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Abstract. The set of all C2 Lorentz metrics on a non-compact four-manifold is given
the Whitney fine C2 topology. It is shown that this provides the correct framework within
which to discuss the global properties of spacetime manifolds in general, and the singularity
theorems in particular. The main result is a theorem showing that the Robertson-Walker
big bang (global infinite density singularity in the finite past) is stable under sufficiently
small, but otherwise arbitrary, finite C2 perturbations of the metric tensor.

I. Introduction

This paper deals with the topological structure of the space of all
exact solutions to the Einstein field equations on an arbitrary four-
manifold. A rigorous mathematical framework emerges within which it is
possible to pose and answer the following questions:

(1) Which of the well-known global properties of spacetimes are
stable under sufficiently small perturbations of the metric tensor?

(2) Do the singularity theorems of Hawking, Penrose and others
translate into statements concerning the topology of this space? For
instance, are G-singularities stable in the set of "physically realistic"
metrics (do they form an open set)? Are there situations in which G-
singularities are generic (for example, when the spacetime contains a
closed space section, or when it contains an object undergoing
catastrophic gravitational collapse)?

(3) Do there exist situations in which it is possible to say something
precise about the exact nature of the singularity (other than that an
incomplete causal geodesic exists)? For example, is the "big bang" stable!
If a Robertson-Walker model is slightly perturbed, does the new space-
time still possess an infinite density singularity over all space in the
finite past?

Section II presents the necessary mathematical machinery; it reviews
jet bundles, defines and to some extent motivates the Whitney mapping

* Based, in part, on a thesis submitted to the Mathematics Department of the Uni-
versity of Pittsburgh.
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topologies, and recalls some elementary properties of these topologies.
A convenient definition of a relativistic conformal structure is given.
The Lorentz metrics and the conformal structures admit Whitney
topologies consistent with one another (meaning that the map sending
a Lorentz metric to its conformal equivalence class is continuous).

Section III contains a digression on the Einstein equations as viewed
from the standpoint of Section II. It is primarily intended to give the
reader some feeling for the techniques that will be used in the following
sections. It is shown, in passing, that there are no isolated solutions to
the field equations.

Section IV is concerned with the stability of certain global properties
of spacetime manifolds. More or less obviously, the following properties
are stable: (a) the existence of a space-section with diverging future
normals, (b) the existence of a trapped surface, (c) the strong energy
condition, and (d) a decomposition of the spacetime into S x R, where
S x {t} is spacelike for each t e R, and {p} x R is a timelike curve for each
p e S. The proofs are straightforward. Less trivially, perhaps, geodesic
completeness is a stable property, as is a certain useful type of incom-
pleteness of vector fields.

In Section V, a definition is proposed for the set of all physically
realistic cosmologies on a given manifold. Question 2 of the introductory
paragraph is answered affirmatively in this context. Remarks are made
to the effect that it is not even possible to discuss the question in any
other known topology. The results of this section are definitely implicit
in the singularity theorems.

Section VI deals with the third question and contains the main result
of this paper. The metric tensor of an arbitrary Robertson-Walker model
with a big bang singularity in the past is subjected to an arbitrary C2

perturbation. If the perturbation is sufficiently small, the new spacetime
has the property that the energy density blows up in the finite past
along each flowline of the matter. The corresponding time-reversed
statements concerning stability of the eventual collapse or indefinite
expansion of the universe follow immediately.

II. Basic Concepts

Throughout this paper, all manifolds are C00, Hausdorff and para-
compact; M will denote a fixed, non-compact, four-dimensional
manifold without boundary. Let S->M be the vector bundle of twice-
covariant symmetric tensors, and L-+M the open subbundle of in-
definite quadratic forms of signature — 2. The set of all Ck sections of L
is denoted Ck(L); any element of this set is called a Ck Lorentz metric.
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It is this set we wish to topologize. Before doing so, we note that many
of the interesting geometric objects which occur in the theory of relativity
are completely determined by the conformal structure of spacetime;
it will clearly be to our advantage if we can topologize the set of conformal
structures as well.

Delete the zero section from S, and denote the resulting bundle by S;
there is an obvious retraction τ of S onto a bundle Q whose fibers are
diffeomorphic to the nine-sphere: simply identify, in each fiber, all
elements which are positive multiples of one another (in local coordinates,

τ is given by (u\ sab)^(u\ sab/s)9 where a ̂  b and s = I £ (smn)
2\ *. Q is

a C°° bundle over M, and τ is a C°° open surjection. The set τ(L) is an
open subbundle of Q which we denote by C.

For any Lorentz metric g, g: = τg is a section of C; if h is another
Lorentz metric h = g iff. h and g are conformally related. A Ck section
of C is called a Ck conformal structure. For any w 6 Ck(C\ there exists an
h e Ck(L) such that h = w: to see this, let μ be any positive-definite metric
on M at each p e M, define h(p) to be the unique element of μ-norm 1 in

τ~>(p))
Let E->M be any bundle, and let Jfc(M, E)-»M x E be the bundle of

/c-jets of local Ck maps from M to £ 1. Recall that if / is such a map and p
is in the domain of /,/(/) (p) denotes the equivalence class of all local Ck

maps g which are /c-tangent to / at p. (The Taylor series for / and g
agree up to and including the fcth derivatives in any (and all) local co-
ordinate systems at p and /(p).) By restricting attention to the subset of
local Ck sections of E, we obtain a closed subbundle Jk(E) called the
bundle of k-jets of sections of E. If a Ck section / is a geometric object
field with components /;;; relative to some local coordinates (ua\ the
local coordinates of jk(f) (p) are given by

where the comma denotes partial differentiation. Any / e Cr(E)
determines a Cr~k section of Jk(E) defined by p\-*jk(f) (p) and called the
k-jet extension of /. Notice, for future reference, that J°(M, E) = M x E,
and that J°(E)^E.

Let 17 be open in Jfe(E). Define

) = { f ε C k ( E ) : j k ( f ) ( M ) ς U } .

