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Abstract. First it is shown that each extremal equilibrium state is representable as
limit of Gibbs states in finite volumes, and that an analogous statement holds for extremal
invariant equilibrium states. Secondly we prove that for negative pair interactions only one
equilibrium state exists which minimizes (resp. maximizes) the particle density, but that in
general there are more than two extremal invariant equilibrium states with the same
particle density. In this context, periodic interactions are studied.

1. Notations1

Let us consider the v-dimensional cubic lattice T = ΈV (veN) and the
set 93 of all non-void subsets V of T with finite cardinality \V\. Denote
by V the complement of V. Given any V C T, we consider the set
Cv= {0, \}v of all configurations of particles in V\ in particular, we set
C = Cτ. Further on we shall use the projections π{Γ : Cw -> Cv (V C W C T)
and πv — π£.

We assume that the particles are subjected to a pairwise interaction
which is described by a function U in

ίeT

Given in addition a "chemical potential" μelR, for all VE 33 and ce Cγ
the Gibbs Distribution qvi-c = qfyV on Cv under the condition c is defined by

Uv/c(c)=-μΣct + τ Σ c,ctU(s-t)
teV s,teV (Λ j \

+ Σ _csctU(s-t)
seV,teV

Zv/c = Σ exP [ - uv/ϊ(c)~], 4vic(c) = Zvrc ~ 1 exP C ~ uv/c(tf] >
ceCv

where c is any configuration in V.

1 For a proof of the interspersed facts, see [3], e.g.



108 H.-O. Georgii:

We denote by 2F the σ-algebra on C generated by the cylindric sets,
and for V C T by 3FV the σ-algebra generated by the cylindric sets which
depend only on the lattice points in V. Then the probability measures
("states") on 2F form a convex and weakly compact set fi3F. For each
state P, we write Pv instead of πv(P) (Vc T). Furthermore, for any t e T
consider the corresponding shift St on C, defined by (Stc)s = cs+t(se T).
The states which are invariant under the transformation group (St)teT,
form a convex and weakly compact set /0 3F.

Following Dobrushin and Lanford/Ruelle, we call equilibrium state
for the parameters μ e IR and U e U each state P with the property that
for all V e 93 and a e CF, q^^(a) is a version of the conditional probability
P(πv = a/#rv) We write @ = @(μ, U) for the set of equilibrium states
and (50 = ©0(μ, U) = @n/0 ̂  for the set of shift invariant equilibrium
states. © and ©0 are nonempty, convex and weakly compact. Let ex©
and ex©0 be the set of the extremal points of © and ©0, respectively.
Each Peex© 0 is called a pure phase. With the notations J^ = P) J^

and / = {AeέF:A = StA(t£T)}we have the following characterizations :

P e @ is extremal in ©, iffP(A)e{09l}forallAe^ao (1.2)

Pe@ 0 zs extremal in < $ 0 , i f f P ( A ) e { Q , l } f o r a l l A E / , (1.3)

i.e., the pure phases are exactly the ergodic equilibrium states.
Furthermore, if I7ell~ = { C 7 e U : t/^0}, then Ruelle has proved

the existence of two states P", P+ 6 ©0 with the property

for all Xε% and all P e @ , (1.4)

which implies the extremality of P~ and P+ in © and in ©0. Given
X C Fe 95 and a e Cx, one considers the functions

if «5(c) = β,
otherwise, (L5)

and the expectation rv/-(X) = Ev^(lx x) of /x a with respect to the measure
<?F/C ΓF/? i§ called the correlation function of qv^. Then for all X

(X), P/(l) - timrvll(X) . (1.6)

Finally, we set ρ_ =ρ_(μ, 17) = P{0}(1) and ρ+ =ρ + (μ, C7) = P{S}(1). Note
that for P £ ̂ Oe^ the number P{0}(1) can be interpreted as mean particle
density for P.
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2. Approximation of Extremal Equilibrium States

Consider the set ©^ of all states P for which there is an isotone
sequence (Fk)keIN in 93 tending to Γ, and configurations ck e Cγ k such that

*»"*••• IMD-B-^W.

Then © and the closed convex hull of ©^ coincide (cf. [3]). It is therefore
natural to ask whether the relation ex© C ©oo is true. The answer is: Yes.

