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Abstract. A gas of two Boson systems coexisting in R3, and interacting only mutually,
is analyzed. The interaction is quadratic, so that the dynamical problem may be solved
completely and exactly.

The initial state is taken to be the mutually uncorrelated Gibbs states: φ ( β ) ® φ ( β ) = 'ψβ.
We find the time evolved state, and its projections onto the separate species and the sub-
volumes.

The principle consequences of this model are discussed. In particular we examine the
possible occurrence of harmonic oscillations between the species.

§ 1. Introduction

In this note we present a model consisting of two species of Bosons,
1 and 2, coexisting in R3. The species are, by themselves, free; but between
them there is an interaction, quadratic in the fields. That being so, a
"linear combination of fields" transformation "diagonalizes" the
Hamiltonian. In the diagonal frame, there are two types of "quasiparticles"
which we denominate a and b\ they evolve in time by quasifree evolutions.

The principle consequence of the interaction is that persistent
interchanges between the original species occur. A local observable
formed from 1 before interaction will be formed from both I and 2
after interaction.

As persistent interchange is typical of hyperusiastic1 leakage be-
haviour such as in "superfluid leak", this model may be relevant to a
semi-phenomenological treatment of such phenomena [1,2].

The paper is organized as follows. In §2 we discuss the necessary
configurational geometry, introduce the appropriate Fock spaces, and
the pertinent algebras. The next section (§ 3) discusses the constituent
Gibbs states and the initial state of the system constructed from them.

* On Study Leave at the Department of Physics and Astronomy, The University
of Rochester.

** This research was partially supported by the National Science Foundation under
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1 A Hellenized generic term for super-substances such as Superίluids (J. M. Fergusson).
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The dynamics will be introduced in § 4 wherein the dynamical solution
is given. The principle consequences are discussed in § 5, including the
projections to the local regions. In §6 we add some further remarks.

§ 2. Model Kinematics

As mentioned in § 1, there are two different species of Bosons, 1 and 2,
mutually coexisting in R3, their configuration space. These Boson
systems, labelled Σl and Σ29 constitute the component subsystems of the
model system Σ. As we shall see in §3, Σί and Σ2 do not self-interact;
they do, however, interact with each other. If the mutual I\ — Σ2 inter-
action were removed, Σ1 and Σ2 would be infinte ideal Bose gases [3-5].

Our local regions ("volumes") are elements of the family, I, of open,
relatively compact, and star-shaped subsets of R3. For notational
brevity, α e Γ will mean either α e I or that α is R3 itself.

Recall [6] that α being relatively compact means that its closure,
α, is compact; by the Borel-Lebesgue theorem, α is therefore bounded,
since R3 is a Montel space [7].

Recall also that α is said to be star-shaped at the point ξ E α iff there is
a family (ηa)A where ηa e R3 for every α e A (an index set) such that

<x = {K,ίJ |aeA}. (la)

By [£, ηa~] we mean the convex line segment with endpoints ξ and ηa.
Let r > 1 be a real number by αr we shall mean the r-dilatation of the

above set α, namely
α r ={K,r ι j J |αeA} . (Ib)

In particular, let us choose some ξ e I and impose the convention
that one chosen interior point of ξ, which ξ is star-shaped at, will be the
origin of configuration space.

We also choose some length scale L^ 1, and abbreviate

ξ(nL> = ξn (neN). (2 a)

Our convention is to take N= {1,2, 3,...}. Furthermore, any otherwise
unexplained integer sub- or superscript will inevitably refer the corre-
sponding volume ξ(.}.

We assume ξ, L and the origin chosen once and for all, and set

IL = (UNCI; (2b)

notice that IL is an open cover of R3.
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To each α e Γ we associate Boson Fock spaces, one for each species:

S/α) = Σ ® *ymm [® L2(°θl (J = !> 2) (3a)
n = 0 lp=l

The n = Q term is C as a Euclidean space, by convention; j= 1 or 2
corresponds to Σί and Σ2 respectively; and symm is the symmetrizing
operator.

It is convenient to abbreviate

8fXίn)=e5ίπ) (*eN), (3b)
and

3r/K3) = ̂ . (3c)

The Fock spaces for the system Σ are constructed from those above
by means of the Hubert space tensor product operation:

MΓ); (4a)

and we introduce the abbreviations corresponding to (3b) and (3c):

, (4b)
and

(4c)

In what follows it will be very convenient to have a notation for direct
sums of certain function spaces, such as ®r(α), where α e l and the
r-subscript denotes real-valued. We propose to write, e.g.,

, (5a)

). (5b)

In addition, if u = ui®u2 e 2^(α), we refer to MX (resp. u2) as the first
(•resp. second) projection of u.

