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Abstract. First it is shown that each extremal equilibrium state is representable as
limit of Gibbs states in finite volumes, and that an analogous statement holds for extremal
invariant equilibrium states. Secondly we prove that for negative pair interactions only one
equilibrium state exists which minimizes (resp. maximizes) the particle density, but that in
general there are more than two extremal invariant equilibrium states with the same
particle density. In this context, periodic interactions are studied.

1. Notations!

Let us consider the v-dimensional cubic lattice T=2" (veN) and the
set B of all non-void subsets V of T with finite cardinality |V|. Denote
by ¥V the complement of V. Given any V CT, we consider the set
C, ={0,1}" of all configurations of particles in V; in particular, we set
C = C;. Further on we shall use the projections )} : Cy, = Cy, (VCWCT)
and ny = nl.

We assume that the particles are subjected to a pairwise interaction
which is described by a function U in

U={UeR":U©0)=0,U(®)=U(-0)(teT), ¥ UM<0}
teT

Given in addition a “chemical potential” peR, for all Ve B and ce Cy
the Gibbs Distribution qy; = g% on Cy, under the condition € is defined by

Uel©=—u c¢+3 Y ¢cUs—1)

teV s,teV (11)
+ Y ¢GU(s—1)
seV,teV
Zyie= Z exp[— UV/E(C)]a qV/E(C) = ZV/Z_1 exp[— UV/E(C)] 5

ceCy

where c is any configuration in V.

! For a proof of the interspersed facts, see [3], e.g.
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We denote by & the o-algebra on C generated by the cylindric sets,
and for V' C T by 4, the o-algebra generated by the cylindric sets which
depend only on the lattice points in V. Then the probability measures
(“states”) on & form a convex and weakly compact set 4 %. For each
state P, we write Py instead of n,(P) (V C T). Furthermore, for any te T
consider the corresponding shift S, on C, defined by (S,c),=c,,(se T).
The states which are invariant under the transformation group (S,),c7»
form a convex and weakly compact set s, Z.

Following Dobrushin and Lanford/Ruelle, we call equilibrium state
for the parameters ueR and U e U each state P with the property that
forallVeBandae Cp, q;’/‘,ﬁv(a) is a version of the conditional probability
P(ny=a/Fw). We write & =6 (u, U) for the set of equilibrium states
and Gy = Go(u, U)=6Gn 4 F for the set of shift invariant equilibrium
states. ® and ®, are nonempty, convex and weakly compact. Let ex ®
and ex ®, be the set of the extremal points of ® and ,, respectively.

Each Peex®, is called a pure phase. With the notations Z, = (| %y
VeB

and # ={Ae % :A=S,A(te T)} we have the following characterizations:
Pe® isextremalin ®, iff P(4)e{0,1} forall Aec Z, (1.2)
P e ®is extremal in ®,, iff P(A)e {0, 1} forall Ac ¢, (L.3)

i.e., the pure phases are exactly the ergodic equilibrium states.
Furthermore, if Ue U™ ={U eW: U £0}, then Ruelle has proved
the existence of two states P, P* € ®, with the property

Py ()SP()SPF(1) forall Xe®B andall Pe®, (1.4)

which implies the extremality of P~ and P* in ® and in &,. Given
X CVe®B and ae Cy, one considers the functions

1 if #%(c)=a,

1.5
0 otherwise, (1.3)

IX,a(C) = {

and the expectation ry, z(X) = Ey z(Iy, ;) of Iy ; with respect to the measure
dyz- Ty is called the correlation function of qy ;. Then for all X

Py ()= y}l}rwo(X), Py ()= },1'}1}71//1()()- (1.6)
Finally, we set ¢_ =g_(u, U)= Pyy(1) and ¢, =0 (u, U)=Pg(1). Note

that for P e o # the number P,,,(1) can be interpreted as mean particle
density for P.
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2. Approximation of Extremal Equilibrium States

Consider the set ®, of all states P for which there is an isotone
sequence (V) in B tending to T, and configurations ¢, € Cy, such that

11
for all X e B, Py(l)= I}im "y e X) -

Then ® and the closed convex hull of G, coincide (cf. [3]). It is therefore
natural to ask whether the relation ex® C ®, is true. The answer is: Yes.