The FFfc or Whitney fine Ck topology on Ck(E) is generated by the sets
N(U), where U ranges over the open sets of Jk(E). For k> r ̂  0, the Wr

1 For a neat, precise introduction (with proofs) to jet bundles and the Whitney
topologies, the reader is referred to the first few pages of Mather [1J
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topology is well-defined on Ck(E) and is strictly coarser that the Wk

topology. From now on, Γk(E) stands for the set Ck(E) in the Wk topology.
By way of motivation, suppose a collection of observers is scattered

throughout M, and that each observer is directed to measure the values
of some field /, together with its first k derivatives, in his neighborhood.
The values reported, with judicious error bounds, determine an open
U g Jk(E\ and /(/) (M) g U. Notice that if the set U has been made as
small as possible, than any other field /' satisfying jk(f) (M) £ U must
be regarded as a legitimate perturbation of the "real" field /. We
summarize below the few facts we shall need concerning Γk(E):

(2.1) For non-compact M, Γk(E) is not first-countable. Thus we must
use nets or filters to talk about convergence. In fact, convergence of a
sequence {/J occurs only under the very restrictive condition that there
exist a compact KcM outside of which f{ = fj for sufficiently large i, j,
and inside of which {/*(/()} converges uniformly. An immediate con-
sequence is that if E is a vector bundle, scalar multiplication is not con-
tinuous in Γk(E); so it is not a topological vector space. It is, however,
a topological module over the ring of real-valued Ck functions on M 2.
This is proven by Mather in [1]. Another consequence is that the well-
known one (or many)-parameter families of metrics encountered in
relativity theory do not determine continuous curves (or surfaces) in
Γk(L)\

(2.2) Let E and F be bundles over M; denote by p± and p2 the projec-
tions of J°(F) to M and F respectively. Let φ: Jk(E)^J°(F) be a con-
tinuous map inducing the identity on M (for any s e Ck(E\ p± ° φ °jk(s)
= idM). Then the map φ : Γk(E)->Γ°(F) defined by setting φs(x)
= P2° Φtik(s)(x)) f°r anY sεΓk(E) is continuous: if U is open in J°(F),
then φ~ί(N(U)) — N(φ'~ί(U)), which is open, since φ is continuous. In
many cases of interest, φ is a continuous partial differential operator
this will be illustrated in III for the case of the Einstein equations.

(2.3) Let E and F be bundles over M, and let w : E κ>F be a C (r ̂  k)
map inducing the identity on M. Then the map w : Γk(E)t-+Γk(F) defined
by 5 K > w ° 5 for seΓk(E) is continuous. This is obvious.

Proposition (2.4). Let L, C and τ be as above. Then the map τ : Γk(L)
\->Γk(C) sending g to cj( = τg) is continuous. For /c = 0, τ is open.

Proof. We have only to show openness. Let U be open in J°(L) = L.
Then τ(U) is open in C. Let g satisfy g(M) C τ(C7). We must find g e C°(L)

2 This function space, in the Wk topology, is denoted Ck(M).
3 This is not a serious problem. In the first place, as Geroch [2] points out, the process

of taking limits is not without ambiguity. Secondly, the limiting metric is often one which,
when maximally extended, determines a base manifold M"ΦM. Thus the problem of
limits is not well-posed in Ck(L) no matter which topology one uses. See Geroch [2] for
details.
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such that g(M) c U and τg = g. So let g' be any C° metric such that
g' = g. We must find a positive continuous function λ such that λg'(M) C U.
For each p e M, there exists a positive number α(p) such that
α(p) 0'(p) e Ur\Lp, where Lp denotes the fiber of L over p. By continuity
considerations, there is a neighborhood F(p) such that q e F(p)
=>α(p) 0'(g) eUnLq. Thus we obtain an open cover of M, for which there
exists a locally finite open refinement {V^.iel} and a subordinate
partition of unity {ft : i e I}. For each i, choose a V(p) such that FJ £ F(p),
and let fe,. be the constant function with value a(p). Put λ= X/i fc/; then
g = λgf is the metric we need. »'

We exhibit some of the open sets of Γ°(C):
Definition (2.5). Let #eC°(C), peM, Γp-the tangent space at p.

Define ίp(#) - {Z G Tp : g(Z9 Z) > 0 for somejand thus any) g e τ'^g)}.

Let Λ, g e C°(C). We write ft(p) < g(p) iff. ζ(ftj C tp(g), and define Λ < g iff.
ft(p) < 0(p) for all p e M. If ft < g, define

This set is called an interval, and the topology on C°(C) generated by
taking the intervals as a subbase, the interval topology (see Geroch_[3]).
Intuitively, ke(h,g) if and only if at each p e M, the null cone of k lies
strictly between those of h and g.

Proposition (2.6). An interval is an open set in Γ°(C).

Proof. Let ft, g, k be as above. We must find a W0 neighborhood of k
contained in (ft, ̂ ). Since J°(C) ^ C, it suffices to find an open_set U C C
containing k(M) with the property that any m(p) e U satisfies ft(p) < m(p)
< g(p). This is trivial, using the local product structure.

The converse, implying that the W0 topology is identical to the
interval topology, is also true, although we shall not need this fact here [4].

