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Abstract. The partition function of the Ising antiferromagnet is proved to have no
zeroes in an annulus around the origin in the complex z-plane. The intersection of this
annulus with the positive real axis belongs to the antiferromagnetic region. The free energy
and the correlation functions are analytic in the annulus.

Introduction

In the present article we study the cubic Ising model with repulsive
nearest neighbour interaction in the antiferromagnetic region. For
simplicity we take the two dimensional case, but the results remain true
in higher dimensions.

All points x of the two dimensional lattice Έ2 can have spin σx = ± 1.
To a finite volume Λ, a configuration σ = {σx, x e A} in A and a boundary
condition τ = {τx, xφ A} we assign the energy

HA(σ\τ) = J Σ σxσy-h^σx + J £ σxτ,. (1)
<χ,y> xeΛ <χ,y>
x,yeΛ xeΛ,yφΛ

In this expression, <x, y> denotes the summation over pairs of nearest
neighbours; repulsive interaction means that J>0.

For low temperatures and small absolute values of the magnetic
field ft, the system is known to have at least two equilibrium states [3].
They can be obtained as limits of finite volume Gibbs distributions
with the boundary conditions

τ = ± β , (2)
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respectively, where ε is given by

ε = 1, if x is even
(3)

— 1, if x is odd.

It seems of interest now to study the distribution of the zeroes of the
partition function in the complex z = exp(2/?/ι) — plane, and the analy-
ticity properties of the free energy /(z). This is emphasized by the fol-
lowing. Let us add to the energy (1) a contribution due to a staggered
field fc, that is an extra term

xeΛ

Consider the free energy /(z, w) as a function of the variables z and
w = exp(2β/c). Take first z = 1 (h = 0). Then the model is equivalent to
the attractive Ising model with homogeneous field k, so /(I, w) has a
singularity for w = 1, and the zeroes of the partition function come
arbitrary close to w = 1 for large volumes. The present problem is, what
happens for fixed w = 1 in a neighbourhood of z = 1.

From a lemma by Lee and Yang ([9], Section 5.1.1) it follows, that
/(z, w) is analytic in both variables in the regions

The annulus of analyticity in z, found thus, shrinks to zero as w tends to 1.
We shall show, that for w = 1 and low temperatures there still is an
annulus of the type

α"1 <|z| <a

where the partition function has no zeroes and the free energy is analytic.
Moreover, one knows from general low activity considerations

([9], Section 4.2.7), that in a region

\z\<b~\\z\>b,

the partition function has no zeroes. These facts point to the conjecture
[8], that below the critical temperature the zeroes lie on two curves
around the origin, the intersections with the positive real axis giving
the two critical fields. With an extra attractive next nearest neighbour
potential this already appears for a volume as small as 4 x 6 [8]. Without
these extra interactions, this volume is supposed to be too small to give
an indication for the large volume behaviour [7, 8]. It seems very unlikely
now, that the zeroes cluster on a whole interval of the positive real axis.
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In §§ 1,2 we describe contours and introduce our tool, the Minlos-
Sinaϊ equations [1,2] for outer contours. They were meant for the case
of attractive interactions; for our purpose, a slight modification in the
spirit of Dobrusin [3] has been made. In § 3 we study the zeroes of the
partition function and the analyticity of the free energy, in § 4 the analy-
ticity of the correlation functions.

In § 5 the hard core lattice gas is treated. The hamiltonian is formally
the lattice gas analog of Eq.(l) (put σx = 2nx - 1, μ = 2h + 8 J) with
j = + oo ? μ finite. This means, that nearest neighbours cannot both be
occupied. Then for large absolute values of z = exp(βμ) (i.e. in the region
of two equilibrium states [3]) the partition function has no zeroes and
the mentioned analyticity properties hold.

§ 1. Contours

All through this article, the volume A will consist of a finite number
of simply connected pieces. Through §§ 1-3, the boundary condition
τ = -h ε is taken.

Given a configuration σ in A, draw a unit segment between two
equal spins. One obtains a set of segments with the property that in each
point of the dual lattice an even number of segments meet. Conversely
to any such set of segments corresponds a unique configuration.

