfer matrix defines an
operator in X which can be written as

M-l

M-(2Sh2X 0 )(2Sh2K 1 ) 2 e~2K* F2

1/2 Vl K2

1/2 (5)

with

V — eγn i _ K* rτz K*v l — exp i A o σ0 — A l
/

0 M (6)

(7)
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where Kg, K? are defined by the equations (Sh2K) Sh(2K*)= 1 as
explained in [6].

When we let K0 tend to infinity Kg tends to zero, so from now on Vl

is given by

/ M-l X

F^exp -K* X <7* (60

In (6) and in (7) the terms in each sum commute. The next step is
the introduction of spinor operators Γ0 Γ2M+ί by the Jordan-
Wigner transformation:

j- i

7 = 1 , . . . , M (8)

o

which satisfy the anticommutation relations

In terms of them

_.X .X 'IT T^
σm-lσm ll 2m- 1 1 2m

so that

/ M~ 1 \
F^exp UK* X Γ2 mΓ2 m + 1 (11)

\ i /

/ M X
r r I τs~ \~^ r"1 r~> I / i ^\V2 = exp(ιK2 X Γ 2 m _ 1 Γ 2 m . (12)

\ i /

The spinor method makes use of the fact that an operator exp(z'KΓTOΓπ)
acts on the spinors as a simple rotation:

= 0

= l ',.

Γ + l .

...,M

...,M

(9)

(10)

Γj j Φ m, n

Γm(Ch2K)-Γn(iSh2K) j = m

so that the action of V± and F2 on Γτ = (Γ0,...? Γ2M+ J is given by:

7 1 Γ T FΓ 1 -Γ Γ Λ 1 (13)

V2Γ
τV2i=ΓτR2 (14)
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where Rί and R2 are the 2(M +1) x 2(M +1) rotation matrices
defined by:

A(V,:
(15)

with

Aίv2)

A(v9

(16)

Chi; ίShv
™Chi;

17

and υί=2Kΐ, v2 = 2K2.
RI and Λ2 are hermitian and orthogonal i.e. Rt = Rj and Rt"

 1 = R? ,
i = l , 2 .

The transfer operator F= F2

1/2 Fj F2

1/2 hence acts on ΓΓ as

R = R V 2 ^ ι K 2 / 2

The diagonalization of V is then achieved in two steps. First we try
to find new spinors gk, k = 0, ...,2M + 1 by an orthogonal transforma-
tion gτ = Γτ S such that the action of V on gr consists of simple rotations:

V gτ V1 - gτ (18)

This will be achieved if

RS=S
(19)
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This will imply that V can be expressed as

F-exp — (20)

Then in terms of the fermi operators /k, fl fc = 0, ...,M given by

/O =i(δΌ

/O = 1 toθ

k = l , . . . ,2M (21)

having the anticommutation relations

[/*,/«] + = [ΛUΊ+ =o,
V can be written as

(22)

if we put 70 = 0.
It then follows directly that the orthonormal basis defined by fk

consisting of the "vacum" |Φ> determined by //|Φ> — 0 for all / and the
"excited states" |L> = / / [ . . . / / J | Φ > for all sequences L = (lί< <lJ)
j^M are the eigenvectors of V\ the vacum having the maximum eigen-
value

and |L> having the eigenvalue

(23)

(24)

(We will see that yk > 0 for all k > 0.)
Since yQ = 0 we see that all eigenvalues have twofold degeneracy;

|L> and |0, L) both having the eigenvalue AL for L^O. The eigenvalue
problem for V is now reduced to that of solving the Eqs. (19).

2. The Solution of the Associated Eigenvalue Problem

Consider now the Eqs. (19) and write the orthogonal matrix S as
follows:

O (25)

with η0(ωk) = η2M+ι(ωk) = ζ0K) = ζ2 M +1(ωλ) = 0.
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(Anticipating the form of the solution we label the columns by a
variable ω in the interval (0, π).) The equations are then:

or

Rη(ωk) = η(ωk) Chyk - iς(ωk) Shγk

Rξ(ωk) = iη(ωk) Shy, + ξ(ωk) Chyk

R(ξ(ωk) + iη(ωk)) = (ξ(ωk] + ίη(ωk))eyk

k} - iη(ojk)) = (ξ(ωk] - iη(ωk))e-

(26)

(27)

Hence y(ωk) = ξ(ωk) + ίη(ωk) are determined as those eigenvectors of R
which correspond to eigenvalues eyk > 1 and y(ωk) as those with eigen-
values e~7k< 1.