Let Xe93 be any finite set and £ = {Fe93 : V^X}. Given any
function / on Cx, we put

For equilibrium states P e © we have by definition

fv = E(f°πx/&r) P-a.s. (Fe*). (2.1)

This shows the validity of

Proposition 2.1. For each P e © and X e 93, the family (fv)v^ is a
(backward-) martingale with respect to the family of σ -algebras (^v)vex
and the measure P,

It is an interesting consequence of this proposition that each equilib-
rium state P depends only on its restriction on ^r

ao. By the martingale
convergence theorem (cf. [4], p. 120), if V runs through an increasing
sequence in 93 to T, the sequence rv/π-(X) converges P-a.e. and in Ll(P)-
norm to a J^- measurable function gX9 and we have

Now the remark follows from the fact that P is completely determined
by the system (Px(i))Xe*.

Theorem 2.2. Let P e ex © be an extremal equilibrium state and
(Ffc)Λ6N any isotone sequence in 93 tending to T. Then

p|pv(l)=limrFt/π-k(Z) for all X e » J = l .

In particular, the inclusion exSc©^ is true.

Proof. Using the notations and results of the preceding remark, we
obtain from (1.2) that gx = Px(ί) P-a.s. Hence

for any X e 93, and the theorem follows, because 93 is countable.
Now we study the analogous problem for extremal invariant equilib-

rium states. One introduces the averaged correlation functions

teT:
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and the set ©0>00 of all invariant states P e /02F with the property that
there is an increasing sequence (Ffc)fceN in 33 tending to T, and configu-
rations ck e Cγk such that for all X e 33

Px(i)=limJVkΓck(X).

We show that ex @0 C ©0, oo

Proposition 2.3J2 Let (Ω, <%, m) be any probability space, (^Jne]N

a decreasing family of σ-subalgebras of £%, ffl^ = (\ $n and (/π)πeN any
neN

sequence of random variables in L}(m). If \fn\^g for some ge l}(rri) and

fn~*f a's-> tnen

E(fn/^n)-*E(f/^°o) a s. andinl}-norm,

if n tends to infinity.

Proof. It is enough to verify the "Fatou inequality"

ΛJ (2.2)

for any sequence (/M)weN in L1 such that /„ ̂  g for some geL1. Consider
the random variables gk = inf fn(k eN). The inequality fn^gk^g (n^k)

n^.k

implies that gkeLl. Thus the martingale convergence theorem applies
showing that

Now ^ k /l iminf/ n if /c/oo. By the monotone convergence theorem
(cf. [4], p. 50), (2.2) follows.

Corollary 2.4. For any P e ©0, any X e 33 and any isotone sequence
(Ffc)feeN of cubes in 33 tending to T, ί/ze sequence

VVk/πvk W)fcεN

converges P-a.s. and in l}(P)-norm to P(nx= I//),

Proof. By (2.1) for any Pe ©0 and Fe£ we have

x+tcv

The v-dimensional ergodic theorem (cf. [5]) implies that

mi'1 Σ lta = ι,oS_,

Thus Proposition 2.3 applies, asserting that

rVk/π- (X) -* £(P(% = 1//JAFJ = P(πx = I//)

2 This statement already has been remarked by G. A. Hunt (Les Martingales,
Seminaire d'Orsay 1963, p. 58).
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a.s. and in //-norm. For the last equality we have used Proposition 3.6
below.

Using (1.2) and the countability of 33, we get from Corollary 2.4

Theorem 2.5. // Peex(δ0, then for any increasing sequence (Ffc)ΛeN

of cubes in 23 tending to T we have

P\Px(ί)=limrVk/π-(X) for all Λ Γ e » l = l .
I k— » oo k J

In particular, ex ©0 C ©0, oo

Finally it should be remarked that the results of this section can be
generalized without difficulties to classical systems with many-body
interactions (which are subjected to the usual summability condition).

3. Pure Phases for Attractive Interactions

For l/elί" the theorem of Lee and Yang (cf. [3], e.g.) asserts that
a phase transition (i.e. ρ_ < ρ+) can occur only for the chemical potential

seΓ

It is natural to wonder whether in this situation at most two pure phases
exist which are limits of the uniquely determined (cf. [3]) pure phases for
μ<μ(U) and μ> μ(U), respectively. The equilibrium states P~ and P+

are natural candidates for these two pure phases. For the Ising interaction

— β ift=±efoτ some unit vector e

0 otherwise

at low enough temperature β"1 >0 the answer to the question above is
affirmative, as proved by Gallavotti and Miracle-Sole (cf. [3]). We show
that P~ and P+ arc the unique equilibrium states with particle density
ρ_ and ρ+, respectively, but that for a big class of negative interactions
there exist more than these two pure phases.

