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Abstract. We define "normal-dominated" singularities of static solutions of the
Einstein equations and show that a uniquely and invariantly defined structure can be
assigned to these singularities. We find for the general solution that the dominant term of
the Riemann tensor near the singularity is of Petrov Type N. Except for one special class
of solutions, it seems that in general the shear of the null geodesies blows up at the same
rate as their convergence near the singularity, in contradistinction to the "elementary
singularity" of Newman and Posadas. We compute the structure for a variety of known
static solutions as well as the stationary Kerr-Newman metrics.

I. Introduction

The singularity theorems of Hawking, Penrose and others [1-4]
indicate that, assuming reasonable properties for the matter source and
global structure, singularity in general relativistic space-times is both a
general and stable phenomenon. It is then natural to inquire about the
nature and structure of these singularities. For the sake of physical
interest, we will consider only the type for which curvature or matter
variables blow up. In cosmological models1, the works of Lifshitz,
Khalatnikov and Belinskii [5], and of Eardley, Liang and Sachs [6]
spem to indicate that the singularities are of two types, namely, the
velocity-dominated and the mix-master. Moreover, in the velocity-
dominated case, a unique and invariant structure can be assigned to the
singularity. What about other space-times?

In this paper we are going to show that a similar construction can be
worked out for the class of static space-times which we call "normal-
dominated." In a static2 space-time, the singularity, if it exists, must be
in some sense "time-like," since it must be tangent to the time-like

* Supported in part by NSF Grant GP 34639 X.
1 By a cosmological model we mean a space-time which admits no time-like Killing

vector and contains some form of macroscopic matter source.
2 A space-time is static if it admits an irrotational Killing vector every-where time-like

except maybe at the singularities. Thus Schwarzschild solution is not static near the
singularity r = 0.
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Killing vector field. Intuitively, we call a solution and its singularity
"normal-dominated" if there exists a family of time-like hypersurfaces
"parallel" to the singularity in some geodesic sense and whose intrinsic
curvatures become small compared to their extrinsic curvatures in the
field equations near the singularity. In this case if we drop the intrinsic
curvature terms in the Einstein equations the remaining equations can
be explicitly integrated to give the first order solution near the singularity.
Some integration functions can then be identified as the singularity
metric and extrinsic curvature. Most known static solutions studied turn
out to be normal-dominated.

In Section II we define normal-dominated singularities of static
space-times and exhibit their structures. In Section III we discuss the
behaviors of geodesies and curvature components near the singularity.
Two interesting results are obtained. First, we find that for null geodesies
congruences near the singularity, except in very special cases, the shear
seems to blow up at the same rate as the convergence. This is different
from the "elementary singularity" of Newman and Posadas [7], in
which case the null geodesies are shear-free near the singularity. Second,
for most normal-dominated static solutions, the asymptotic Riemann
tensor near the singularity has a dominant component which is Type N.
This suggests that the Riemann tensor might also have special algebraic
properties near a generic space-time singularity, just as they do in
asymptotically flat regions. Some well known static solutions are studied
in Section IV, and the singularity of the Kerr-Newman stationary
solutions is studied along similar lines in Section V. In the Appendix
we record the tedious computations of the Riemann tensor components.

Π. The Structure of the Singularity

In terms of Gaussian Normal coordinates based on a family of
time-like hypersurfaces, the metric of a general static space-time can be
written as

ds2 = dr2 - V2(r, XA) dt2 + gAB(r, XA) dxA dxB A = 1,2 (1)

where V = (d/dt, d/dty^ is the norm of the time-like Killing vector. The
remaining coordinate freedoms are xA-+x'A(xB) plus the arbitrariness in
choosing the initial hypersurface r = const. The static Einstein equations
are

Vlab/V =

where geometric quantities formed with the metric of t = const hyper-
surfaces (3}ds2 = gab dxa dxb = dr2 + gAB dxA dxB have a superscript "(3)"
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and a stroke "|" denotes co-derivative with respect to gab. If we write

KA

B = ^gACdrgCB

^K = KA

A = Sr(lnα), α = (detgAJ*

as the extrinsic curvature of the r = const 2-surfaces (with respect to the
t = const hypersurfaces), Eqs. (2) can be split into :

KB

A = Q (4)

(5)

V = 0, (6)

rK
A

B/V = 0, (7)

where geometric quantities formed with the 2-metric gAB have a super-
script "(2)", a double stroke "||" denotes co-derivative with respect to gAB,
and a comma "," denotes ordinary derivative.