III. Example and Digression; the Einstein Equations

Consider the map Ric: J2(L)κ>J°(5r) sending the 2-jet of a Lorentz
metric to the 0-jet of its Ricci tensor4. Choose a chart with coordinates
(wl). If p is in the chart and g is a local section at p, local coordinates for
7%)(p) are just (w'(p), gab(tf\ 9abtc(d\ 9ab,cd(u% while those of

Ric(/2(0)(p)) are (ul(p\ 2Γb%>c] + 2Γ6

s

[αΓc

fl

]s)^(t/ί(p),^c(W

ί)). Notice that
the necessary derivatives have already been taken in forming the bundle

J2(L), and that Ric is a purely algebraic map which is obviously con-
4 If g is a local section of L, and Γ£c are the Christoffel symbols of g in some chart,

then the curvature tensor of g has components Ra

bcd = 2Γ£[d>c] + 2Γξ[dΓφ. The Ricci
tensor is given by Rbc = Ra

bca, and the scalar curvature by R = gbcRbc.
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tinuous. By 2.2, the map #ι-»Ric(0) sending a metric to its Ricci tensor
is continuous from Γ2(L) to Γ0^). Similarly, the map g\->Rg is continu-
ous. Using the fact that Γ°(S) is a C°(M) module, we see that the map

from Γ2(L) to Γ°(S) is continuous.
The set (Ά=T(Γ2(L)) is the complete set of continuous energy-

momentum tensors on M for which the Einstein field equations have
solutions. Since the determination of the detailed structure of 91 (under
what conditions can we solve the field equations on some manifold M?)
is one of the major problems of general relativity, it is surprising that
virtually nothing is known about it, even in the case M = JR4. Obvious
possibilities are:

(a) 21 is open: this would be very powerful. For any exact solution g
to Ric(0) — ̂ Rg= — T0, exact solutions would exist for any T sufficiently
C° close to T0.

(b) int(2I)φ0: there would then exist an open set WcΓ°(S) in
which 21 is dense. For any seW, one could obtain approximate solutions
to Ric(0) — %Rg = — s to any desired degree of accuracy.

(c) 91 is nowhere dense: then it is generic for the field equations to be
unsolvable.

Nothing is known concerning the truth or falsity of any of these. Less
interesting is the fairly obvious

Proposition (3.1). 9ί contains no isolated points.

Proof. For any T0 = T(#0), we must find a net {TJ C Sl\{T0} with
T;-> T0. Let {sj be any net of functions converging to 0 in C2(M). Putting
f. = e2si, we have T(/^0)^T0. We need only verify that the net {sj
may be chosen so that T ( f i g 0 ) φ T0 for all i. Define, for any C2 function s,
the functions Ais = gQbst0stb and A2s = ga

0

bs.ab, where the semi-colon
denotes covariant differentiation with respect to g0. It is easily checked
that a necessary condition for T(e2sg0) = T(g0) is that Aίs + A2s be
identically zero. The map D:st-»A1s + A2s from C2(M) to C°(M) is
continuous, so that IT^O) is closed in C2(M). Clearly int(D"1(0)) = 0,
so that C^MJND'^O) is open dense. Thus any net in C2(M)\D"1(0)
converging to 0 will suffice.

Thus if T0 e Γ°(S) has a solution T(g0) = T0, any neighborhood of T0

contains a Tx φ T0 for which there is also a solution T(g1)= Tt. The
result is weak because it is "clear" that any neighborhood of T0 contains
many more exact solutions than those corresponding simply to metrics
conformally related to g0. However, the author is unaware of any
stronger results in this direction. Many of the approximation methods
of general relativity are specifically designed to deal with metrics that
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are in some sense close to a fixed metric g0. Thus they are not, as such,
applicable to the whole of 81. From the point of view adopted here,
these methods simply provide alternative proofs of the fact that T(g0)
is not isolated. We forego the details, but the reason for this, roughly,
is that certain integrability conditions must be imposed to insure the
existence of the approximate solutions; and the set of "admissible
functions" satisfying the integrability conditions is nowhere dense in the
set of all admissible functions.

IV. Stability of Global Properties of Spacetimes

Within the present limits of astronomical observations [5, 6], there
is apparently no reason to believe that the large-scale behavior of the
visible universe is not described, to a fair degree of accuracy, by one of the
following Robertson-Walker metrics

g(t, r, θ, φ) = dt2 - R2(t) j Λr

 2 + r2(dθ2 + sin2 θ dφ2)} .
[l—kr }

It will be assumed that the elementary properties of these metrics are
known. Particular R — W metrics are obtained by assuming the energy-
momentum tensor to be that of a perfect fluid - T(g) = (p + ρ) dt2 — pg
(ρ and p are density and pressure, respectively) - and solving the field
equations for R(ή. The R — W metrics have the following properties:

(a) Each ί = constant surface Σt is a spacelike hypersurface. Each Σt

is a Cauchy surface [3, 7] - any maximally extended timelike curve
intersects Σt precisely once.

(b) For sufficiently small ί, the future-directed orthogonal tra-
jectories to Σt are diverging on Σt.

(c) Scaling R(f) appropriately, there is an infinite curvature singularity
at ί = 0 (big bang). The space is metrically inextendible (cannot be iso-
metrically embedded as a proper subset of a larger spacetime).

(d) If T(g) is assumed to satisfy ρ + p>0, ρ + 3p > 0 (corresponding
to the existence, at each event, of some non-zero rest mass - see Tolman
[8], p. 379), then the strong energy condition [7, 9, 10] is satisfied:

g'ab V
a Vb ̂  Q=*Rab V

a Vb < 0, (Va Φ 0).

We conjecture that the "real" metric gr is close to g in some sense and
ask whether or not g' also has the above properties. That is, we ask
whether or not these properties are stable under small perturbations of g.
Before proceeding rigorously, a few remarks about perturbations in
this context:

(a) It does not make sense to perturb the metric subject to constraints
in the case of the R — W metrics, we are not interested in nearby homo-
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geneous, isotropic, perfect fluid solutions. Indeed, the whole purpose of
perturbing the metric is to obtain a more realistic one with no symmetries.

(b) By the same token, it is inappropriate to consider perturbations
as part of the Cauchy problem (perturbing initial data on a spacelike
hypersurface and constructing a new spacetime via the time-evolution
of this new 3-surface). In the first place, the Cauchy problem involves
constraints; unique solutions are obtained only when the form of the
four-dimensional energy-momentum tensor is specified in advance.
Secondly, the solution to the Cauchy problem does not normally yield
the whole spacetime (a metrically inextendible one) but only the maximal
spacetime with respect to which the given initial data surface is a Cauchy
surface (see Choquet-Bruhat and Geroch [11]).