Lemma 3.1. Given any U e U~ and μ eIR, let P, Q e (S(μ, U) have the
properties Pω(l) = ρ_(μ, U\ ρ{f)(l) = ρ + (μ, 17) for all tεT. Then for all
X e 93 and s e X,

where Y = X\{S} and

for t = s.

Proof. Choose any V e £ and c e Cγ. Define

h(c) = exp [- £ ctct, U(t'~t)} (c E Cn(s}) .
[ teV\{s},t'eV J
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Then by a theorem of Fortuin, Ginibre and Kasteleyn (cf. [3]) we have

Zy/cEyic(Iγ,iI{s],o) _ ^V\{s}/oUr,ι^)

"> Ϊ7 ίlί\ _
^^F\{S}/OW— ry

Hence ZF

r»-/ι \ = !™ J "7̂  77J T ' \ Py(dc)

The second inequality can be proved similarly.
If we take into account that by (1.4) Pw(l)e [ρ_,ρ+] for all Pe©

and ί e T, the following theorem has some interesting consequences.
First it illustrates the kind of extremality of P" and P+ in © and in ©0.
Furthermore it shows that for ρ_ =ρ+ ("no phase transition of first
order") only one equilibrium state exists. In particular, for UeU~ the
"absence of a symmetry breakdown" (i.e. ©0 C ex ©) implies the
uniqueness of the equilibrium state.

Theorem 3.2. For all U e IT and μ e 1R,

/):P { ί }(lHρ_(μ,l7) for all
and

):Q(t}(i) = ρ + (μ,U) for all

Proof. Suppose that P e © has the property P{ί}(l) = Q-(teT). Then
we have the identity

P{i}(l) = Pw(l) (tεT). (3.1)

If for some X e 93 Px(l) φ Px~(l), then by (1.4) and Lemma 3.1

By iteration, we get a contradiction to (3.1). Do the same for the second
assertion.

Now let T= T'uT" be any partition of T in two disjoint subsets T
and T" of T. Given any configuration c in some subset V of T, the
configuration φc in V let be defined by

Ί-ct if ieF'
(φc)t = -

l^ί

Lemma 3.3. Suppose that U e U' = {U e lί: U(s - t) = 0(s e T', ί e T")}
and μ = μ(U). Then the equality

holds.
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Proof. Direct computation yields

UvΓc(c) - UvlφΈ(φc) = Σ [ct - i] U(s - t) .
seV',teV

As the righthand side is independent of c, the lemma follows.

Lemma 3.4. Suppose that t/etI~nU' and μ = μ(U). Then for all
XCVcWe®

Evfφθ(Iχ,φΐ) = Ev/c(Iχ,φ l) = EV/φ 1 (Iχ,φ l)
and

Proof. By the lemma before,

Therefore the assertion is a consequence of the similar properties of the
correlation functions rVί-(X) (cf. [3], Lemma 10.2).

Lemma 3.5. Each state P e jι3F is uniquely determined by the system

Proof. By the inclusion-exclusion formula, clearly for all Fe 93

Pv(ί)= Σ (-l)™r"]Pχ(φl). (3.2)
vcxcv

But P is uniquely determined by the system (Pκ(l))Feφ (cf. [3], e.g.).
Finally we shall need the following fact which in the 1 -dimensional

case is well-known.

Proposition 3.6. For all P e /0 J ,̂ / C J^ P-a.s.

Proof. 3 It is sufficient to show that each invariant function /e L}(P)
coincides a.s. with its conditional expectation E(f/^00). Let || . || denote
the Z/^-norm. Then for V,We%,WcV,

+ \\E(flfw) -

If Fruns through an increasing sequence in 93 to T, by the convergence
theorem for backward martingales the third summand becomes small.
By Jensen's inequality ([4], p. 50) the second term is majorized by the
first one. Using the invariance of / and P, for all t e T we obtain

3 This proof is due to H. Follmer; it simulates Meyer's proof of the Hewitt-Savage
0-1 law (cf. [4], p. 190).
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Therefore, we can forget the condition WCV and let W run through an
isotone sequence in 93 to T, and by the forward martingale convergence
theorem (cf. [4], p. 117) the proposition follows.

Suppose that UeU is given. We call s,teT Ό-equivalent if there
is a finite sequence ί0,..., tn in T such that tQ = s,tn = t and U(tk — tk _ J φ 0
(1 ̂  k ̂  n). For any s e T denote by Ts the set of all points in T which are
l/-equivalent to s.