Suppose we assume that in some region of space-time the terms
involving d/dr alone are large compared to the other terms in Eqs. (4)
and (7), then we need only keep the d/dr terms as a first order approxi-
mation :

KA

BK
B

A = Q , (8)

K\r + KKA

B+VrK
A

B/V = Q. (9)

Eq. (9) has the first integral

KA

B = 0M
A

B(xA) (α V)~ l, QMA

B arbitrary functions of integration . (10)

Putting solutions (10) back into Eq. (8) we get

ocV=0C(r-0r)

0C = i (0M
2 + 0M

A

B 0M
B

A)/0M, 0M = 0M
A

A and Or (1 1)

is another arbitrary function of integration.

Substituting (11) in (10) we can further integrate to obtain

ΘAB = o0Ac(*D) exp {20K
C

B ln(r - Or)} (12)

where QgAc& are again arbitrary functions of integration and 0K
C

B

= 0M
C

B/0C. If we define a parameter y = 0M
A

B 0M
B

A/0M
2, (oo ̂  γ ̂  |),

then 0K
C

B satisfies the constraints

QKA

B 0K
B

A = 4γ/(ί + γ)2 . (13)
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Using Eqs. (1 1) and (12) we now have a complete first order solution,

« = oα(r - o>f/(1 +y) o* = (det 0gAB? , (12')

Since 0gAC is positive definite, and both 0gAB and 0KAB = 0gAC 0K
C

B

are symmetric tensors, 0-K^B and 0gAC can be simultaneously diagonalized
at each point by a real coordinate transformation. Furthermore, since in
2-dimensions any vector field is hypersurface orthogonal we can in fact
choose orthogonal local coordinates tangent to the eigenvectors of

p± = (l±(2y -!)*)/(! +y) (15)

0K
A

B. If we write

as the eigenvalues of 0K
A

B and let x1 be the associated coordinates, then
the first order solution can be put in the form

ds2=-0V
2(r-0r)2">dt2

+ Σ o9A(xB)(r-Qr)2p-(dxA)2

 Po= -(1 -y)/(l + y). (16/)

A= +

The exponents pQ, p± as functions of γ are plotted in Fig. 1. Computing
the quadratic curvature invariant

A C B - 2

for solutions (16') we find that r = 0r indeed corresponds to a physical
singularity (I~(r — Or)~4) except when 7 = 00, in which case / is finite.
Since V vanishes in this case r = Or is just a regular Killing horizon
(e.g., r = 2m in Schwarzschild solution). We will not consider such cases
and assume from now on oo > y ̂  \ so that r = 0r is always singular.
From Eq. (14) we see that there are three types of singularities :

(a) y > l , p0

>0, F->0 as r-»0r, the singularity corresponds to
infinite red-shift for signals coming out of the singularity.

(b) y < l , p0<0, F-xx) as r— >0r, the singularity corresponds to
infinite blue-shift for signals coming out of the singularity.

(c) y = 1, PO = 0, V finite as r-»0r.
In order that metric (16') be a true first-order solution near the

singularity, the consistency conditions

Γ'-O as r-0r

Γ'-Ό as r^0r
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Fig. 1. Sketch of the three eigenvalues P = {po,p+,p-) as functions of the parameter y

must be satisfied. Evaluating (2}RA

B, V'A\\B' V 1 etc. using metric (16'),
we find that Eqs. (18) are satisfied only when the conditions3

0rM = 0 whenever pA^Q, A= + or -. (19)

are imposed. Thus in principle we can still have Or = Or(x~) when p_ < 0
(see Fig. 1). However, in this case one can show that there exists an
asymptotic coordinate transformation r = r — 0r(x~) such that the
corresponding first-order solutions in a Gaussian coordinate system
based on r = const hypersurfaces still satisfy the conditions (18)4. Hence
without lost of generality, we can always define r = 0 as the singularity,
and the coordinate system is rigidly fixed. Metric (16') becomes

ds2=-0V
2r2?°dt2+ (16)

The geodesic congruence d/dr is now the invariant geodesic congruence
that hits the singularity orthogonally, which we call the singularity
normal congruence, and the r = const hypersurfaces are "parallel" to the
singularity in this sense. Below we give an invariant characterization
of the above procedure.