(c) The point of view to be adopted here is that the manifold M is
given and fixed. Starting with g € Ck(L\ a perturbation of g will be given
by g' = g + h e Ck(L\ where h is a twice-covariant symmetric tensor
appropriately close to zero.

Definition (4.1). A property 3P of Lorentz metrics is said to be stable
in Γk(L) if it holds on an open subset of Γ\L\ If Kg Γk(L) and 0 holds
on an open dense subset of K, & is said to be generic in K. A Ck perturba-
tion oΐg G Ck(L) is an open neighborhood of g in Γk(L). Similarly for Γk(C).

Proposition (4.2). Suppose there is a diffeomorphism φ\SxR-+M
such that for each te R, φ(S, {t}) is spacelike with respect to ge C°(C).
Then this family of surfaces is also spacelike with respect to every con-
formal structure in some interval containing g.

Proof. Although the assertion is intuitively obvious, it will be
useful to see how easily it may be proven. Choose a locally finite open
cover {Ut: iel} of M by sets with compact closure, and let [ f t : z e / }
be a partition of unity subordinate to the cover. Choose any Lorentz
metric geτ~1(g), and let (X, —X) be a line-element field on M timelike
with respect to g. Recall that (X, — X) is a vector field determined up to
a factor of +1 at each point of M, and that such things always exist in
any spacetime [12]. Using g to lower indices, we obtain a one-form field
(q, —q) up to sign; then w = q® q is a well-defined 2-covariant symmetric
tensor.

Now choose meUl m lies in some surface Σt = φ(S, {t}). There exists
a real number λm > 0 such that (a) g(m) ± λm w(m) is Lorentzian,
(b) g(m)- λmw(m) < g(m) < g(m} + λmw(m) [to see this, use a ^-normal
coordinate system at m, with time-axis tangent to (X, — X)(mJ], and
(c) both of g(m)±λmw(m) measure Σt as spacelike at m. Since g and w
are continuous and φ is smooth, a neighborhood V(m) exists such that
for any W ' G V(m) the forms g(m')±λmw(m') satisfy (a) and (b) and also
measure the appropriate Σt containing m' as spacelike at m'. We obtain
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in this way an open cover of the compact set Ui9 and extract a finite sub-
cover to which corresponds a finite collection of positive numbers
{/11? ..., λk}. Put λί — mm{λl, ...,/lJ, and define the positive continuous

function λ= £ A,-/;. The interval (g — Aw, g + λw) is the one we want.
iel

More difficult, but in the same setting as the above, is the result of
Geroch [3] that the existence of a Cauchy hypersurface is stable in Γ°(C).
Precisely, if S is a Cauchy surface for g, it is one for every fe in some
interval about g.

Notice that if, in the above proposition, g had been Cfe, g could have
been chosen in Ck(L). Since the partition of unity functions may be taken
C°° (see Hicks, [13], p. 84 ff.), the same construction yields two Ck Lorentz
metrics g±λw, and two corresponding Ck conformal structures. It
follows from the definition of the Whitney topologies that the subset of

Ck(C) contained in (g — Aw, g + Aw) is open in Γk(C); also, τ"1 of such
a set is open in Γk(L).

A metric g e Γ°(L) is said to be stably causal (Hawking [14]) if there
is a W0 neighborhood of g no element of which admits closed timelike
curves. Since the existence of such curves is a property of g, and since
the map τ is open, stable causality is well-defined in Γ°(C) and is stable
there. It is also stable in Γk(C) for any fc. A conformal structure is said
to be acausal if it admits closed timelike curves, causal if it does not.
It is trivial (use the same methods as in 4.2) that the acausal conformal
structures are open in Γ°(C). Letting A be the acausal, Γ°(C) — A the
causal, and SC the stably causal conformal structures respectively, we
observe that

(a) SCΦ0 on any non-compact M: on such an M, there always
exists a function / with no critical points (df(x) φ 0, all x). If μ is an
arbitrary positive-definite metric on M and X is the (nowhere-vanishing)
gradient of / with respect to μ9 the Lorentz metric g defined by

possesses a cosmic time function (/) and is therefore stably causal ([14]).
(b) Γ°(C)-A = SC: because if heΓ°(Q-A, then the open set

{g: g< h} lies entirely in SC. Any interval containing h intersects this set.
Among other things, this insures that there are no isolated points in
Γ°(C)-A

Thus it is generic for a causal conformal structure to be stably causal.

Proposition (4.3). The strong energy condition is stable in Γ2(L).

Proof. We recall that the mapgt->Ric(g) is continuous. Denote by
fλϊ the tangent bundle of M minus the zero section. If g e Γ2(L) satisfies
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the strong energy condition, then for all Xe TM, g(X, X)^
• (X, X) < 0. Let Fg C TM be the set of all vectors timelike or null with
respect to g. For any s e Γ°(S), put Ns = [X e TM: s(X, X) < 0} Fg and
NRΪC(g) are closed and open respectively. By the normality of TM, there
is an open set U such that FgcUc UcNRic(g}. Moreover, since Ric(#)
is a quadratic form, U may be chosen to satisfy X G U=>aX E U, for
any non-zero real number a. Now for each peM, there exists an open
neighborhood of Ric(g)(p) in the fiber Sp such that if s(p) lies in this
neighborhood, NsnSp^UnSp. From the local triviality of S and
elementary continuity considerations, it follows that there exists an
open neighborhood W(Ric(g))cΓ°(S) such that s in W implies NSD U.
Then Ric"1^) is an open neighborhood of g in Γ2(L). From con-
siderations similar to those in 4.2, we conclude the existence of a neigh-

borhood V ( g ) C Γ 2 ( C ) such that he V=>FhCU for any hEτ'^h). Then
by construction, the strong energy condition holds on (RkΓ1^)
πτ~1(F)}, a W2 neighborhood of g.

Remark. The straightforward nature of the above proof should give
some indication of the conceptual simplification achieved via this
topological approach. One begins to see that the Wk topologies provide
a mathematical framework within which many things which appear
intuitively obvious become rigorously true.