The eigenvalue equation R^2 RlR\f2 y = ey y can also be written as

using (15) and (16):or more explicitly with χ =

row no. In— 1:

row no 2n:

if we add the boundary conditions

- (z Shi Jxo + (Chv, - i)x t - 0

(28)

2lI = 0 (29)

for n=i ____ ,M

(30)

and afterwards put x0 = x2M+ ί = 0.
The ansatz

x2n = bz2n

X2n+i=az2"+i

solves (29) if

( — /;

ey( — iz~l Shv2)a + (Chv^ — e7 Ch^2)^ + (iz

If we put

T = 1
1

Chv, -iz'1

2}b = 0

ί ) a = 0.

izShv2

Chυ2

(31)

(32)

(33)
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(32) can be written as

or equivalently as

- el T

— 1/2

(34)

(35)

When |z| = 1 the eigenvalues and eigenvectors of Γ= T2

1/2 Tx T2

1/2 can easily
be found by inspection if we recall the following elementary facts about
the Klein model of hyperbolic geometry: The hyperbolic plane is repre-
sented by the interior of the unit disc|ί| < 1 in the complex ?-plane with

the metric defined by ά\— —^ . The geodesies are the circles ortho-

gonal to the unit circle, and the hyperbolic distance from a point t
to the origin is determined by \t\ — th 1/2. The transformations

£_» —— with \u = 1 and υ real preserve distances and hence
tu Shi; 4- Chi;

transform geodesies into geodesies. Such a transformation has fixpoints
±M, and any point t = uth 1/2 is moved a distance 2υ towards u into

T(f) = w t h —-— . Any other point is moved along the circle

Ch v uSh v

ΊShv Chv
determined by it and the two fixpoints ±u. The matrix

\±u
has eigenvectors

[ 1
with eigenvalues e±v.

We see that 7\ and T2 have fixpoints ±ul — ±(/z) 1 ±u2 — ±(zz)
respectively. Call that of Tw, so that

Chy w S h y

uSh γ Ch y
(36)

u and y can be found if we follow the point t= — u th y/2 under the
action of T2

1 / 2TίΓ2

1 / 2 to the point T(t) = u thy/2 as shown in Fig. 2.
We write z2 = eiω with 0 ̂  ω ̂  π.
Consider the triangle OOΌ" where 0;, 0" is the line carried into

Γ(r),0 by T2

1/2. Since /(0\0) = t;2 and l(Q'9Q") = y and the angle 0,0", 0'
is equal to the angle w 2 ? 0, w we see that u — u2e —ize, and that
y,δ*,δ' are the parameters indicated of the triangle OOΌ", which is
congruent to that considered by Onsager. Here it is seen in a natural way
why it comes into the argument. The well known formulae of hyperbolic
trigonometry determining

= y-ω. <<5*(ω)= -<5*(-
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are

Fig. 2. The action of T2

1/2

Chy = Chv^ Chv2 — Shi^ Shι;2 Cosω

(Shy) Cos($' = 8111;! Chz^-Chi;! Shι;2Cosω

(Shy) Cos(5* = Chι;1 Shu2 — Shi^ Chv2 Cosω

Sin<5' Sine)* Sinω

(37)

Shv2 Sh^i Shy

To each possible y > 0 there are two values of ω, ω' = ω > 0 and ω" = — ω.

Hence z' = z, z" = z~ \ w x = u and w'; = —iΓ1. If we call — = q = Γ2

1/2(w)

we find that also qf = q*q" = —q'1, so that also

1
(38)

satisfy (29). The boundary conditions (30) can be written as

(39)

or in terms of b\ a" as

— 11 (40)

+ ά'z~2M~l Iqiiz Sh --1- + Ch --1- =0 .
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Fig. 3. Determination of ύ

Hence we must have
-4M-2

(41)

it is easy to verify that u=Tl/2(q} = T^l2T2

l2(u) is the fixpoint of the
other symmetrized product T= 7\1/2 T2 7\1/2, so that it can be found by

a construction like that used to find u as shown in Fig. 3.