3 When y = 1, the (2)R terms are still of the same order as the K terms even when the
condition (19) is imposed, so that consistency requirements (18) are formally violated.
Thus it might appear that there are no normal-dominated solutions with γ = L However,
for some mysterious reasons exact solutions with y — 1 do exist. So we will formally include
them in this paper.

4 Private communication from Dr. D. Eardley.
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Suppose that a static space-time has a singularity which locally
admits a singularity normal congruence, then a Gaussian Normal co-
ordinate system can be established invariantly with respect to this con-
gruence and the metric can be written in the form (1), with r = 0 chosen
to be the singularity for convenience. Let {V,gAB} with corresponding
(lnF)r KA

B represent the exact solution in this coordinate system.
Suppose there is another {V,gAB} which in some neighborhood of r = ΰ
satisfies

(a) gAB = 0BA^ sgn.^B= + 2;
(b) {V,gAB} obeys Eqs. (8) and (9);
(c) there exist some component, say W9 of {V,gAB} such that for

fixed ί, XA and r-»0

((In V\r- (In V\r) (KC

DKD

C)^ ->0, (KA

B - KA

B) (KC

DKD

C)~ * ->0 .

Then we call {V,gAB} and its singularity "normal-dominated" and
{F, gAB} its first-order approximation. In order that a solution of Eqs. (8)
and (9) be a first approximation, the conditions (18) (with Or = 0) must be
satisfied. Intuitively, this means that the intrinsic curvatures of the
r = const hypersurfaces are small compared to the extrinsic curvatures
in the Einstein equations near the singularity.

Since the first-order 3-metric of the r = const hypersurfaces can be
put in the form (16) for all normal-dominated singularities, we now
define

0ds2=~0V
2dt2+ Σ 0gA(dxA)2 (21)

to be the metric of the singularity manifold and p = (p0,p±) to be its
extrinsic curvature.

There remains the field Eqs. (5) and (6). To see what kind of additional
constraints they impose on the first order solution let us consider the
Bianchi Identities

G/.v = 0, μ,v = 0 . . . 3 . (22)

Suppose that Eq. (7) is identically satisfied then (22) implies

Gr

A = QGr

A(xA)(aVΓί, QGr

A arbitrary function of integration. (23)

Furthermore, if (6) is identically satisfied then (22) implies

G\ = 0G
r

r(xA) (α V)" * , 0G
r

r arbitrary function of integration . (24)

Thus in order that solutions (16) represent a first order solution to the full
static Einstein equations it is necessary and sufficient that the r~ l terms
of Gr

A and Gr

r vanish identically. Putting solutions (16) into (5), the r~2
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term vanishes identically, but there remains a constraint on the higher
order approximations which contribute to the r~ 1 term. Putting solutions
(16) into (6), the leading term, which is of order r"Mnr, vanishes
identically, and the r"1 term leads to the constraints:

-p ± f ± +(ln 0 V) f ± (po-P±)±i(P--P+)(tof fτ) ,±=0 (25)

where ± denotes d/dx±.

III. Geodesies and the Riemann Tensor near the Singularity

To study the behaviors of geodesies and curvature components of
a normal-dominated static solution near the singularity, it suffices to
consider the first order metric (16). Because of the arbitrary functions

0V(x±)9 00(x±)? ^e geodesic equations for the general case are not
integrable. However, in the special case when both y and 0F are constants,
x ± = const are allowed solutions to the geodesic equation, and the
corresponding geodesies (in the r — ί plane) are integrable. In the following
we will restrict ourselves to this class of solutions.

(a) null geodesies :
With x±, 0V, y = constants, the geodesic equations reduce to

i = Qk/V2, Ok = const, "." = d/dv v afίine parameter .
(26)

r = 0fc/F

The solution is
= - 1 t * 1 + *

with appropriate choice of the integration constants. A sketch of the null
and time-like geodesies in the r — t plane is given in Fig. 2.

(b) time-like geodesies:
In this case we still have i = 0k/V2, but now

f=±V-1(0k
2-V2)* (28)

and we have three distinct situations.
( l ) y > l , F->0 as r->0, all time-like geodesies can reach the

singularity.
(2) y < l , F->oo as r->0, no time-like geodesies can reach the

singularity. (A closer look at the full geodesic equations with the x*
terms shows that this is still true even when we allow x± to vary.) The
manifold is time-like complete. In some sense, gravity is "repulsive"
in this case.