It should be pointed out that 4.3 is not true in any of the weaker
topologies frequently used on C2(L). In particular, it is not true either
in the coarse C2 topology [15,16] or in any of the topologies of global
uniform convergence [17]. If we agree that any reasonable topology
on C2(L) should allow perturbations preserving the existence of non-
zero rest mass, we may take this as further evidence in favor of the
Whitney topologies.

(4.4) Let us denote by y $ the set of C2 metrics on M satisfying the
strong energy condition. Suppose {g^.iel} is a net in ίf ^converging
to g e Γ2(L), and let X e TM be timelike with respect to g. Since g^g
in Γ°(C), there is an ί0el such that i>i0=>gi(X,X)>0, and this in
turn implies Ric{gt)(X9X)<0. Since the map Ric is continuous, it
follows that Ric(g)(X,X)^Q. Since Ric(g) is a continuous section,
the inequality holds for X null as well. If we denote by 8 the subset of
Γ2 (L) satisfying

g(X, X) ̂  0=^ Ric(#) (J!f, X) g 0,

we have shown that Zfδξ* S. The same sort of argument shows that S is
a closed set. An element of S is said to satisfy the energy condition [7,9,10].
This condition is somewhat less stringent than the strong energy con-
dition, and δ contains many of the exact solutions which are not in
such as the vacuum and pure radiation fields.
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Under the assumption that the behavior of matter and energy else-
where is not grossly different from its observed behavior in our vicinity,
it is generally agreed that any physically realistic metric should lie in $.
The converse, that any g e S represents a physically realistic spacetime,
is false because the source-free metrics, while extremely useful locally,
cannot be expected to describe the global properties of spacetime.

What portion of E then, should we eliminate from consideration?
As a first approximation, it is usual to think of the matter in the universe
as being smeared out and rather smoothly distributed throughout space.
Thus if an exact solution is found in this approximation, it will lie in £fδ.
One then conceives of the actual distribution of matter and radiation
as arising from such a situation via a suitable limiting process involving
the gradual formation of lumps and a corresponding attenuation of the
intervening matter. That is, the realistic metrics should in £f$. The
existence of isotropic background radiation at 3 °K appears to support
this — the "real" Ricci tensor would satisfy the strong energy condition
inside matter, while in "empty space" it would satisfy Ric(X, X)<Q
for any timelike^. The following proposition shows that by neglecting
metrics in S — £fδ , we are not eliminating too many.

Proposition (4.5). m\.(S) = £fδ. In particular, $-<?~i is nowhere
dense.

Proof. Let # e <? - <^<f . Then there exists X e TM such that g(X, X) ̂  0
and Ric(#) (X, X) = 0. We shall exhibit a sequence of metrics converging
to g each one of which violates the energy condition [implying that

Assume first that X e Tp is timelike with respect to g. Choose normal
coordinates ( t , x 9 y , z ) in a neighborhood U(p) with p = (0, 0, 0, 0).
Choose compact 4-balls A^ and N29 neighborhoods of p, such that
NίCΐΏt(N2)CN2CU, and let φ be a C°° bump function such that
Q^φ^l,φ(N1) = l,φ(M- int(JV2)) - 0. Define ηmU byη(t, x, y, z) = e*.
Then at/?, using the fact that Γgc = Q, η.ίί=η.1η.1 = i, and η.ab = η.aη.b = Q
unless a = b = l, where the semi-colon denotes co variant differentiation
with respect to g. The function φη is well-defined, C°°, and equal to zero
outside of N2 .

Consider the sequence {σn = (l/n)φη}. It is immediate from 2.1
that σπ-»0 in Ck(M) for any fe, and thus that e2ffn-^l in Cl(M). Putting
gn = e2ffn, we have gn->g in Γ2(L). An easy calculation (see Eisenhart

[18], p. 90) shows that at p, we have Ric(gn)(X,X)= —g(X,X)>09

which implies gn φ $, all n.
For X null with respect to g, choose normal coordinates such that X

lies in the (ί,x)-plane in Tp. We may rescale X so that Xa = ( l , 1,0,0)
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in these coordinates (without affecting the fact that R.ic(g)(X, X) = ϋ).
Repeat the above argument, taking η(t, x, y,z) = —(x — ή2.

Remark. It may be that we actually have $ = Sfδ^ but there does not
seem to be any obvious way of showing this. At any rate, we may be
reasonably certain that we are not overlooking any solutions of serious
cosmological significance by restricting our attention to £f$.

(4.6) In conjunction with the singularity theorems to be discussed
in the next ^section, we mention the following additional condition.
A metric with curvature tensor Rabcd is said to satisfy the generality
condition [10] if every causal (i.e. timelike or null) geodesic y(s) with

dγ/ds — ka -—• contains some point at which

k[aRb]cd[eknk
ckd*0.

Denote the corresponding subset of Γ2 (L) by .̂ Hawking and Penrose
have proven [10] that if g E $r\<!> and in addition, every causal geodesic
in (M, g) is complete, then each such geodesic contains a pair of points
conjugate to one another. This provides one of the key tools needed
to prove the singularity theorems. It is easily seen that Rabk

akb^Q
implies k[aRb]cd[ekf]k

ckd^ί so that, trivially, ̂ δ C 0, and the generality
condition is generic in £fδ.

The next proposition will be useful in showing that singularities
in certain cosmologies are stable.

Proposition (4.7). Let geΓ1 (L) satisfy
(a) (M, g) is time-oriented and contains a spacelike hypersurface Σ.
(b) θ > 0 on Σ, where θ is the divergence of the (local) vector field

of future-directed orthogonal geodesic trajectories to Σ.
Then (a) and (b) hold on an open neighborhood of g in Γ1 (L).

Proof. The first condition is trivial. Given a net ga^>g in Γl(L\
the proposition follows if we can show ΘΛ-*Θ, where θα, θ e C°(I).