Definition. We say that U e U is periodic if U φ 0 and if there is a
parallelepiped iΓυ e 93 of cardinality greater than one with the following
properties:

(a) TunTv = 0(u,vei^u,u^v)
tb)Tu + (nl9Q9...90) = ... = Tu + (09...909nv) = Tu (ueWv\ where

rij eN denotes the vertex length of i^v in direction j (1 ̂ j rg v).
For most of the following it would be enough to require (J TU=T

• 4. Λ C /1-\ UtWuinstead of (b).
If U is some periodic interaction, let Jίυ be the set of all subsets of H^υ.

For any M e J(Ό and t e T, M +1 = (TM + ί)n iΓυ denotes the "modulo
H^u" shifted set and M = i^v\M the complement of M. Given any
M e Jlv, consider the lattice

TM= U τu
ueM

and the map φM defined as φ for the partition T' = TM, T/; — Tjg.

Theorem 3.7. Let UeU~ be any periodic interaction and μ = μ(U).
Then the equilibrium states PM(M e Jίυ] defined by

Ff(l)=limrF/^0(X) (A"6») (3.3)

are extremal in @(μ, ί7). For any M e Jίv the following statements are
true:

(a) p*=p-,p^v = p+

(b) P]<(φM 1) ̂  Px(φM 1) ̂  Pf (φM 1) (P e (δ(μ, t/), X 6 93)
(c) For allXe® such that \X n TJ ̂  1 (ue i^v\

pM/jL\ |XnT M | I X n T M l

(d) PM(5t^) = PM^(A) (Ae^teT)
(e) PM(l-yl) = PM(yl) (Ae&, \-A = {1 -c: cεA}).
Clearly the probability measures PM are representable as products

of the measures P~\u and P+\u which are obtained by restricting (1.6)
to the lattice Tu(u e Wv\

Proof. The existence of the limits in (3.3) follows from Lemma 3.4,
Eq. (3.2) and the correspondent equation for the measures qv/φMo
(a) is true by definition, and (b) by Lemma 3.4. By Lemma (3.5), (b) implies
the extremality of the measures PM. For the proof of (c) observe that

— U ^FnTu/πT u(c)



On Extremal Equilibrium States 115

This implies that ρ_ = limrFn7,u/0({ί}) and ρ+ = HmrFnΓu/1({t}) (te Tu,

u e ifv). For X e 93 such that \XnTu\ ^ 1 we get

Finally it is enough to prove (d) and (e) for sets A of the form
(Xe%). But

P¥+t(l)=\imrv_tls_t(φMθ)(X)

and Lemma 3.3 shows the validity of the equation

which implies P χ ( l ) = PJf(Q) and therefore (e).
We call M, L e Jtv toroidal equivalent, iff there is a t e T such that

M = L + t. Each equivalence class is called a toroidal set. For any
M e ̂ ^ we denote by [M] the toroidal set generated by M. Let j^
be the collection of all toroidal sets. By the Mobius inversion theorem
(cf. [1], p. 70/73), its cardinality can be expressed as

\*υ\= Σ ιr-r Σ μ[0 ι,...,Λ),(Λι, ..Λ)]2Λ-/ ,
fcι|wι Kl ••• ^v jilkί

kv \ nv jv I kv

where "|" means "divisor oΓ and μ[. , .] is the Mobius function (cf. [1]).
Observe that \.$/υ\ ^ \Wυ\ + 1. For any α e j^, let |α| be the number of
toroidal equivalent sets in α, /c(α) the cardinality of any M e α andά = [M]
for some M e α.

Corollary 3.8. Suppose that UeU~ is periodic and μ = μ(U). Then
for any toroidal set α e j^ ίfe equilibrium state P* defined by

Meα

is extremal in ©o(μ, U) and has the following properties:

\d) Γ Γ Γ ^ Γ Γ Γ

Λ\-(μ,U)

(c)

In particular, if \i^v\ is even, then there exist pure phases which are in-
variant under the "Spin Flip'" c^\ — c.
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Proof. By statement (d) of the theorem, Pαe ©0. In view of (1.3) it
is enough to show that P* is ergodic. Let A e / be any invariant set.
Then Lemma 3.6 guarantees the existence of some B e J^ such that
P*(A*B) = Q (Δ symmetric difference) and therefore PM(A*B} = Q for
all Me a. By (1.2) PM(B) = 0 or 1. Hence PM(A) = 0 or 1 for all Meα.
Statement (d) of the theorem shows that the measures PM(M e α) coincide
on /. Thus Pα(,4) = 0 or 1. The properties (a)-(c) are immediate con-
sequences of the statements (a), (c) and (e) of the theorem. If \WV\ *s even,
we can produce some α with α = α by dividing i^υ into two congruent
subsets.