(3) y = l , F = const, all geodesies with ok2>QV2 can reach the
singularity.
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Fig. 2. Sketch of the time-like and null geodesies in the r — t plane near the singularity
r = 0 for the three different cases 1 γ <1, 2 y>l, 3 y=\

In cases (1) and (3), we have r ~ const x V 1 and the behavior near
r-»0

the singularity is identical to that of the null geodesies (see Fig. 2).
Consider the null geodesic congruence tangent to the vector field

f9 which is normal to the null hypersurfaces

(28)

From Eq. (26) we have

The convergence of this geodesic congruence can be computed easily:

^-i^--ofco^"1(i + y)~ 1^ 2 y / ( 1 + y )--iy~ 1^ 1. (29)
On the other hand, if we put p± = const and 0V = const into the con-
straint Eqs. (25), we see that we must have

either (i) p+ = p_=>y =

or (ii) 0 T , ± = 0 .

, p± =2/3
(30)
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In case (i) we have ρ — ~v~ί,gAb isotropic5 :

0AB~e0ABV2 and σ = (/^v/^>-i(^

These resemble the singularities studied by Newman and Posadas6 [7].
We see from above, however, that gravity is "repulsive" near the sin-
gularity for y < 1. Thus this case may not be very physical. In case (ii) we
can redefine x± coordinates so that

and the 2-spaces are flat, but in general anisotropic. If they are compact
they must have toroidal topology (flat tori). Although we cannot explicitly
integrate the geodesies in the generic case when both y and 0F are func-
tions of x±, (so that p+ φp_), from the above experience it seems that
in general the shear of the null geodesies mil blow up at the same rate as the
convergence near a normal-dominated singularity, in contradistinction
to the elementary singularity of Newman and Posadas [7], in which the
null geodesies are asymptotically shear free. Since ours are "naked"
singularities, whereas those of Newman and Posadas are in general
believed to have event horizons, it appears that the asymptotic behavior
of the shear of null geodesies near the singularity might have something
to do with the existence of event horizons.

Let us now return to the general first-order metric (16) where y, 0F
are arbitrary functions of x±. The computation of the Riemann tensor
components for this metric is rather tedious, and is recorded separately
in the Appendix. Suppose we choose a null tetrad field near the singularity
defined by

mμ = complex conjugate of mμ

which satisfies the normalizations — lμnμ = 4- 1 = mμmμ, lμlμ = nμnμ

= mμmμ = 0, etc. Note that lμ, nμ are in general not tangent to geodesies.
It is straightforward to compute the five complex independent Weyl
tensor components ΨQ9 Ψl9 Ψ2, Ψ3, Ψ4 [8], (which are just the Riemann
tensor components since space-time is empty), with respect to this tetrad
system. Using results from the Appendix and assuming y Φ 1, we find

5 Throughout this paper "~" means "the dominant term as r->0 is of the order of".
6 It is not clear, however, whether the lowest non-vanishing term of σ of our geodesies

does behave as ~t?, as in the Newman-Posadas case.
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Fig. 3. Sketch of the largest (negative) exponents of the lowest order Ψ9s as functions of y.
Note that for γ =f= 1 the exponent of either Ψ0 or Ψ4 is the largest. From this diagram one
would like to conclude that the next dominant term is Ψ2. However, it is not clear whether
other Ψ's will be of the same order when the higher order contributions to metric (16)

are taken into account

for the lowest order terms in the general case:

(32 a)

-* l — '^μvσρ1' lί * "* ~ ' ι «•* , v ^ ̂  ®)

Ψ2 = - \ Cμvσρ(lμnvlσnQ - lμnvmσmβ) ~ r"2 independent of y, (32c)

ψ = —C /^wvπίτ^ρ^ r(2y-3-(2y-l)*)/(l+y) + z Γ(2y-3+(2y-l)i-)/(l+y) /32d)