We let π: A -»M be the bundle of affme connections on M, and note
that the map g -> Vg sending g to its Riemannian connection is continuous
from Γ^(L) to Γ°(A), so that VgΛ^Vg Since gx->g, we have gΛ-+g9 where
gΛ is the induced metric (first fundamental form) of the hypersurface
Σ C (M, gΛ). By (α), we may assume thet Σ is spacelike with respect to
each gΛ. Let V be the unit tangent vector field to the #α hypersurface-

Λ

orthogonal geodesies to Γ; for each α, V is defined in a neighborhood
α

of Σ. On Σ, we clearly have F-> V in the W0 topology. Introduce co-
α

ordinates (xl) in a neighborhood of a portion of Σ, so that locally Σ is
given by x1 = 05. Using the coordinates (xa) on Σ, we have g = gab dxa dxb.

5 In this section only, the indices a,b,c,... go from two to four, while ί,j, k,... go from
one to four.
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If Ω denotes the second fundamental form of Σ C (M, #α), we have, in
α

these coordinates

?- = -!H=Γ^ (48)

and
(4.9)= - tr(Q)

where Γl

ab are Christoffel symbols for #α, and where gab are the contra-
α α

variant components of #α . So #α depends only upon the surface com-
ponents of Vi;j. Doing the usual things with a covering of Σ by sub-

manifold charts, θa-*θ follows immediately from (4.8) and (4.9).

Definition (4ΛO). Let(M,#) be time-oriented and ScM be a closed
spacelike two-surface. If both families of future-directed null normals
to S have strictly negative divergence on S, then S is said to be a trapped
surface (Penrose [19]). Trapped surfaces may be expected to arise
whenever an approximately spherical object (such as a star) undergoes
irreversible gravitational collapse. We refer to Penrose [7] for a detailed
explanation of this.

Proposition (4.1 l).//Sc(M, 0) is a trapped surface, there is a neigh-
borhood of g in Γ1 (L) for which S is trapped.

Proof. Similar to (4.7).

Lemma (4.12). For any C°° manifold M, with tangent bundle π : T-»M,
the set of complete υectorfields (those whose flow exists for all time) is
open in Γ1 (T).

Proof. See Appendix I.

Corollary. Geodesic completeness is stable in Γ2 (L).

Proof. Any C2 metric determines a C1 vector field Sp(g), the spray
of g, on TM. (See, for example, Lang [20], pp. 164 ff.) In local coordinates,
Sp(0) is given by (u\ Vj\ Vj, -ΓstV*V*). The spacetime (M,g) is ge-
odesically complete iff. the vector field Sp(g) is complete. Since it is
clear that the map from Γ2(L) to Γ1(T2M) sending g to Sp(#) is con-
tinuous, the assertion follows from the lemma.

Lemma (4.13). Letf: S x (0, oo)t->M be a diffeomorphism, where S is
some 3-manifold, and let V = f#(d/dt). Then there is a neighborhood
W(V) C Γ°(T) such that for any V e W.

(a) each integral curve of V is transverse to all the surfaces /(S, {t}).
(b) each such curve y(s) is incomplete in the direction of decreasing s.

Proof. It is almost obvious that this is true. The proof may be found
in Appendix II.
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V. G-Singularities

We first define a subset & C Γ2 (L) containing the physically realistic
cosmologies on M. Together with the most recent theorem of Hawking
and Penrose [10], the machinery we have developed allows an easy
proof of the fact that G-singularities are generic (a) in the spatially
closed cosmologies in ̂ , and (b) in the subset of & in which local gravi-
tational collapse occurs.

Definition (5.1) Let J be the set of C2 Lorentz metrics g such that g
is stably causal. Define » = Jr^Jc Γ2(L\ Then g e 9 iff. there exists
a net gt->g such that for each i, gi is stably causal and gt satisfies the
strong energy condition.

The assertion that & contains all the physically realistic cosmologies
in Γ2(L) is clearly predicated on the unverifiable assumption that at
no event in spacetime is the local behavior of matter and radiation
drastically different from that observed in the vicinity of the solar
system. At the moment, there is no reason to believe that this is not the
case.

An element g of & is said to be G-singular [16] if (M,g) contains
incomplete causal geodesies. The existence of such a singularity, coupled
with metric inextendibility, is often taken as evidence that something is
seriously wrong with the spacetime under consideration; for it may be
interpreted as a statement that test particles or photons spontaneously
appear or disappear. The proofs of most of the singularity theorems
proceed by showing that certain combinations of physically plausible
restrictions on the metric are incompatible with causal geodesic com-
pleteness. We state the most recent of these:

Theorem (5.2). (Hawking and Penrose [10])6. Let (M, g) satisfy
(a) g E $ n <& — g satisfies the energy and generality conditions
(b) (M, g) has no closed timelike curves
(c) (M, g) contains either

(1) a trapped surface
or (2) a point p for which the convergence of all the null geodesies

through p changes sign somewhere to the past of p
or (3) a closed spacelike hypersurface

Then (M, g) is G-singular.

In view of this and 4.7-4.11, we have the following

Theorem (5.3). Let ΛcέP denote the set of metrics with trapped surfaces.
Then G-singularities are generic in A. Let ΔC0* denote the set of metrics
admitting closed spacelike hyper surf aces. Then G-singularities are generic
in A.

This is actually a corollary to their main theorem.
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Proof. Let geA. If geint(^), then by the above theorem (since
y\ g is G-singular. If ge80>, then by 4.11 there exists a net

{#,-} Cint(^nyl) with #,•-»#. Since each gt is G-singular, we are finished.
Similarly for the second part.

While the theorem as stated applies to a fixed M, it is invariant under
extension in the following sense. If g eΛvΔ, and there is an isometric
embedding of (M9 g) into (M,§), where gε$, then if g is G-singular,
g is G-singular as well. This means that the G-singularities predicted
by 5.2 are not due to the arbitrary removal of some regular points from
a non-singular spacetime. We thus have the result that the generic
spatially closed universe is G-singular and remains so under metric ex-
tension. If we regard the existence of a trapped surface as equivalent to
the existence of a gravitationally collapsing object, we have a similar
statement concerning gravitational collapse. We are assuming, of
course, that everything lies in the appropriate ,̂ but as we have indicated,
this is quite reasonable.