Given σ, the distance d of a segment s to the boundary of A is the
minimal number of segments crossed if s is connected to the border of
A by a broken line through lattice points. A contour γt is now a maximal
connected set of segments with fixed distance. Thus a set of segments is
divided into a configuration of contours {yj = y, each contour γt having a
certain distance d(yi \ γ) to the border of A. A contour of distance 0 is
called outer. The name contour is justified by the fact, that it divides A
into an inside and an outside part. Two contours at the same distance lie
outside each other and do not touch. A contour with distance d is embra-
ced by a contour of distance d-i and may touch it in a finite number of
points (see Fig. 1). There is a one to one correspondance between the
configurations of contours y with the mentioned properties and the
configuration of spins σ.

In terms of contours, the energy, Eq. (1) is:

UA(y) = Σ PJ W - h(- l)dMr)η(yJ] + H (̂β, β) , (4)
i

where |y, | is the length (number or segments) of yt and

η(yi) = 2 [(no. of odd sites in y^-(no. of even sites in yf)] . (5)
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Fig. 1. (a) a contour; (b) a contour embracing another one

Formula (4) is most easily derived by building up γ contour by contour,
from the empty configuration of contours 0 (the ground state), starting
with the outer contours and proceeding inward. Each step gives then the
energy contribution as in Eq. (4).

If ίi is any translation over one step, then

Since the inner of
layers, this gives

We can then easily check that 0 is the ground state for any \h\ ̂  4 J
[Eqs. (4), (7)].

Given an allowed set of outer contours {?ι, ...,yπ} we define the
event :

^λ(yi9 •• j) ;»)== {7 in Λ ' . y ^ ...,?„ are outer contours of y} (8)

with probability

Λ Λ, . .^ — Γ)"1 V 0-βVΛ(y) (Q\
QΛ\Ύl9 '" •> in) ~~ y^Λ Zj ^ V"/

(6)

only differs from the inner of y; by two surface

(7)

where QΛ is the partition function

(10)

The quantities QΛ(yί9 . . .,y n) are the correlation functions for outer
contours.

Let γ have y1 as an outer contour. Then we define the configuration
TVί(γ) by removing γ1 from γ and shifting the contours inside γ1 one step
to the right. The Dobrusin-transformation Tyι [3] is one-to-one and
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from Eqs. (4) and (6) we have

UA(y) ~ UA(Tn(γ)) = 2 J\7i\ - hη(y,) (1 1)

evidently independent of γ (as long as it has y 1 as an outer contour).
Therefore, if we define the event

0Λ.n(y2> >yJ=Tn£A(γl9...,γJ (12)

we have
QΛ(yι,-,7J = v(yι)Pr[.£A.n(y2, >yJ]> (13)

where

The event $AtVi will be the usual starting point for the derivation of
correlation equations.

The use of correlation functions for outer contours instead of corre-
lation functions for arbitrary contours is explained by the following.
If ^ is an arbitrary contour, the second term on the r.h.s of Eq. (11)
may have either sign, dependent on y. So Eq. (14) is no longer valid and
even an estimation for Hy^l cannot be found for non real values of h.

It is also clear now why Λ must consist of simply connected pieces :
if 7i enbraces a hole in Λ, it may not be possible to define Tyι.

§ 2. Correlation Equations for Outer Contours

In connection with a contour y, the following sets of lattice points
appear to be useful.

Θ(y) = (points inside y)-(points inside y, adjacent1 to y)
Θί (y) = (points inside y)
<92(y) = (points inside y) + (points outside y, adjacent1 to y).

Let further G(y) be the set of contours δ embracing a point in
<92(y) - Θ(ty\ that is

6>ι(<5)n[6>2(y)-<9(ίy)]Φ0 (15)

(the contour ty is obtained by shifting y one place to the right).

After the Dobrusin transformation Tyι all the spins in Θ2(7ι) ~~ ^(tyi)
are fixed (see Fig. 2). That means, that a set of outer contours (y2,..., yw

<51? ...,<5 k) belongs to a configuration ye^> y ι(y2, ...,yπ) if δiφG(γi)9

1 A point x inside γ is called adjacent to y, if the unit square around x has a segment in
common with y. A point x outside γ is called adjacent to y, if the unit square around x has
a point in common with y. Cf. the definition of contour.
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Fig. 2. Is a contour y. The region in is Θ±(y), the region in is Θ2(y\ the region

in ... is Θ(ty)

1 ̂  i ̂  k. So the event ^Atyi(y29 ? 7«) admits the representation

^.Λy2,. .,yJ = #Λy2,. , yJ- U ^(y2— v»^) (16)
<5eG(yι)

Combining this with Eq. (13), we arrive at the equations

QΛ(yκ...,yJ = v(yι) Σ (-!)* Σ eΛ^. .^πA,...^*). (17)
fc = 0 {<5ι,...,<5,c}

<5 feG(yι)

It should be understood that ρA(0) = 1.
The probabilistic derivation given here is valid as long as h is real.