It must be pointed out, however, that some of coefficients of the above
leading terms may vanish in special cases (i.e. for special functional forms
or special values of 0F, Og± and y). In particular, for the special case
discussed above, namely, when both 0F, y are constants (=>y = 1/2), most
of the coefficients of the leading terms are zero, and the first non-
vanishing terms come from higher order contributions. But, putting aside
these special cases, a closer look at the above leading exponents as
functions of γ (Fig. 3) reveals that for all values of y Φ 1 or 1/2, either
Ψ4 or ^o blows up fastest as r->0. Therefore the dominant term of the
Riemann tensor near the singularity is either Ψ4 or ΨQ, depending on
whether y< 1 or y > 1. We thus arrive at the interesting result: For a
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general normal-dominated static space-time (with y φ l or 1/2), the
asymptotic Riemann tensor near the singularity has the dominant term
belonging to type N9 with principal null vector lμ(nμ) when y < l ( y > l ) .
We speculate, but have yet no concrete evidence, that the Riemann
tensor near a generic singularity may also possess special algebraic
properties.

IV. Examples

In the following we look at some exact static solutions of the vacuum
Einstein equations and analyze their singularity structure. The procedure,
in principle, is to first construct a hypersurface orthogonal geodesic
congruence that strikes the singularity orthogonally, 3 + 1 split space-
time with respect to this congruence, and extract the singularity structure
from the first order 3-metric of the "parallel" time-like hypersurfaces.
In practice it is often not easy to construct the congruence explicitly,
and we have to be satisfied with a structure obtained from using a non-
geodesic congruence which seems to converge to the geodesic one near
the singularity (i.e., their deviation from geodesies are of higher orders).
The coordinates thus induced on the singularity manifold are therefore
not the parameters of the orthogonal geodesies. But the structure
itself should be equivalent. In many cases we are assured of the cor-
rectness of our procedure because the results obtained agree with the
predicted forms (15) and (16).

(1) Cylindrical Solutions [9]:

, c, d, k consts .

Singularity metric:

where 0F, Ogz, Ogφ are messy functions of c, d, and k.
Extrinsic curvature:

P = (Po>P+>P-)> J — (c2 + l)/(c ~ I)2 c = 0, 1 gives flat space-time .

(2) Plane Symmetric Solutions [10] :

ds2 = - — dt2 + z2(dx2 + dy2) + "
z ' ' m2

Ods2 = -m1/3(3/2Γ2/3 dt2 + (3/2)4/3m4/3(^2 + dy2)

p = (-1/3,2/3,2/3); y = 1/2.
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(3) Weyl-Levi-Civita Axisymmetric Solutions [11]:
The general Weyl-Levi-Civita solutions have the metric

+ e~2ψρzdφ2. (33)

where ψ satisfies the cylindrical Laplace equation

1 d I d \ d2

= 0 (34a)
UQ i υz~

and χ is related to ψ through

7 ' = °(W - ~W-] (34b)

We will concentrate on those solutions which are asymptotically flat.
Because of axisymmetry, there are essentially three types of singularities:

(a) those which are singular on a continuous region of the z-axis;
(b) those which are singular on rings away from the z-axis;
(c) those which are singular on isolated points of the z-axis.
We now study examples of each class.
(a) To study solutions with a "rod-singularity" on the z-axis of the

Weyl coordinates, it is more convenient to work in prolate spheroidal
(P.S.) coordinates (λ, μ):

ρ = m(λ2-ί)*(l-μ2)* m any const φO

z = mλμ o o ^ A ^ l , l

The metric (33) then reads
2 /(I - μ2))

- μ φ .

The Weyl equation in these coordinates

μ2)v,μ),μ = 0 (37a)

has a general solution

I

where Pl9 Ql are the Legendre polynomials of the first and second kind.
χ is then computable from

i ,
(37 b)

• {μ(λ2 - l)φ,λ

2 -μ(l - μ2)ψ,μ

2 +2λ(ί -μ2)ψ,λψttl} .
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In particular, ιp0 = PQQ0-±ln- — - gives Schwarzschild solution. If
A -f- 1

we now consider a solution ψ made up of a finite sum of the Pl Ql terms,
then since Qt(λ) is singular at λ — \ for each /, ψ is singular at λ = l,
which is a "rod" extending from z= — mtoz = + m. One can check that
except when ψ = ψQ, λ = 1 indeed corresponds to a physical singularity
of the metric. We study these singularities in more detail.