Let Xe®B be any finite set and X={VeB:V > X}. Given any
function f on Cy, we put

frlo)= EV/m‘?(c)(fo 775;) (VeX,ce().
For equilibrium states P €  we have by definition
fy=E(feny/Fy) P-as. (Ve¥X). 2.1)
This shows the validity of

Proposition 2.1. For each Pe ® and X € B, the family (fy)ycx is a
(backward-) martingale with respect to the family of o-algebras (Fy)ycx
and the measure P.

It is an interesting consequence of this proposition that each equilib-
rium state P depends only on its restriction on &, . By the martingale
convergence theorem (cf. [4], p. 120), if V' runs through an increasing
sequence in B to 7, the sequence ry,(X) converges P-a.e. and in L' (P)-
norm to a &, -measurable function gy, and we have

PX(1)=ngdP=fgde,§w.

Now the remark follows from the fact that P is completely determined
by the system (Py(1))xeg-

Theorem 2.2. Let Pcex® be an extremal equilibrium state and
(Vidkew any isotone sequence in B tending to T. Then

P{Px(l) = gin;rVk/nd (X) forall Xe %}= 1.

In particular, the inclusion ex® C G, is true.

Proof. Using the notations and results of the preceding remark, we
obtain from (1.2) that g, = Py(1) P-a.s. Hence

P{ryaz, (X) = Px(1) (k—>o0)} =1

for any X € B, and the theorem follows, because B is countable.
Now we study the analogous problem for extremal invariant equilib-
rium states. One introduces the averaged correlation functions
X ="' Y X+t (XCVeB,ceCy)

teT: X +tCV
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and the set ®, ,, of all invariant states P € s,% with the property that
there is an increasing sequence (V) in B tending to 7T, and configu-
rations ¢, € Cy, such that for all X e B

Py(1)= I}Ln; /e X) -
We show that ex®,C ® .

Proposition 2.3.> Let (2,4, m) be any probability space, (B,)nen
a decreasing family of c-subalgebras of B, B, = () B, and (f,),en any

neN
sequence of random variables in L'(m). If |f,| <g for some ge L*(m) and
f.—f as., then
E(f,/%,)—>E(f/#.) as. and in L*-norm,

if n tends to infinity.
Proof. It is enough to verify the “Fatou inequality”

E (ﬁﬂ inff, / ,@m) < lim infE(f, / %.,) (2.2
for any sequence (f,),cx in L' such that f, >g for some g e I'. Consider
the random variables g, = g£ f,(k€eN). The inequality f,=g,=g (n=k)
implies that g, e I'. Thus the martingale convergence theorem applies
showing that E(g/#.) = lim E(g,/,)

<lim infE(f,/4,).
Now g,/ liminff, if k 7co0. By the monotone convergence theorem
(cf. [4], p. 50), (2.2) follows.

Corollary 2.4. For any Pe ®,, any X € B and any isotone sequence
(Ve Of cubes in B tending to T, the sequence

(FVk/nv,‘ (X))kelN
converges P-a.s. and in L'(P)-norm to P(ny =1/ %).
Proof. By (2.1) for any P e §, and Ve X we have

FV,,,;(X)=E(|V|-1 y 1mx=1,os_,/,%) as.

X+cV
The v-dimensional ergodic theorem (cf. [5]) implies that
IVkl_l z 1(nx=1}°s—:_’P(nx= 1/9) as.

X+tcVi

Thus Proposition 2.3 applies, asserting that
Fynw, (X) > E(P(ny =1/ 9)/F )= P(ny =1/.9)

2 This statement already has been remarked by G. A. Hunt (Les Martingales,
Seminaire d’Orsay 1963, p. 58).
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a.s. and in L'-norm. For the last equality we have used Proposition 3.6
below.
Using (1.2) and the countability of B, we get from Corollary 2.4

Theorem 2.5. If Peex®,, then for any increasing sequence (Vi )ien
of cubes in B tending to T we have

P{an) = lim 7y, (X) forall Xe iB}: 1.