Then the quantities

^(yι,.-,7»)= Σ e~βUΛ(y)

satisfy also Eq. (17), but with ρA(0) = QΛ.
Note however that the quantities (18) with arbitrary complex h

still satisfy Eq. (17), by analytic continuation.
At this point, we can look at the difference between the present

equations and two resembling sets. In order to obtain &$Atyι from <3SA,
Minlos and Sinai [1, 2] only remove y1. Di Liberto's [4] 3SAtyι(y2, •••-?«)
consists of the configurations, which have y2,...,yn as outer contours
and a layer of fixed spins immediately outside γί9 not embraced by any
other contour.

In both cases v(γί)9 Eq. (14) becomes a more complicated quotient
of partition functions, which seems difficult to estimate for non-real
values of h.

§ 3. Zeroes of the Partition Function

In this section we shall determine a region in the complex
zΞΞexp(2β/z)-plane, where the partition function QA(β, z) has no zeroes.

Consider the space 93 of infinite sequences of functions

ψ = {ψ(yι),ψ(yι,72\ •••>V(yi, •••>?*)> •••}> where the function ψ(γl9...,yώ
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is defined on the set of ordered sets of k outer contours on Έ2. We give 33
the structure of a Banach space by introducing the norm

sup \ψ(γl9...,γj\ Π (duΓ]yil , (19)

where d > 1 is a number to be determined later and

u = exp (-2βJ + ij»|ReΛ|) . (20)

Evidently QΛ and ρΛ, Eqs. (9, 18), belong to 23, because Λ. is finite.
Definite on 23 the linear operator K by

(21)

[for π = 1 we set ψ(0) = 0].
Moreover, let α be the vector

α = {v(7l),0?0,...} (22)

with norm d~4 [Eqs. (14), (19), (20)], and χΛ the operator with norm 1
defined by

(xΛψ)(yι, ->yn) = ψ(yι> ,yn) Yl ^(y*)>
1 ̂  ί ̂  «

χΛ(y)=l if γ in Λ , (23)

^(y) = 0 otherwise.

Then the correlation equations read

(24)

(25)

We now estimate the norm of the operator K. Let \\ip\\ ^ 1. Then

~M

Σ Π

Σ I 7l, Σ
fe^O (Λ ^ / meven^

(26)

meven ^ 4



100 H. J. Brascamp and H. Kunz:

Here, Am is the number of contours of length w, embracing a given
lattice point. Then Eq. (26) is derived by noting, that each δt must em-
brace a point in Θ2(y\) — Θ(tyι\ and this set consists of at most 2\y^\ + 1
points.

We use the bound
A^ml™-*. (27)

It is clear then, that for any d> 1 there is a number u0(d\ such that
\\K\\ < 1 for u<uQ(d). With Eq. (20) this condition becomes, with

|ReA|<4J(l-j80/j8)

or
(28)

By choosing the best value for d, β0 can be made as small as possible;
we find

d=lΛ; e2βoJ = 4.Q.

Under the condition (28), Eqs. (24) and (25) have a unique solution
in 93, satisfying

Ift^.-.^JI^C Π (^) lyιi>
l ^ i ^ n

\§Λ(γ ,,..., yn)\^C\QΛ\ Π (du)M, (30)

where

Because ρΛ, as defined in Eq. (18), belongs to S3, it coincides with the
unique solution of Eq. (25). This implies, that QΛ φ 0. Indeed, from
QΛ = Q it would follow, by Eq. (30), that ρΛ = 0. However, ρΛ(y^ ...,?„)
is certainly unequal to zero ίϊ$Λ(γί9 ..., y n) consists of only one confi-
guration; take, e.g., unit squares around all lattice points with both
coordinates even.

The unique solution of Eq. (24) coincides now with ρΛ as defined in
Eq. (9).

The reasoning of §§ 1-3 can be repeated word for word with the
other boundary condition τ = — β. The respective boundary conditions
τ = + £ will be indicated by the suffices ± .

We may now summarize our results:

Theorem 1. Let β > /?0, and let A(β) be the annulus in the complex
z-plane

e-S(β-β0)J <\z\ <e8(β-β0)J _
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Then

a) The partition functions satisfy

forzeA(β).

b) The free energy

f(β,z) = -β-1 lim M| -1 log Q ±(ftz) (31)
A -»• oo

extends from the interval 0 < z < oo ίo a function analytic in A(β).