Putting ε = λ - 1, we find that

φ^i(lnε)β Q(μ) = ΣqlPl(μ)
β-κ) (39)

^eψ ~ εQ/2 .
ε-»0

Using Eq. (37 b) we find

eγ ~ εQ2/2 (40)
fi-»0

so that

βy-v ~ gQ(Q-i)/2 ^
ε^O

For μ Φ 1 and ε->0 the metric (36) reduces to

+ m2ε-Q2ε(l-μ2)dφ2.

Now since Q = Q(μ\ d/dε are not geodesies, although it is orthogonal
to the singularity. If we define

ξ = m(l-μ2)(Q2-Q + lΓ1£(Q2~Q + ί}/2 (42)

which is the proper time of the d/dε curves for fixed μ, we find that
dξ = m(l-μ2)^ε(Q2~Q~1}/2 dε + (higher order terms). Thus although
(ξ, t, μ, φ) does not define a Gaussian coordinate system based on the
singularity at ε = ξ = 0, its deviation from such a coordinate system goes
to zero as ε-»0, and the singularity structure obtained from using these
two coordinate systems should be identical. Ignoring the cross terms in
dξdμ, we obtain the following singularity structure

0ds2=-0V
2(μ)dt2+Dgμdμ2 + 0gφdφ2

where 0F, Ogμ, Ogφ are some messy functions of μ, and

P = ( p o , P + , P - ) ; with y = (β2 + l)/(β-l)2. (43)

From (43) we verify that as Q = 1, γ — oo, and λ — 1 is the regular event
horizon (r = 2m) of the Schwarzschild solution. According to Erez and
Rosen [12], if we let Q = 1 + qιPι(μ) (i.e., a monopole plus a single higher
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order pole term), the asymptotic behavior near infinity corresponds to a
Newtonian I t h pole, and ql can be identified as the corresponding / t h

order pole moment7. It is remarkable to see that ql is directly related to
(in fact, uniquely determined by) y, a parameter of the structure of the
singularity itself!

The above construction, however, fails at |μ| = 1 since the coordinate
μ itself is singular there. Using a different coordinate system, and taking
appropriate limits with caution, we find that in this case

y(μ=±l) = (Q2 + 2)/(Q2-2Q + 2)> Q = Q(μ=±l).

Thus there is a discontinuous jump in the singularity extrinsic curvature,
apparently related to the well known phenomenon of "directional
singularity" [11]. There may be better ways of incorporating these end
points.

(b) As an example of Weyl solutions with "ring-singularity" away
from the z-axis of the Weyl coordinates, consider solutions of the Weyl
equation in oblate spheroidal (O.S.) coordinates, which are related to the
P.S. coordinates by the complex substitution

ρ = mμ2 + l)*(l-μ2)*
, (44)

z = mλμ

The Weyl equation, which becomes

(μ2 + l)ψ,Λ),A + ((l-/'2)vJ,, = 0 (45 a)

has the general solution

χ is then generated from ψ by

χ.Λ = (l-μ2)(A2 + /<2)-1

• {λ(λ2 + I)ψιλ

2-λ(l-μ2)ψttl

2-2μ(λ2 + ί)ψ,λψ,μ}
(45 b)

Metric (36) then reads

ds2 = -e2vdt2+m2e2*-2v(λ2 + μ2)(dλ2/(λ2 + ί) + dμ2/(ί -μ2))
(47)

7 This is obtained by expanding ψ in Schwarzschild coordinates (r/m — 1 = λ, cos θ = μ)
near r = oo. We speculate, but have not checked, that it should also correspond to the / th

moment as defined by Geroch [13].



Static Singularities in Space-Times 65

Now a real solution ψ made up of a finite sum in Eq. (46) is non-singular
for all finite λ. It can then be checked that the only physical singularity of
metric (47) is at λ = μ = 0, namely, a ring with radius m centered on the
z-axis

Define new coordinates

and o (48)
u = μ/λ μ =

oo^ jR^rO; o o ^ w ^ — oo; jR = 0 singularity .

Near R = 0, Eq. (45 b) give χ ~ c \nR where c is in general some function
of M. Taking the limit μ, Λ-»0 and using Eq. (48), the first order metric
near the singularity has the form

where ψ is now some function of u alone.
Thus the singularity metric is

Ods2 = - 0F
2 dt2 + Ogu du2 + Ogφ dφ2

where 0V(u) = eip(u)ι ogφ = me~ψ(u} and Ogu is some messy function of u.
The extrinsic curvature is

(c) Another class of singular Weyl solutions are those singular at the
origin of the Weyl coordinates. Consider the Weyl equation in spherical
polar coordinates:

r~2 dr(r2 dr\p) + r~2 sin~2θ dθ(sm2θ dθψ) = Q. (50)

The general solution which goes to zero as r->oo is of the form
ψ= YjalPl(μ)r~(l+1\ψ's made up of finite sums are singular at r = 0.