We see that ύ = ul e~lδ' = (iz)"1 e~lδ' and hence that (38) is a solution if

—- =(izΓ1e~iδ> (42)
a

and co satisfies the eigenvalue equation z4M + 2 = z2e2ίδ\ which can be
written as

ei<oM = 0[eι*'«o) α = + i . (43)

Since -— =ίzeiδ> = (ίa)z2M+1 (38) gives
b

X2n-

1
w = l , . . . , M (44)

and finally y = R2

 1 / 2x, u=T2

 l'2(q) give us the eigenvectors y.

y2nH = b(ω) (z2n - (
(45)

with u = izeίό*(ω\ z2 = eio\ z

2M = ί?

ίωM = α^δ'(») and some constant b(ώ)
2M

whose modulus is determined by the normalization ]Γ |yn

 2 = 1 to be
given by l

Cos^(ω)Sin5'(ω)\ s 4 j V= 4 M
Sinoj
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From the relations (37) it is found that

N2(ω) = M (47)
dω

which will be of use later.

If we choose 2b(ω) = N l(ω]e 2 2 the eigenvectors are
given by:

(48)

>^ω) = ̂ >) Cos(--^+(^±lU
5*fVrΛ / M

when α(ω) = + 1, and by

2 ^ 2 ' ,491
ί \ \r~ii Λ O i ~δ*(ω) , / M + ί N

y2n(ω) = N (ω) i Sin — +\n —

when α(ω)= — 1. n= 1, ...,M and >Ό(ω) = y 2 M +ι(ω) = 0. The matrix S
is hence determined by (25) with ς(ω) = |/2 Rey(ω), η(ω)=y2 Im>'(ω),
and

ς2n(ω) = 1/2ΛΓ ' M Cos - + n - -̂ ±1 ω (50)

for α(ω) = + 1

B n= 1 ..... M
/7 2 B _ 1 (ω) = 0

(53)

for α(ω)= —1.
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f'(a»\
M

C

V V 2

τ > τ c

£^7~7 / //7^-τ^/^
) (k-lU Jt

M

τ < τ c

Fig. 4. The location of the roots of the eigenvalue equation

It remains to locate the roots of the eigenvalue Eq. (43) and to check
that they give rise the appropriate number of eigenvectors. (43) can be
written

' k — i
-=ω-|—rτ-lπ (54)

M M

with integer k and α = (— l)k l.
The roots of (54) in the interval 0 rg ω ̂  π can be located graphically

as indicated in Fig. 4.
We have to distinguish the two cases vl > v2 i.e. T>TC and i^ < v2

i.e. T< Tc. In the former case it is seen from the triangle 0,0', 0" in Fig. 2
that (5'(0) = 0 and in the latter case that δ'(0) = π. Hence we find M — 1
roots ωk corresponding to fc = 2,. . . , M when υl > v2 and M roots ωk for
k = 1 M when υ1<v2 which give rise to non zero eigenvectors, since
the roots ω = 0 and ω = π give yn = 0. For T < Tc we have hence found
all eigenvectors, but for T> Tc one is missing. This is similar to what was
found in [1] for the transfer matrix with free boundary conditions, but
in that case one root was missing when T < Tc. As in [1] the missing
root is found for ω imaginary near the value determined by

9 - if we use the well known formulae

= (ABY
(eιω - A] (eiω - B} 1/2

(eιω-A)(eiω-B-

th
y(ω)

1

(eιω-A-l)(t

(eiω-B}(eίω-B~{)

(eίω-A)(eiω-A~ί)

™ t h X = ΛK^ B =

for eίω= -1.

thK
— and the square roots being positive
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When v1>v2 A~ί<B<l<B~ΐ<A and the missing root having
α = +1 is approximatively given by

and the corresponding value of y by

\B (AB) . (57)
A-B l

so it is exponentially small when M is large.
We have hence the following description of the spectrum of the

transfer matrix as mentioned in the introduction:
The eigenvalues AL = Aφexp I— £ yλ with Lξ= {1, ...,M} occur in

I leL I
ubands" according to the size of L. The addition of a new element to L
decreases AL by at least mmyt which is at least y(0) = \vl — v2 for T<TC

and equal to y1 for T>TC. Each eigenvalue is doubly degenerate,
AL = Λ {o,L}> and for T>TC there is an additional asymptotic degeneracy.