Proof of b). Generally we have

δl(z)=ej(z-1).
If Λ. is a rectangle with an even side, moreover

βjω=e;»
by reflection symmetry. Then

QΛ(Z) = QX(Z~I} (32)

and the region

Izl <£~8<0~0o)-J

contains half of the zeroes, so that log Q^(z) is analytic in A(β). The
convergence of Eq. (31) for real z and the stability of the potential give
then, by Vitali's theorem, the analyticity offlβ, z) in A(β) (cf. [9], p i l l ) .

Let us conclude this section with a remark on inequality (29). If A
consists of a number of simply connected sets, the correlation functions
ρ factorize into parts belonging to these different sets. With the help of
this fact, one immediately sees that C in Eq. (29) can be replaced by 1 :

£ Π (du)M (33)

§ 4. Analyticity of the Correlation Functions

In this section we investigate the analyticity properties of the usual
spin correlation functions in the thermodynamic limit. For this purpose,
it appears useful to introduce the following correlation functions.

τ*(X)=Pr±{σx=+εx,xeX},
(34)

μϊ(X) = Pr^{σx=±εx9xeX}9

where the suffix ± stands for the boundary condition τ = ± β, respec-
tively. Near the ground state, the quantities π%(X) are small. By re-
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versing all spins, we obtain the following relations between π and μ.

YCX

(35)

YCX

From the F.K.G. inequalities [5, 6] it follows, that for z > 0 when A -» oo

π^(X)/π±(X). (36)

We shall show, that for fixed β and X the quantities πj (X) are uniformly
bounded in A and in z e A(β). By theorem la) the π%(X) are analytic in
A(β); Vitali's theorem implies then that the π±(X) are analytic functions
oϊzmA(β).

We start by expressing πj (X) in terms of the correlation functions
for outer contours.

πlW= Σ Σ Σ <tf(yι,.. .,yJ Π /4<Λ) (37)

The second sum runs over all partitions of the set X in n non-empty,
non-intersecting subsets. The formula is derived by remarking, that a
point x E X has a spin not fitting to the boundary condition only if it is
embraced by a contour.

Wit Eq. (35), we find

*Λ (X) = *Λ (X) + (~ I)1*1 Σ QA (7)4 w(X) , (38)
y:XC0ι(y)

where

= Σ β*(y) Σ (-
y : X C 0 ι ( y ) Y c X , Y Φ X

+ Σ Σ Σ Ql(j^-,Jn} Π

Note, that α^ (X) is expressed in terms of correlation functions of order
smaller then \X\ and in terms of correlation functions for outer contours.
In particular, if X consists of one point x

«ϊ(x)= Σ β*(v) (40)
y : x e Θ ί ( y )

Using Eq. (33), one finds the useful estimation, independent of
A, X i, ... , Xn

Σ ktf(yι, ,yJ^A
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where
y= £ Am(duΓ (42)

meven ^ 4

is uniformly bounded in zeA(β). This leads to the following lemma.

Lemma. The quantities (x,^(X) and π%(X) are uniformly bounded in
A and in zε A(β) by

(43)

(44)

For any \X\9 oι(\X\, y) is a double polynomial in y and ey.

Proof. If Eq. (43) is given, Eq. (44) follows by iterating Eq. (38).
Because A is finite, the series breaks off after a finite number of terms.
The (k + l)st term is estimated by

Let now Eqs. (43) and (44) be given for any X, \X\ ̂  n. Using them,
together with Eq. (41), in Eq. (39), we find the bound (43) for \X\ = n+ 1.

By Eq. (40), we can take

This concludes the proof of the lemma by induction.
It should be noted, that the bounds a(\X\9 y), found by the indicated

procedure, are increasing very strongly with the number of points \X\.
The argument for the following theorem is now complete.

Theorem 2. Let ω + and ω ~ be the equilibrium states which are the
limiting states for boundary conditions τ = ε and τ = — ε, respectively,
and let A be a local observable. Then the expectation values ω+(A) and
ω~(A) extend from 0<z<oc to analytic functions in the annulus A(β\
Eq. (28).

In particular, we have analyticity for the quantities ω(A)9 where ω is
the translation invariant state

In a region of the shape (28), with z > 0, ω is proved to be the only in-
variant equilibrium state [4].