However, in this case the metric components in general have singularities
of the form exp(α/r") which is not reducible to any power law behavior.
Thus this type of Weyl solution, which we will call Curzon-like since the
Curzon solution [14] is the simplest one of them, seems not to be normal-
dominated. The exact nature of their singularities merits further in-
vestigation.

V. Singularity of the Kerr-Newman Metrics

The above method of employing a singularity normal geodesic con-
gruence to analyze the singularity structure turns out to have much
wider applications beyond the class of normal-dominated static solutions.



66 E. P.T.Liang:

As an illustration, in this section we are going to use this method to
obtain the invariant structure of the singularities of the Kerr-Newman
stationary metrics [15]. It turns out that the structures obtained for the
charged (eή=0) and uncharged (e = 0) cases are qualitatively different.
We therefore discuss them separately.

(a) The Kerr Metric (e = 0)

ds2 = - (1 - 2mr/Σ) dt2 + Σ(dr2/A + dμ2/(l - μ2)) + [(r2 + a2) (1 - μ2)

+ 2mrα2(l - μ2}2/!'] dφ2 + 4mra(l -μ2}Σ~ldφ dt (51)

Σ = r2 + a2 μ2 A = a2 + r2 — 2mr .

Near the singularity Σ = Q(or = Q = μ), the metric has the asymptotic
form

ds2 ~-dt2 + Σa~2(dr2 + a2 dμ2) + 2mrΣ~ 1 ω2 ω = dt + adφ .

Let us introduce new coordinates

R = ±(aμ2 + r2a-1) μ2 = 2R/a(ί + χ2)

χ = r/aμ ~ r2 =2Raχ2/(l +χ2) (52)

=>ds2 - - dt2 + dR2 + 4R2(l + χ2)-2 dχ2 + ]/2mχ(a(ί + χ2))^ ω2 .

Thus the singularity metric is

Ods2 =-dt2+ 4(1 + χ2)-2 dχ2 + ]/2mχ(aR(ί + χ2))--ω2 (53)

and the extrinsic curvature is p = (0, 1, — 1/4). At χ = 0, (i.e., along r = 0),
the above procedure fails. However, going back to the original metric (51),
we see that if we first let r->0 before taking the limit £->(), we have
instead the asymptotic form

ds2 ~ -dt2 + Σa~2(dr2 + a2 dμ2} + a2 dφ2 .

Thus the singularity structure at χ = 0 (r = 0) is given by

Ods2 = -dt2 + 4dχ2 + a2 dφ2 p = (0, 1, 0) . (54)

The singularity structure suffers a discontinuous jump at the poles (χ = 0).
In any case, the topology of the singularity manifold is that of
T2 (torus) x R.

(b) The Charged Kerr Metric (e φ 0)

+ [_(r2 + a2) + a2(2mr-e2)Σ-1(l-μ2)'] (55)

• (1 - μ2) dφ2 + 2(2mr - e2) Σ~ 1 a(l - μ2) dφ dt ,
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where

Δe~e2 + a2 -2mr + r2 .

Near the singularity Σ = Q(or = 0 = μ), the metric has the asymptotic
form

(e2+a2Γί+dμ2) + a2dφ2 (56)

where

ω = dt + adφ .

Introduce new coordinates

R = Σ/2a χ = rμ-(*2+«2)/«2 . (57 a)

For e φ 0, and R->0, we have

r2 ~χ2(2αR)(e2 + α2)/fl2 + higher order terms
also 9 (57 b)

μ ~ 2aR + higher order terms .

With Eqs. (57), metric (56) becomes:

ds2^-e2ω2(2aRΓ'+2aRA-ίldR2 + a2(e2 + a2Γ1L(^R)1+(e2+a2)a'2^

+ a2dφ2 (58)
where

A = (2aR + e2r2a~2).