In particular, ex®, C ©g .

Finally it should be remarked that the results of this section can be
generalized without difficulties to classical systems with many-body
interactions (which are subjected to the usual summability condition).

3. Pure Phases for Attractive Interactions

For U e U™ the theorem of Lee and Yang (cf. [3], e.g.) asserts that
a phase transition (i.e. ¢ _ < .) can occur only for the chemical potential
AU)=3 Y, UGs).
seT
It is natural to wonder whether in this situation at most two pure phases
exist which are limits of the uniquely determined (cf. [3]) pure phases for
u<i(U) and u> ji(U), respectively. The equilibrium states P~ and P*
are natural candidates for these two pure phases. For the Ising interaction

—pB ift= +e for some unit vector e
0 otherwise

5,01

at low enough temperature 7! >0 the answer to the question above is
affirmative, as proved by Gallavotti and Miracle-Sol¢ (cf. [3]). We show
that P~ and P* are the unique equilibrium states with particle density
o_ and g, respectively, but that for a big class of negative interactions
there exist more than these two pure phases.

Lemma 3.1. Given any Ue U™ and pelR, let P, Q € ®(u, U) have the
properties Py(1)=o_(u, U), Quy(1)= 0. (u, U) for all te T. Then for all
XeBand se X,

Py (I = Py(ly),  Qx(1) =Py (1y),
where Y = X\{s} and
1 for teY

1Y(t)={0 for t=s.
Proof. Choose any Ve X and ¢ € Cy. Define
- Y G U(t’—t)] (ce Cpye)-

teV\{s},t'eV

h(c)=exp
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Then by a theorem of Fortuin, Ginibre and Kasteleyn (cf. [3]) we have

ZV/E EV/E (IY, 1 I(s),O) - EV\(s}/O(IY, 1 h)
ZV/O EV/O(IY,II(S},O) EV\{s)/O(IY,l)

Zy:Eyi(l, o)
2 Eyygpolh) = Ao

Hence ’ Zy0Eyo(lg,0)
Py(ly) — lim Ey;:(ly,1 1, 0)
Py (1y) vrT EV/O(IY, 1 I{s),O)

- Eyi(l,o) Py (0)
> lim [ 2vel0.0) p i - F®)
= VrTj Ey (L, 0) v(de) Py(0)

The second inequality can be proved similarly.

If we take into account that by (1.4) P,(1)e[¢_,¢.] for all Pe ®
and te T, the following theorem has some interesting consequences.
First it illustrates the kind of extremality of P~ and P* in ® and in ®,,.
Furthermore it shows that for g_ =9, (“no phase transition of first
order”) only one equilibrium state exists. In particular, for Ue W™ the
“absence of a symmetry breakdown” (ie. ®,Cex ®) implies the
uniqueness of the equilibrium state.

Theorem 3.2. For all Ue U™ and peR,
{Pe®,U): Py(l)=0-(u,U) forall teTy={P}
Qe U):Qy()=0+(w, U) forall teT}={P"}.
Proof. Suppose that Pe ® has the property Py, (1)=¢_(te T). Then
we have the identity _
Py()=Pg(1) (teT). (3.1)
If for some X € B Py(1) =+ Py (1), then by (1.4) and Lemma 3.1
Py(1) = Py (1) = Px(1) = Px (1) + Px(1y) — Px (1y)>0.
By iteration, we get a contradiction to (3.1). Do the same for the second
assertion.
Now let T=T'UT” be any partition of T in two disjoint subsets T"

and T" of T. Given any configuration ¢ in some subset V of T, the
configuration ¢c¢ in V let be defined by

(00), = l—¢, if teV' =VnNT
Pch= ¢ if teV'=VnT".

Lemma 3.3. Supposethat Ue W ={UeU:U(s—t)=0(se T, teT")}
and p= ji(U). Then the equality

Py(dc)

holds. Qv () =4qyjpz(@c) (ceCy,ceCy, VeDB)
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Proof. Direct computation yields
Uyje(c) = Uy,pzl@c) = Z _[e—- $1UGs—1).

seV’ teV’
As the righthand side is independent of ¢, the lemma follows.