3. The Pair Correlation and the Spontaneous Magnetization

The pair correlation in a row can be written as in (3) in terms of the
transfer operator:

When N and N — n tend to infinity only the contribution corresponding
to the largest eigenvalue Aφ contributes, so that VN can be approximated

by Λφ(|Φ> <Φ| + |0> <0|) = Λ%Q, and in the limit:

\m.nm + r,n — / _ι I /Ί I _μ \ ~ m,m + r '

(In Appendix A we show that < + | Q | - f > > O s o that the approximation
is allowed. By the argument used in [9] to show that the correlations
have limits as the box increases it follows that the limit is independent
of how N and M tend to infinity, so we first let ΛΓ-» oo and then M-> oc.)

In evaluating the matrix elements occurring in (59) it is important
to consider the symmetries related to the parity operator

M

P= Π (-σ;) = (0M"" 1(r 0Λ...r 2 M + 1). (60)
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Since P = P1 and P2 = I it splits X into the orthogonal sum of an even
and an odd subspace according to if P|x> = ± |x>. Since PΓm = —ΓmP P
anticommutes with a product of an odd no. of Γm : s and commutes
with a product of an even no. of Γm : s. Hence P commutes with Vί , V2

and V. In order to see the parity of |Φ> and the other eigenvectors we
use the fact that P = (ί)M+ί (g^g^ ... #2 M + 1) \s\ as noted in [8] In
Appendix B we show that |S| = + 1, so

(61)

as well. From (21) follows that g2k-ίg2k\Φy = ( - ΐ ) ( f k - f ϊ ) (fk + fϊ |Φ>
= (-i)|Φ>, so P | Φ > = - | Φ > and the parity of |L> =ft\ ... ft] |Φ> is
(— 1)J'+ 1. We also need to know the action of P and /0 on the boundary
vectors |+> and |— >. From (4) follows that σx\±ym= ± |±>w and
-σ z l±> m - |T> m , so 0 £ | ± > = ± | ± > and P |±>= +>. Since

/O = 2 (do + Ϊ92M+l)= 2(^0 + ̂ 2M+l)

ί Π (-^)σ^=i(σ0

x-zP^O (62)

we have

with |od> = ——LA, e v > - - — , | + > - |ev> + |od>. We

can now turn to the matrix elements in (59): In the denominator

SO

Since

it preserves parity, and mixed matrix elements in the numerator
vanish. Hence we find that

The two terms are equal however, because from (62) follows that /0

commutes with σ>^ + 1. so that <0|σ>^ + r |0> = <Φ|/0σ>^ + r/J |Φ>

m.m + r = ( ιT<Φ|Γ 2 m + 1 r 2 m + 2 . . .Γ 2 m + 2 r |Φ>. (64)
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In order to evaluate (64) by Wick's theorem we need to know the averages
<Φ| ΓmΓn I Φ>, w, n = 0, . . . , M 4- 1, m Φ n. They are directly obtained from
Γτ = gτSτ and (21) which implies that

<Φ\92k92i\Φ> = <Φ\92k-ι92i-ι\Φ> = i<Φ\92k-ι92i\Φ> = δkl (65)

and hence

M

= * Σ £m(ωfc) ηn(ωk) - ηm(ωk) ξn(ωk]
k = l

(50)-(53) then imply that

<Φ|Γ 2 mΓ 2 l l |Φ> = <Φ|r 2 ι n _ 1 Γ 2 l I _ 1 |Φ> =

< Φ | Γ 2 m _ 1 Γ 2 n | Φ > = /
fcodd /ceven

Γ , -δ*(ωk) I M+l
• Cos ( +[n — i ujk

- r *r 2, ^ o-2; X ΛΓ-2(ω t)Sm

2

M + l

p. / -δ*(ωk) I M + l .
•Sin - ~JίL + \ n -- r— \ωk

(66)