Now we investigate the question whether the states PM(MeJ^u)
and Pα(α6-ja/[/) are different, respectively. If μφμ(U) then there exists
only one equilibrium state, i.e., all PM and P* are identical. If μ = β(U)
but ρ_ =ρ+, by Theorem 3.2 the same holds. If ρ_ <ρ+ (and there are
negative periodic interactions U such that ρ_ (μ(β U\ βU)<ρ+ (μ(β 17), β U)
for sufficiently low temperature β"1, cf. [3]), then statement (c) of the
theorem shows that

l) (ί e ΓMΔL, M, L E Jtυ, M Φ L)

and therefore the measures PM(M e Jtυ) are pairwise different. Further-
more, statement (b) of Corollary 3.8 shows that \Wυ\ + 1 different pure
phases with different particle densities exist. In order to distinguish
pure phases P" with the same particle density we need some additional
investigations.

Let α, βe stfv be two distinct toroidal sets, α = [̂ 4], /? = [#]. Then
there exists a discriminant set D e Jίυ such that |D(^4)| Φ \D(B)\, where we
use the abbreviation

D(M)= P| (M-u) = {veiT
weD

For instance, if \A\ ̂  \B\9

Choose DzJtv such that for all Mc£, MΦD, \M(A)\ = \M(B)\. Then
the following lemma applies, showing that for ρ_ <ρ+ the pure phases
Pα are pairwise distinct.

Lemma 3.9. Suppose that Uelί~ is periodic and μ = μ(U). Let
α, β e j2/v be two toroidal sets, α = [A], β = [£]. Assume that D e Jίυ is
chosen such that \M(A)\ = \M(B)\ for all proper subsets M of D. Then
for any X e 95 with the property

for U€D

θ for ueD
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the equation

Pξ(ί)-PS(i) = \Wu\~1 []D(B)\-\D(A)\] [£?+ -β_]"x' (3.4)
holds.

Proof. Assume that \D(B)\-\D(A)\ = δ^Q. For any two disjoint
subsets K,LoϊD consider the sets

DK,L(B)> DL(A) = DD\L,L(A) and DL(B\ They constitute two partitions
(DL(A))LcD and (DL(B))LCD of 'Wυ. It is easy to show by induction on \L\
that

and
= δ (LCD). (3.5)

The second equality guarantees the existence of some permutation π of
H^rj such that

n(DL(A))cDL(B) (\L\ even)

A) (\L\ odd).

Now if ueDL(A) (\L\ even) or weπ-^DJB)) (|L| odd), then

\(D + u)nA\ = \D\L\ = \(D + πJnB| .

Thus by assertion (c) of Theorem 3.7 and Eq. (3.5)

= Σ [ρljD + π")nβl ρK^ + πM)πβ| _ |(D

-1-1- Σ
|L|even |L| odd

=<5 Σ (-ιχ
J

as desired.
Let us conclude with the remark that we can find at least n different

toroidal sets α identical α, whenever some vertex of ϋr

υ has length 2".
Thus we have proved

Corollary 3.10. Let [7 ell" fee any periodic interaction and μeIR
some chemical potential. Then

either |ex <5(μ, U)\ = |ex ©0(μ, t/)| = 1

or |ex©(μ, L/)|^21^1 and |ex@0(μ? t/)| ̂  \^v\ .
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Under certain circumstances the number of pairwise distinct pure phases,
which are Spin Flip invariant and therefore all have the same particle
density j, becomes arbitrarily large.

It would be interesting to know under what conditions the constructed
measures PM and Pα are already all extremal and extremal invariant
equilibrium states, respectively. E.g., consider the "periodic Ising inter-
action"

3 (t) = ί-β ίf t=±nJβJ ( II/^V)
β'n^' \ 0 otherwise,

where β > 0, n = (nλ,..., nv) e Nv and ej the j-th unit vector (1 rgj ̂  v).
Gallavotti's result [2] suggests that then in the two-dimensional

case for sufficiently large β

Ij
and

On the other hand, Dobrushin [6] has proved the existence of infinitely
many (nonperiodic) extremal equilibrium states for the Ising interaction
in three dimensions (n = (1,1,1)) for sufficiently large β. Thus

|ex(5(μ(3^π), 3/?,π)| = oo for large β and all n ,

Nevertheless, one could expect that

\eχ(50(μ(3β9n), 30fll)| = l flΛ^J for these β and n .
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