Lemma 3.4. Suppose that Ue U™ nW and p=j(U). Then for all
XCVCWeBand ceCy

EV/(pO(IX,(pI) é EV/E(IX,(p 1) _S_ EV/(pl(IX,w 1)
EV/(pO(IX,(p 1) § EW/(pO(IX,(pl) .
Proof. By the lemma before,
EV/tpE(IX,(p 1) = EV/E(IX, 1) .

and

Therefore the assertion is a consequence of the similar properties of the
correlation functions ryz(X) (cf. [3], Lemma 10.2).

Lemma 3.5. Each state P € 4% is uniquely determined by the system
(Px(@D)xen-
Proof. By the inclusion-exclusion formula, clearly for all Ve 8
P()= Y (=) Py(el). (3.2)
V'cXcv

But P is uniquely determined by the system (Py(1))y.q (cf. [3], e.g.).
Finally we shall need the following fact which in the 1-dimensional
case is well-known.

Proposition 3.6. For all Pe 4y %, ¢ C#,, P-as.

Proof.? It is sufficient to show that each invariant function f'e L'(P)
coincides a.s. with its conditional expectation E(f/#,). Let ||.| denote
the L'(P)-norm. Then for V,We B, WC7,

If =Ef/ZIN £ 11f — E(f/Fw)]
+IE(f/Fw) — E(f /) + | E(f/F) — E(f |FL)I -

If Vruns through an increasing sequence in B to T, by the convergence
theorem for backward martingales the third summand becomes small.
By Jensen’s inequality ([4], p. 50) the second term is majorized by the
first one. Using the invariance of f and P, for all ¢t e T we obtain

If =E(f/Fw =1f —E(f/Fw Il -

3 This proof is due to H. Follmer; it simulates Meyer’s proof of the Hewitt-Savage
0-1 law (cf. [4], p. 190).
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Therefore, we can forget the condition W C ¥ and let W run through an
isotone sequence in B to T, and by the forward martingale convergence
theorem (cf. [4], p. 117) the proposition follows.

Suppose that U el is given. We call s,te T U-equivalent if there
is a finite sequence ty, ..., t, in T such thatt,=s,t,=tand U(t, —t,_ ) +0
(1=k=<n). For any se T denote by T, the set of all points in T which are
U-equivalent to s.

Definition. We say that U e U is periodic if U=%0 and if there is a
parallelepiped # € B of cardinality greater than one with the following
properties:

@ T,nT,=0u,ve #Wy,uxv)

b) T,+(ny, 0,...,0)=---=T,+(0,...,0, n) =T, (ue #y), where
n;eN denotes the vertex length of #7; in direction j (1 <j=v).

For most of the following it would be enough to require ) T,=T

. uEWU
instead of (b).

If U is some periodic interaction, let .#;, be the set of all subsets of #/;.
For any M e My and te T, M + ¢t =(Ty + t)n#y denotes the “modulo
#Wy" shifted set and M =#,\M the complement of M. Given any
M e My, consider the lattice

TM = U Tu

ueM
and the map ¢,, defined as ¢ for the partition T'=T,,, T" = T.

Theorem 3.7. Let Ue U™ be any periodic interaction and = ji(U).
Then the equilibrium states PM(M e ) defined by

PY(1)=limryp,o(X) (XeD) (3.3)

are extremal in ®(u, U). For any M € My the following statements are
true:

(@ PP=P ,P’v=p" _

(b) P (on1) < Py(y 1) < P (@p1) (Pe By, U), X € B)

(c) Forall X € B suchthat | XNnT,|=1 (ueWy),

Py(1) =l n Tl ol n 15

(d) PM(S, A)=P"'(4) (Ae F,teT)

() PM(1—A)=P"(4) (AcF, 1—-A={1l—c:ceA)}).