(67)

ϋeven

u u u „ j M + l M+ ]

which when M -> oo and m n = const converges to

-iam_nΞ—\Cos(δ*(ω) + (m-n)ω)dω=^- f eid*(ω) + ί < m"" ) α )ί/ω.
π b 2π •„ (68)

From (64), which can be written

r(r- 1)

Cm,m+r = (-l) 2 <Φ|(iΓ 2 m + 1)(iΓ 2 m + 3)...
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Wick's theorem then gives us the following Pfaffian expression for
Cr = lim C Λ

M->oo —
M+

a-i
a

ar-1

(69)

This is the well known Toeplitz determinant of Montroll, Potts, and
Ward valid with toroidal boundary conditions, from which the spon-
taneous magnetization is obtained directly by the Szego-Kac theo-
rem [11]:

τ<τc

τ>τr.
(70)

4. A Formula for the Magnetization at Finite Distance from
the Boundary

In the limit N-+ao N — π -»oc the average <σm>M> is given as in (59) by:

(71)
N m,π/ <+|β|+> *

From (8) and (10) we see that σ* = im(Γ0Γ\ ... Γ2m), a product of an odd
no. of P: s. Hence only mixed matrix elements in the numerator of (71)
contribute, and

(72)

= r<Φ|r 1r 2 . . .r 2 w |Φ>
snce

In evaluating this using Wick's theorem we need to find the limit of
(67) when M -> oo and m, n finite. This is easily done if we express the
sums as contour integrals as follows. The ωk are the roots of the equation

with

by (47).

ωk^0, and

F(ωk) = i M- α(ωk) = ίN2(ωk) α(ωk)
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Hence for any analytic function g(ω)

£ N-2(ωk)g(ωk)=~\g(ω)4F(ω)-^
α(ωk) = α ^π y

α = ± l (73)

where y is a contour surrounding all the roots in the upper halfplane and
no others.

Hence (67) can be written as

1 Γ_ / δ*(ω)
_j2Cos(--τ

• Cos -

~ c .2 Sin —

Λ f + 1

n — ω (F(ω)— 1)"
2 / '

M+Γ
ω

- -- f 2(Cos(m + n-M-l)ω) F(ω) (F2(ω) - 1)' 1
2π

dω .

Using (56) and (55) it is easy to check that the contribution from ωl when
T>TC vanishes as M-»oo, and considering separately the contributions
with \eίω\ < 1 and \eiω\ > 1 in (74) we obtain in the limit M-^oc:

π Ό

+ Cos(δ'(ω) + (m + n- l)ω) dω (75)

Finally, as in (69) we obtain

lim lim <σm?λj> - (76)
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The study of how rapidly this expression converges to m* as m->oo
requires a generalized refined Szego-Kac theorem which has yet to be
found.

5. Calculation of the Surface Tension between the Two Phases

The machinery developed in the previous sections also allows us
in a very simple way to calculate the surface tension associated with the
boundary between two oppositely magnetized phases which can be
forced to coexist for Γ < Tc by a suitable choice of boundary condition
as follows:

Consider a box with 2N + 1 rows and let the boundary spins on the
top half of it be +1 and on the bottom half — 1. If we represent a con-
figuration by drawing the contours separating opposite spins we realize
that an arbitrary configuration will then include one contour going
between the two breaks in the boundary configuration. It separates two
regions where all contours are closed, the top region having boundary
condition + i and the bottom one — 1. These will hence consist of pure
+ and — phases. The difference in free energy with this boundary con-
dition and the one used before for which all contours are closed will be
due to the presence of the phase boundary, so the surface tension should
be defined by

τ= lim M~1\ogZ+'/Z+ + (77)

Zλ ~ ~ and Z++ being the partition functions with the two different
boundary conditions respectively. (The definition is discussed in more
detail in [3] and [4].)