§ 5. The Hard Core Lattice Gas

Another interesting model related to the one described is the hard
core lattice gas, in which neighbouring sites cannot be occupied simul-
taneously.
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α ) b )

Fig. 3. (a) a contour; (b) a contour embracing another one

Given again the volume A and the alternating boundary condition
ε, we define segments and contours as in §1. Generally, immediately
outside a contour with even distance (in the sense of §1) there must be a
layer of spins sx. In the hard core case, both spins adjacent to a segment
must be — 1. This means, that a contour can only occur and have even
distance, if all the lattice points immediately outside it are odd. For
contours with odd distance the converse statement holds. In particular,
all contours must be "stair-shaped" : if in a point two segments meet,
then these are perpendicular (see Fig. 3).

With these extra restrictions on allowed configurations of contours,
we find for the energy

whei e μ is the chemical potential.
using the Dobrusin transformation, we then derive the correlation

equations for outer contours, Eq. (17), where it is understood now that

Following the lines of §§ 3—4, we arrive at

Theorem 3. Let \z\ > z0. Then:
a) The grand partition functions satisfy

b) Ifp(z) denotes the limiting pressure

p(z) = \im\A\~1 log Z*(z),
Λ-* oo

then p(z) - \ log z is analytic in z.

c) If ω+ and ω~~ are the limiting states, then
analytic in zfor any local observable A.

+ (A) and ω~(A) are
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d) Let ρ be the density, i.e. the one point correlation function in the
state ω = \ (ω+ +ω~), or also

ρ = zΊϊp(z}

Then the high density expansion

Σ &„(*-<?)",

has a finite radius of convergence.

Point d) does not need further comment,

Conclusion

We considered properties of analyticity in the variable z. It is evident
however, that the free energy and the correlation functions are analytic
in both z and β in the region

exp [ - 8 J(Reβ - /Ϊ0)] < \z\ < exp [8 J(Reβ - β0J] .

Our results in §§ 3-4 are valid below a temperature given by exp(2/?0 J)
= 4.0. This is not too far from the critical temperature, exp (2βc J)
= 1 4- J/2. The value for β0 may be slightly improved with a better bound
for Am, Eq. (27). For the hard core case the situation is worse. The critical
activity is expected to be about zc = 3.8, our z0 is of the order of 75.

The addition of a small translation invariant interaction to the
energy (1) does not affect the existence of two different equilibrium
states, because the energy change by Tyι, Eq. (11), would remain of the
order of \y^\. However, it would no longer be independent of the rest of
the configuration γ. This can be repaired by considering contours with
distance smaller than the range of the interaction as one large contour.
In such way analyticity of the free energy in the extra interaction can be
proved, but in a region which shrinks to zero as the range of the interaction
grows. So all this is not sufficient for another proof of Di Liberto's
result [4], that there is a unique invariant equilibrium state.

Acknowledgements. We wish to thank Professeur D. Ruelle for stimulating discussions
and Professeur N. H. Kuiper for the hospitality of I.H.E.S.

References

1. Minlos,R.A., SinaϊJa.G.: Trudy Moskov. Mat. Obsc. 17, 213—242 (1967); English
translation: Trans. Moscow Math. Soc. 17, 237—267 (1967).

2. Minlos,R. A., Sinai, Ja.G.: Trudy Moskov. Mat. Obsc. 19, 113—178 (1968); English
translation: Trans. Moscow Math. Soc. 19, 121—196 (1968).



106 H. J. Brascamp and H. Kunz: Analyticity of Antiferromagnetic Phase

3. Dobrusin,R.L.: Funkcional. Anal, i Prilozen. 2, 44—57 (1968). English translation:
Func. Anal, and Appl. 2, 302 (1968).

4. DiLiberto,F.: Commun. math. Phys. 29, 293—311 (1973)
5. Fortuin,C.M., Kasteleyn,P.W., GinibreJ.: Commun. math. Phys. 22, 89—103 (1971).
6. LebowitzJ.L.: Phys. Lett. 36A, 99—100 (1971).
7. Suzuki, M., Kawabata,C., Ono,S., Karaki,Y., Ikeda,M.: J. Phys. Soc. Japan 29,

837—844 (1970).
8. Katsura,S., Abe, Y., Yamamoto,M.: J. Phys. Soc. Japan 30, 347—357 (1971).
9. Ruelle,D.: Statistical Mechanics. New York: Benjamin 1969.

H. J. Brascamp
H. Kunz
I.H.E.S.
F-91440 Bures-sur-Yvette, France