Clearly the probability measures P are representable as products
of the measures P~|, and P*|, which are obtained by restricting (1.6)
to the lattice T,(ue #7y).

Proof. The existence of the limits in (3.3) follows from Lemma 3.4,
Eq. (3.2) and the correspondent equation for the measures gy ,,,0-
(a) is true by definition, and (b) by Lemma 3.4. By Lemma (3.5), (b) implies
the extremality of the measures PM. For the proof of (c) observe that

Qv = H AV ATu/nr, @ -
ueWy
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This implies that ¢_ = y%erTu/o({t}) and ¢, = y;r%ryﬂwl({t}) (teT,
ue #Wy). For X € B such that [ XN T,| <1 we get

PY(1)=lim IT  marwpoXnT)

VT ueWuy: XnT,*0

= glXnTal glX ATl

Finally it is enough to prove (d) and (e) for sets 4 of the form 7y~ (1)

(X € B). But "y )
Py, ()= }},H% rV——t/S_t(qoMO)(X)

= vlgnTrW/q;M—to(X) =P,
and Lemma 3.3 shows the validity of the equation

EV/q)M O(IX, 1) = EV/l —om o(lx, 0)

which implies Pyf(1)=P¥(0) and therefore (e).

We call M, L e .#, toroidal equivalent, iff there is a t e T such that
M =L+t Each equivalence class is called a toroidal set. For any
M e M, we denote by [M] the toroidal set generated by M. Let <7,
be the collection of all toroidal sets. By the M&bius inversion theorem
(cf. [1], p. 70/73), its cardinality can be expressed as

1 . .
(ol = T e 3 il e s e T2,

ky|ng My ik

where “|” means “divisor of” and u[.,.] is the M&bius function (cf. [17).
Observe that |.o/y| = |#y| + 1. For any o € .9/, let || be the number of
toroidal equivalent sets in «, k(c) the cardinality of any M € « and @ = [M]
for some M € a.

Corollary 3.8. Suppose that Ue U~ is periodic and u= ji(U). Then
for any toroidal set o € oty the equilibrium state P* defined by

Pr=o|~t ) PM
Mea

is extremal in ®y(u, U) and has the following properties:
(a) P1=P® = p~, pWul= p#o_p+
k(e) k(a)

(b) PY(1)=——- ,U+[1—
0y(1) IWU|_Q+('“ ) 7y

(©) P*(1—A)=Pi4) (AdeF).
In particular, if |Wy| is even, then there exist pure phases which are in-

variant under the “Spin Flip” ¢c—>1—c.

]QJ%U)
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Proof. By statement (d) of the theorem, P*e &,. In view of (1.3) it
is enough to show that P* is ergodic. Let A€ ¢ be any invariant set.
Then Lemma 3.6 guarantees the existence of some Be %, such that
P*(A» B)=0 (» symmetric difference) and therefore P*(4 B)=0 for
all M eo. By (1.2) PM(B)=0 or 1. Hence PM(4)=0 or 1 for all M ea.
Statement (d) of the theorem shows that the measures P¥(M e o) coincide
on ¢. Thus P*(A)=0 or 1. The properties (a)—(c) are immediate con-
sequences of the statements (a), (c) and (e) of the theorem. If |#7]| is even,
we can produce some o with a =& by dividing #7, into two congruent
subsets.

Now we investigate the question whether the states PM(M e .#y)
and P*(a € o) are different, respectively. If u= i(U) then there exists
only one equilibrium state, i.e., all PM and P* are identical. If = ji(U)
but ¢_ =g, by Theorem 3.2 the same holds. If o_ <, (and there are
negative periodic interactions U such that ¢_(2(8U), BU) <o, (2(BU), BU)
for sufficiently low temperature ™1, cf. [3]), then statement (c) of the
theorem shows that

PH()*P5(1) (te Tyap.M,Le My, M+1L)

and therefore the measures PM(M € .4y) are pairwise different. Further-
more, statement (b) of Corollary 3.8 shows that |#3|+ 1 different pure
phases with different particle densities exist. In order to distinguish
pure phases P* with the same particle density we need some additional
investigations.