Since the operator — σz changes |±}m into |T)m we have
Z+~ = < H ^ N 0 o 0 ^ Ί + > , and hence

τ = lim M-1 log<- |β^<&βl+>/<+lβl + > . (78)
M-

From (10) we have σ^σz

M= -ΓQΓ1Γ2MΓ2M+ί = -gQΓίΓ2Mg2M+ίf and
mixed matrix elements in Z + ~ vanish. From (63) follows that < — 10>
= -<-|Φ> = <+|Φ> = <+|0>, which allows us to simplify the ratio
in (78) to i«0|σ^|0>-<Φ]σ^|Φ». The first quantity is

= <Φ|Γ0Γ 1Γ2 MΓ2 M + 1 |Φ> = the second quantity = i<Φ|Γ l Γ 2 M |Φ>
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since Γ 0Γ 2 M + 1 |Φ> = z | Φ > , an<3 hence

-1 logi<Φ|Γ 1 Γ 2 A f |Φ> . (79)

In (74) the integral can be changed into i( f — Π with y+ defined by

\eίω\ = r± ifβ" 1 <r_ < l < r + < B, and since F(-ω) = F(ω)"1 the change
of variables ω -» — ω in f gives :

2Cos(S*(ω)-(M-l)ω))

(80)

Cos(<5*(ω)-(M-l)ω)dω.
2π _

Remembering that F(ώ) = e

ίMω~iδ'^ and using the method of deforming
y _ to a path along the cut \_A~l,B~l~\ in the eίco-plane one sees that
ί<Φ|/\Γ 2 M |Φ> = OCB~M) as M-+OO when T< Tc. (From (55) we see that
A~ 1 < B' 1 < 1 < B < A for T < Tc.) We hence obtain

τ= -logB= -2X 1 - logthJC 2 . (81)

This is the same value as that computed by Onsager [12] using his
different definition, and it was shown in [3] that it is obtained from
several other definitions as well.

6. On the Relation between the Degeneracy of the Spectrum
and the Phase Transition

When toroidal boundary conditions are used it is found [2, 7] that
if we consider e, g, the pair correlation in a column and express it in terms
of the transfer matrix as

Ύΐ(VN~rσxVrσx)
Cr = <fl,..0,, + ,>= jli ίn lim ( J (82)

and then study its limit as r -> oo we obtain a formula for (m*)2 which is
drastically dependent on the degeneracy arising below Tc. Above Tc the
limit of Cr is identically zero, but below Tc it is equal to a contribution
from the asymptotically degenerate eigenvector, so the occurrence of
spontaneous magnetization is directly related to the onset of degeneracy.

Let us consider an expression analogous to (82) with our boundary
conditions. In order to get rid of the boundary effects coming from the
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end columns in a simple way let us first consider the average
C=((°m.n<rm,n + r) (σm+Sιnσm + S t Λ + r)y. By the general argument given in [9]
mentioned in the introduction we know that if we let AT, M, m, s tend
to infinity in that order C will have the limit C2. In terms of the transfer
matrix we have when N -> oc :

c=

(83)

As mentioned before mixed matrix elements of σ*σ*+s vanish, so
<Φ|σ>*+ s |L>=0 if |L| odd, and then also

if 0<£L (84)

if L = (0,L'

Hence

C= Σ \<*\<Z<U+,\L>\2(^-] (85)
|L |even V 71Φ /

O^L

and we see that the leading term having lim — — — 1 will always be
M-oo^ Aφl

that coming from L = Φ which contributes precisely the quantity (m*)2

defined by (69), (70). When T> Tc any term with 1 eL will also have

l e L for some /> 1, so that \—~\ ^e~~ry(Q\ and it will hence not con-

tribute to the leading term.
The change in the multiplicity of the spectrum taking place at Tc is

thus not as directly related to the occurrence of spontaneous magnetiza-
tion as in the toroidal case.

Appendix A. A Lower Bound for< -f | Q \ + >

Such a bound can easily be found for any matrix element <σ|Q|σ>
by comparing the partition function with a fixed configuration σ on the
top and bottom row to that with cyclic boundary conditions in the
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vertical direction:

<σ\VN\σ> <σ\VN\σy
r; — lim r— -rτ (Al)

For any two configurations differing only in the top and bottom row
the energies differ at most by (2J2+4JJM, so that the ratio of the
Boltzmann factors lies between e

±(2K^ + 4K^M^ anc} hence e~(2K2 + 4 κ^M

_\^__ ^ e(2K2 + 4Kl)M for any ̂  £ also It f0nows from this that

Tr VN = £ <σΊ V N \ σ f y ^ 2M

 <?<
2^ + 4K^M <σ| FN |σ>, and the bound

<σ|ρ|σ>!2~M + 1e- ( 2 K 2 + 4 K l ) M>0 is valid.