VI. Stability of the Big Bang

The greatest drawback to Theorem 5.2 and the other singularity
theorems is that they provide no insight into the nature of the singularity.
In fact, when the theorems are stated in their full generality, there are
no logical grounds for concluding that G-singularities must occur
at all. The actual proofs, as we mentioned earlier, involve showing
that a number of conditions, including causal completeness, are mutually
inconsistent. Although it is argued that causal completeness is the
condition most likely to fail, it is certainly possible for the spacetime
to violate the appropriate energy or causality condition instead. (As
has been observed [7], such a spacetime would clearly still be regarded
as singular in some sense by most physicists.) In particular, as Hawking
and Penrose point out [10], "one cannot conclude [on the basis of the
theorem(s)J that such a singularity need necessarily be of the 'infinite
curvature'' type".

However, in certain specific cases of interest, the singularity is known
to result from infinite curvature, and one can prove that the infinite
curvature singularity itself is stable. We give one example.

Theorem (6.1). The big bang of the Robertson-Walker models is
stable in Γ2 (L). That is, any sufficiently small C2 perturbation of such a
metric results in a spacetime with the following property: each flowline
of the matter has encountered infinite energy density in the finite past.

Proof. The energy-momentum tensor, with respect to the coordinates
given in § IV, is T(g) = (Q + P) dt2 — pg. It is immediate either from the
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field equations or from symmetry arguments that ρ is a function of t
alone. The big bang assumption is that, with an appropriate scaling of
R(t) (i.e., R(G) = 0), we have lim ρ(ί) = + oo. Let g be such an R-Wmetric

and M the manifold it determines. Recall that for any metric hab with
non-degenerate energy-momentum tensor Tab, there is, at each event x,
a unique number λ(x\ and a unique future-pointing timelike unit vector
V(x) satisfying

[_Tab(x)-λ(x)hab(x)-]Va(x} = 0.

The integral curves of V are parametrized by ft-proper time and are
(by definition) the flowlines of the matter-energy distribution described
by Tab. An observer travelling on such a curve measures, at each event x,
an energy density λ(x). In the case at hand, λ = ρ and V=d/dt. Thus
to prove the theorem, it is necessary to find a neighborhood U(g) C Γ2(L)
such that for gf e U, the associated λ and V are close to ρ and d/dt re-
spectively. We proceed in two steps:

(1) Regard g as an element of Γ°(S). Fix a point xe M, and let
Tab, gab be the components, at x, of T(g) and g in any coordinate system.
For small variations, the unique positive eigenvalue satisfying the
equation det(7^ — λgab) = 0 is (at x) a continuous function of the
independent variables Tab and gab. As we have seen, this pointwise
behavior translates into a global statement: Choose and fix ε>0. Then
there exist WQ neighborhoods A(T(g)) and B(g) in Γ°(S) such that
for any N e A, h e B, xe M, the unique positive λ determined by the
equation det(Nab(x) — λhab(x)) = Q satisfies \λ — ρ(x)\<s. There is no
necessary relation as yet between N and ft; but Γ""1 (A) is an open neigh-
borhood of g in Γ2(L). Set B' = BnΓ2(L), and put U1(g) = B'nT~1(A).
Then g' E U1=^>\λ(x) — ρ(x)\ <ε for all xe M, where λ(x) is the positive
eigenvalue for T(g')(x) and g'(x). Thus on each surface Σt (the t = con-
stant surfaces of our original metric) we have

min{Λ,(x): xe Σt} ^ρ(ί) — ε,

so that λ blows up on any curve forced to cross all the surfaces Σt.
(2) Put V=d/dt. By 4.13, there exists a WQ neighborhood

W(V)CΓ°(TM) such that 7'e W implies that the integral curves of V
are transverse to all the surfaces Σt and are incomplete in the direction
of decreasing t. Notice that the map β which sends g to V is well-defined
and continuous on some neighborhood D(g)cΓ2(L). Put U2(g)
= Dπβ-l(W\ and finally, set U(g) =UίnU2. Then for any g'6 17, any
flowline of the matter-energy distribution determined by T(gf) has a
finite past history (because g' e U2) at the beginning of which the energy
density was infinite (because gf e L^).
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Remarks. We have shown that the global infinite density singularity
of these big band models persists under small C2 perturbations of the
metric tensor. The time-reverse version of 6.2, concerning the stability
of the eventual collapse (for k>0) or indefinite expansion (for k^0)
of the R-W models, is proven in an entirely similar way. It should be
clear that the same techniques allow one to prove similar theorems
concerning the stability of infinite curvature singularities in other
classes of cosmological models as well.

With reference to the R-W models, a related question is whether or
not, under sufficiently small C2 perturbations

(a) every past-directed causal geodesic remains incomplete
and

(b) is compelled to be incomplete by the presence of infinite curvatures.
This will be treated in a more general context in a subsequent paper.

Acknowledgement. I am deeply grateful to my advisor, John R. Porter, for, among
other things, many valuable discussions during the course of this work.

Appendices

Preliminaries. For this section, it will be useful to have an alternative
definition of the Whitney topologies on sections of T M (vector fields).
Let μ be an arbitrary positive definite metric on M μ induces a norm
in the fiber of each tensor bundle over M in the standard way. For
example, if Yc

a

d

b(p) is a tensor at p in some coordinate system, then
|| Y || (p) = (γ«d

b Yg

e

h

fμaeμbfμ
cβμdh^. Let V denote the covariant derivative

with respect to μ, let δ(p) be any positive continuous function on M,
and let K be a C vector field on M. Define

W(V9 δ(p)) = {X E C(T M) : \\X - V\\ (p) < δ(p\ \\ VX - VV\\ (p) <δ(p\

where the "$" stands for symmetrization .