Let o, e o/, be two distinct toroidal sets, a =[A4], f=[B]. Then
there exists a discriminant set D € .4 such that |D(A4)| % |D(B)|, where we
use the abbreviation

DIM)= (N M—-uwy={veWy:D+vCM} (Me.y).

ueD
For instance, if |A| = |B|,
|4(A)] = o] ™" [#3] >0=]A(B)].

Choose D € Ay such that for all M CD, M %D, |[M(A)|=|M(B)|. Then
the following lemma applies, showing that for ¢_ < g, the pure phases
P* are pairwise distinct.

Lemma 3.9. Suppose that Ue U™ is periodic and p=[(U). Let
o, B e oy be two toroidal sets, o =[A], p=[B]. Assume that De My is
chosen such that |M(A)|=|M(B)| for all proper subsets M of D. Then
for any X € B with the property

1 for ueD

IXaTl= {0 for ueD
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the equation
P{(1)— P3(1) = Wyl ™" [ID(B)| - ID(A)[] [e+ — 21" (3.4)
holds.

Proof. Assume that |D(B)|—|D(A)|=06=0. For any two disjoint
subsets K, L of D consider the sets

Dy, 1 (A) = K(4)NL(4),

Dy (B), Dy (A)=Dp,,(A) and D;(B). They constitute two partitions
(DL(A))Lcp and (DL (B)).cp of #y. It is easy to show by induction on |L|

that C
|DK,L(A)| = IDK,L(B)I (KUL;e D)

and
(=) DB —ID(A)]=6 (LCD). (3.5)

The second equality guarantees the existence of some permutation n of
Wy such that
n(DL(A))CDL(B) (IL| even)
n~ ' (DL(B)CDL(4) (Ll odd).
Now if ue D, (4) (|L| even) or ue n~*(D,(B)) (/L] odd), then
(D+u)nA|=|D\L|=|(D + =,)NB|.
Thus by assertion (c) of Theorem 3.7 and Eq. (3.5)

[Wyl [PE(1) — P3(1)]
— Z [QE(ATB—u] Q]Z(ATE-.‘I _Qli(r\TA—ul le(r\T;_,A]
uEWU
— Z [QL(_D“'Ru)F\Bi QliD+nu)r\B|__Q|iD+u)mA| Q|£D+u)nZ|]

ueWy
=5[ Y P~ Y Q@\nggl]
|L| even |L| odd
(ID L
=5 X (—1)’< ! QP19 i=6[g, —o-1",
0<j=|D| J

as desired.

Let us conclude with the remark that we can find at least n different
toroidal sets o identical & whenever some vertex of #; has length 2"
Thus we have proved

Corollary 3.10. Let Ue U™ be any periodic interaction and pueR
some chemical potential. Then

either |ex®(u, U)| =lex®,(u, U)| =1
or lex®(u, U) 2271 and  |exGo(u, U)| = |4y .
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Under certain circumstances the number of pairwise distinct pure phases,
which are Spin Flip invariant and therefore all have the same particle
density %, becomes arbitrarily large.

It would be interesting to know under what conditions the constructed
measures PY and P* are already all extremal and extremal invariant
equilibrium states, respectively. E.g., consider the “periodic Ising inter-
action”
=B if t=2ne; (1=j=v)

0 otherwise,

3,400 ={

where >0, n=(n,,...,n,)eN’ and e; the j-th unit vector (1<j=<v).
Gallavotti’s result [2] suggests that then in the two-dimensional
case for sufficiently large f

lex O (A(Sy, ), Ip,)l =2""
|CX (ﬁo(ﬂ(sﬂ,n)s Sﬂ,n)l = Idﬁﬁ,nl .

On the other hand, Dobrushin [6] has proved the existence of infinitely
many (nonperiodic) extremal equilibrium states for the Ising interaction
in three dimensions (n = (1, 1, 1)) for sufficiently large . Thus

and

lex &(i(34,,), Ip.,)l =0 for large fand all n.
Nevertheless, one could expect that

lex ® ((Sp,) 3p,)| = |5, | for these fand n.
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