Appendix B. Proof that 15] = +1

S is given by (25), and it is seen that by elementary column operations
the columns can be replaced by y(ωk),y(ωk):

I =(20
-M (Bl)

Since x(ωfc) = R\12 y(ωk\ x(ωk) = (RT

2}
li2 y(ωk) and \R2\ = 1 we also have

x2M(ωί) ... 3c2M(ωM)

(B2)

C+ will denote an arbitrary positive constant, and we can assume that
the x(ωk) are normalized by x 1(ω f c)=l. The Eqs. (29), (30) for x(ωk),
x(ωk) can be written

(B3)

with ^ = e7k = λk and λ = e~yk = λ_k respectively, fc = 1, ..., M.
(A! < A2 < < AM, since y(ω) is increasing.)
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From (B3) it is seen that the xn are polynomials in λ, λ~l as follows:

(B4)
2n+1 =a2n+lλ"+ +b2n+lλ " n=\,...,M

if a0 = 0, bQ = x0. We also put al=bl — 1, so that χί = l = -^ .

By substituting (B4) into (B3) it is found that the leading coefficients are
given by the relations:

2n+ !
1 [(Cht'2)fl2B + (ί Shϋ 2)α 2 B_ J

(B5)

which imply that

>)1Shv2Γ
la2n

»<,Γlb7κ

(B6)

In (B 2) we can hence factorize the matrix into a lower triangular matrix
and a Van der Monde type matrix:

J ... Xι(ωM) 1 1 ... 1
- 1 - 1 -

• (B7)

The determinant of the latter matrix can be found if we permute the
columns into the order λ _ M < / l _ M + 1 < λM and the rows by the same
permutation into the order λ~M <λ~M + l <••• /M, and then multiply the
columns by /If, k = — M, ...,M. These operations transform it into the
standard Van der Monde determinant

1

so = /c From (B 6) follows that ci2k-ι^2k —

so |S| = C+ i~Mb]2. From (B5) and the boundary condition we see that
b2 = (zShy 2 )" 1 (-Cht;2 + Chί;2--l) = iC+ and finally that |S| = C+ - -f 1,
since S is orthogonal.



268 D. B. Abraham and A. Martin-Lof

References

1. Abraham, D.B.: Studies in Appl. Math. L, 71 (1971).
2. Abraham,D.B.: Studies in appl. Math. LI, 199 (1972).
3. Abraham,D.B., Gallavotti,G., Martin-Lof,A.: Surface Tension on the two dimen-

sional Ising Model, Preprint 1972.
4. Gallavotti,G., Martin-Lof, A.: Commun. math. Phys. 25, 87 (1972).
5. Gallavotti,G., Miracle-Sole,S.: Phys. Rev. SB, 2555 (1972).
6. Huang,K.: Statistical Mechanics, New York: John Wiley 1963.
7. Kac,M.: Proc. Brandeis Univ. Summer Inst. in Theor. Phys. 1966, vol. 1, ed. by

M. Chretien, New York: Gordon and Breach 1968.
8. Kaufmann,B., Onsager,L.: Phys. Rev. 76, 1232 (1949).
9. LebowitzJ., Martin-Lof,A.: Commun. math. Phys. 25, 176 (1972).

10. Martin-Lof,A.: Commun. math. Phys. 24, 253 (1972).
11. Montroll,E., Potts, R., Ward, J.: Journ. Math. Phys. 4, 308 (1963).
12. Onsager,L.: Phys. Rev. 65, 117 (1944).

A. Martin-Lof
Department of Mathematics
Royal Institute of Technology
Stockholm, Sweden

Note added in proof: The calculation of the surface tension in Section 5 is not quite
correct. The formulas should be based on the other symmetrised product K1

1/272F1

1/2

instead of on V. The final result is however correct. The argument in Appendix A is also
not quite right, but it can easily be completed for σ = +. The correct proofs will appear

in forthcoming papers by the authors.