The reader may verify for himself (or see Munkres [15]) that W(V, δ(p))
is a Wr neighborhood of V, and that the topology defined by using these
sets to construct a neighborhood basis at each Ve Cr(TM) is identical
to the Wr topology. In particular, the topology so determined is inde-
pendent of μ.

I. The set of complete vector fields is open in Γ1 (T M) 7.

7 This proof is based, in part, on a suggestion of C. Pugh. The definition of a flow
and other important things may be found in Lang [20].
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Proof. Write M= (J Q, where Ck is compact and CkCint(Ck + 1)
fc = l

for each fc. Let X be complete and ιpx: RxM\->M the flow of X. The
set tpχ([— 1, 1] x Ci) is compact, so there exists a smallest k^ such that
(̂[•"1? 1] xQ)Cint(CΛ l). We claim there exists ri >0 such that if

ZeC^TM) lies in the set Λ/ r (r 1 ,C k l ,A') = {yeC 1(TM): ||y(p)-X(p)||,
\\ΫY(p)-VX(p)\\<ri9peCkί}, then φz is defined on [-1, l]xC 1 ?

and v?z([ — 1, 1] x Q) C int(Ckl). For suppose the claim is false. Then for
each n there exists Zne N(l/n,Ckί,X) and a point p neQ such that
Ψzn(tn>Pn) = (lnE M — int(Ckl) for some tn in [—1,1]. By compactness,
we may assume pn^p0 e C1? ίπ->ί0e [— 1, 1]. Cover the curve [— 1, 1] 9ί
h>φx(ί;p0) [which lies in int(Ckl)] by finitely many coordinate charts.
Using GronwalΓs inequality (Hurewicz [21], p. 6, or Lang [20], p. 67)
it is easy to see that the curves ψZn(t, pn) converge to ψx(t, p0) uniformly
in ί in each chart and thus in their union (note that since VZn-+VX
uniformly on Ckl, the appropriate Lipschitz constants converge as well).
In particular, Ψzn(

tn^Pn)-^Ψx(to^Po)E^(^kί\ which is impossible.
So rί exists, as asserted. oo

C1,ρι. = C ί -int(C ί _ 1 ) ? sothat/VΓ= (j β f. Then C k l = a finite

union of the β/s. As above, there exists, for each ΐ, a smallest sub-
collection of {Qj} such that ψx([- 1, 1] x β Xint^u ••• uβίm); and
there exists rt>0 such that ZeN(rί9 Q^u ••• uβίm,JΓ) implies that
ιpz([— 1, 1] xQi) is defined and contained in mt(Qtiv - uβίm). Notice
that since [ — 1, 1] x Qf is compact, each Qj can appear only finitely
many times in the above enumeration (as a Qin for some i). Put
Sj = minlη : φx([— 1, 1] x β^πg^ ΦO}. Finally, choose any strictly posi-
tive continuous function δ(p) such that δ(p)<Sj on Qj, and put
]/K= W(X, δ(p)). If ZεW, then Z is complete, since by construction,
Ψz( ± 1> P) is defined for all peM.

II. Lei /:Sx(0, oo)f-»M be α diffeomorphism, where S is some
3-manίfold, and let V = f^ (d/d f). Then there is a neighborhood
W(V) C Γ°(T M) such that for any V'eW

(a) each integral curve of V is transverse to all the surfaces
f ( S , { t } ) = Σt,and

(b) each such curve c(s) is incomplete in the direction of decreasing s.

Proof. Introduce an auxilliary positive definite metric μ as follows.
Let g be any positive 3-metric on one of the hypersurfaces Σt, and form
the 4-metric dt2 + g on Σt. Lie propagate this throughout M via the
action of V to obtain μ. For any x e S, the curve ίκ>/(x, t) is a geodesic
with respect to μ; it is parametrized by arc length and orthogonal to all
the hypersurfaces Σt. For any ΎeTpM, set ||7|| (p) = (μabY

aYb)^. Let
δ(p) be a positive continuous function on M, and consider the W0
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neighborhood

Clearly, if δ(p) is small enough at each p, then any Ye Wwill be transverse
to all the surfaces Σt. Moreover, if we require that for all p, δ(p) < a < 1
for some fixed α, we have 1 — a< \\Y\\ (p)<l + a. Then if c(s) is any
integral curve of Y which is complete to the past [i.e. c(s) exists for any
s e ( — oo, 0)], we have

S] \\c'(s)\\ds> S] (l-α)ds = + cx)
s = — oo s = — oo

and the μ-arc length is infinite. Similarly, c(s) is past-incomplete iff.
its μ-arc length to the past is finite. We will therefore be finished if we
can choose δ(p) such that the latter case holds for each such curve.

Let 7 be any vector field transverse to all the hypersurfaces Σt, and
let Y' be the vector field obtained from Y by reparametrizing the integral
curves with ί. We have Y' = h Y for some positive continuous function h.
If c(s) satisfies c(0) = peΣ f o , c'(0) = 7(p), then r(p) = c'(s(ί0))

Sublemma. WPϊί/i notation as above, there exists a W0 neighborhood
W(V9 δ(p)) such that Ye W implies l-ε<h<l+ε, for fixed ε e (0, 1).

Proof. Fix p e ΣtQ. There exists a number b > 0 such that if ZeTpM
satisfies | |Z— F(p)|| <b, then any curve c(s) tangent to Z may be re-

ds
parametrized by t near p, and — — (ί0) e (1 — ε, 1 + ε). This is trivial.

at
By the continuity of || || and K there is a neighborhood 17 (p) such that

d<?
if qεUnΣtl and ||Z- K|| (<?)<£, then -—-(ίJeCl -ε, 1 +ε) for any

curve tangent to Z(q) and reparametrized by ί. This is sufficient local
information; we now use a partition of unity to construct the required
function δ(p).

We may, in addition, demand that δ(p) be always less than some
fixed number a. Now let YεW(V, δ(p)\ and let c(s) be any integral curve
of Ywith c(0)e ΣtQ. Suppose c(s) is complete to the past; then its μ-arc
length is infinite, as we saw above, and

s = -oo ί = 0

which is impossible,
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