Now since e>0, r2<ζR as Λ->0, so A~2aR as #->0 and the lowest
order form of metric (58) is just

ds2 ~ -^ω^lαR)-1 + dR2 + α2(2αR)2 + β2α"2 (e2 + α2)'1 rfχ2 + α2 dφ2 .

Thus the charged Kerr (e φ 0) singularity has the structure

/>-(-l/2,l + e2(2α2)-1,0); T2 x R

which is qualitatively different from the uncharged case.

VI. Conclusions

In this paper we have shown that a unique and invariant structure
can be assigned to the class of static space-times which we call normal-
dominated. Two striking results are obtained concerning these sin-
gularities. First, we find that the dominant term of the Riemann tensor
near the singularity is Type N. Whether this implies that the Weyl
tensor may possess some special algebraic property near a generic
singularity is not known. Second, we find that in general when p+ φp_,
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the shear of null geodesic congruences near a normal-dominated static
singularity seems to blow up at the same rate as the convergence. Thus,
the general normal-dominated static singularity seems not to belong to
the category investigated by Newman and Posadas.

In the analysis of exact static solutions, we find that the largest class
of them are normal-dominated. In particular, the multipole fields of
Erez and Rosen have their multipole structures directly related to the
singularity structure. The normal-dominated singularity is a special case
of a wider class which we would call "geodesic-normal singularity",
which admits an irrotational geodesic congruence striking the singularity
orthogonally. In this case one can also analyze the singularity along
similar lines and assign to it an invariant structure. As an example, the
singularity is worked out for the Kerr-Newman metrics.

The author is grateful to Professor E. T. Newman and Dr. D. Eardley for many
helpful discussions.

Appendix

In this Appendix we compute the curvature components for the first
order metric (16). It is straightforward to show that the curvature com-
ponents for a general empty static space-time are [16]

(4)Rabcd = ZabeZcdf (3>*β/ 5 (4)*0αbc = 0 I (4%fl0b = VV\ab . (A.I)

Using Eqs. (4)-(7) we find

r^cd (&,A~K A\\β)

B,, + KKA

B).

Noting that εabc = ηabc\/-(3'>g = aηal,c, where f / 1 2 3 = l, thίs reduces to

(4X*.i = nabrnc<lr«2(K,r+ KA

BK\) + ηabAηcdBg
BC

•^(^RA

c + KA

c^KKA

c) + 2ηabrηcdBg
BC^(KtC~KD

c^
( '

Also we have

(A.3)

c

A), (A.4)

AB), (A.5)

Putting solutions (10-16) into above we find for the lowest order terms of
the curvature components:
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'f r,, _ι_ 1 Ό ™~ 8/3
11 7 i -*•> Λ..._j._ /"x'' Γ

i f y = l .

if y φ l , R r + r + ^r~2

' const if 7 = 1.

y-> oo <

= 0 if 7 = 1.

-const if 7> + _ = 0 .

if 7,_ΦO,R, + + _^XJ

and 7 φ 1/2
max

' ' r y-*oo <

and 7 φ 1/2

= 0 if 7-1/2.

and 7 Φ 1/2

if y + =Q,Rr_ + _ ̂

and 7 φ 1/2
= 0 if 7-1/2.

a \ —Δ./{ϊ +v) p ι < r » max c
V l l 4 ^ / v x ~ ' ^ it V Φ l / v ^ - s ^ > *

= 0 if y = l .

' y > ± Φ θ , y φ l , Λ 0 , o

and 0 F ± Φθ,

i f y = l .

const if 7 = 1, but

= 0 if 7-1 and
8 Here A ~x r " means that the dominant term of ^4 as r-»0 is of order r " when we

choose 7 so that n is largest (i.e., the maximum blow-up rate of A as r-»0).
9 ?ι< means "arbitrary close to but strictly less than ri\
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K 0 _ 0 _~(l-y)r- 2 ^ if 7Φl,Λo-o-^<r-

-r"1 if y=l but 0 ^+Φ

-const if y = l , 0 7 + =0 but

= 0 if y = l , o K ± = °

r2po if Φθ,#, -

if y,±=0,K0_0 +;~V'/3

b u t 0 F ± Φ θ

-0 if γ f ± = 0 and 0^±=0

We must emphasize that the above leading terms are computed from the
first order metric (16). Even in the cases when the coefficients of the
leading terms vanish, higher order terms will contribute in general.
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