We now introduce the Weyl operators pertinent to this model. For
αeΓ, the L2(α) - inner product is denoted ( , )α

Let
2σ:2[L?(α)]x2[L^(α)]^R (6a)

be the symplectic form given through the formula

2σ(u, v) = K, v2)Λ - (u29 ΌI)Λ . (6b)

If H is any Hubert space, by B(#) we shall mean the set of all bounded
operators on H. Unless otherwise specified, it will be assumed to be
equipped with the weak *-topology σ(B(/f), B(ff)*)> whence it is a

[9].
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For Σ1 and Σ2 we shall need the CCR representations associated
with the above symplectic form [Eq. (6)] :

Wj(u) Wj(v) = exp [i2σ(u, u)] - H^(w + 1;) ,

for VM, v e 2®,(α); α e I; and) = 1, 2.
Our usual abbreviation shall hold :

Wj(ξJ=W}n>. (8)

For Σ we must double up by direct sum and by tensor product. Let us
write

4σ:4[L2(α)]x4[L>)]-+R (9a)

for the symplectic form
4σ(u ®v,u'® ι/) = 2σ(w, M') + 2σ(v, v') . (9b)

Now we are in a position to define the CCR Weyl operator for Σ
constructed from W± and W2 , namely : to each α e I, let

W: 40r(α)-> g (α) = ̂ (α)® S2(α) , (lOa)

be defined by
W(u®v)=W1(u)®W2(v). (lOb)

Thus, for every z', z e 4®r(α), the corresponding Weyl relations are :

W(z) W(z'} - exp [/4σ(z, z')] W(z + z') . (lOc)

Next we shall introduce the quasiparticle Weyl operators, although
there is no justification for the "quasiparticle" nomenclature at this
point. For p = a,b, αel, let the Weyl operators

βp:
2^(αHS(α) (lla)

be denned by
Qa(u)=W(u®u), (lib)

and
Qb(u)= W(u®-u). (lie)

It then follows from (llb-c) and (lOc) that the corresponding Weyl
relations are

QP(u) Qp(υ) = exp [2i2σ(u, vj] Qp(u + 1;) . (lid)

The following formulae enable us to transform between the (1,2)
description and the (a,b) description. They constitute, therefore, the
quasiparticle transformation for this model:

v)Qb$u-$v)9 (12)

Qb(v) = W,(u + υ)® W2(u - v) . (13)
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From the Weyl operators we construct the C*-algebras. It might be
worth emphasizing that our algebras are not FF*-algebras, which choice
is forced upon us by the instability of ^(R3) under time translations.

The Boson local C*-algebras are taken to be

Wj(u) = uc- <Wj(u)\Vue 2^,(α)> , (14)

where the angular brackets denote the free polynomial algebra formed
from the Weyl operators, modulo the (canonical commutation) relations
(7). The uc-denotes uniform closure, that is, closure in the operator norm
on g/α).

The 2l;(a) act on the 3f/α) and are irreducible [10] :

(15)

The family IL [Eq. (2b)] is upwards directed by inclusion and for
^m there is an injective mapping, fn%9 of 3ljm) = 91/ξJ into 91jn),

defined by
fW(I ) = /

J nm v^m/ *n ?

f(j) o f(j) — f(j) (n>n>m)
J pn J nm J pm IF = " == nι)

Then (9ίjm), /^ :ft^m) m e N forms an inductive family. The inductive
limit exists [11] and is called the quasilocal algebra for Σy.

31, = limίSβ^/^J^neN m^n} . (16)
•̂  π— » oo -* '

The quasilocal algebra 21̂ - acts on g/ = Sj(^3) an<l i§ a proper sub-
algebra of B(gy). Note that 9I7 does not depend upon I.

For the system Σ we take the local C*-algebras to be

ίί(α) - 2Ii(α) (x) 9ί2(α) (Vα e I) , (17)

where the symbol ® denotes the C*-tensor product, the completion
of the algebraic tensor product in the α0-cross norm [12].

For n^m, the mappings

(I8b)

are bounded and extend continuously to injections of 9I(w)-»2I(n). Denote
these injections by

Then just as for the ΣJ9 the quasilocal algebra for Σ will be taken to be

31= Km {9ί (" };/m n |m,neN;m^n}. (19)

The algebra 21 is a proper subalgebra of B(g) acting on g.
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§ 3. The Initial State

Let φ(β} and φ f } denote the Gibbs states for Σί and Σ2 at temperature
β = (kT)~1; it is supposed that they were calculated using rigid wall
boundary conditions and the family IL [5].

Given the Gibbs states, the GNS construction associates with them
certain canonical triples, the details of which need not concern us here [5] :

(1)

We now define the tensor product space :

(2a)
and vector:

Ωβ = Ω^®Ω^. (2b)

And let πβ = π(

β

1)(S)π(

β

2) denote the unique C*-representation [13]

π^Sl-^BG^), (2c)

which is the continuous extension of

)(fo)] . (2d)

Note that Ωβ is a cyclic vector for the representation πβ.
We shall take the state of Σ at time t = 0 to be that state of

constructed from the triple (J^β9 πβ, Ωβ) as follows:

ψβ(a) = (Ωβ,πβ(a)Ωβ) (VαeSl) . (3)

The extension of ψβ to the weak closure 7^(21)" is denoted

V>;e©[π,(3I)''],
and is given by

ιp~β(A) = (Ωβ, AΩβ) VA e πβ(W)Ί - (4)

Let ψ(

β

} be the restriction of ψβ to the local C*-subalgebra 9ϊ(α)
(αel).

Proposition 3.1. The restriction mappings /α*: S(2I)->S(2I(α)) are
relatively weak* -continuous. The f* are the adjoints of the injections of

Proof. This is a special case of a general situation encountered in
algebraic statistical mechanics, namely, let [11] ^ be a C*-inductive
limit:

/ / J β |()8,α)eIxI,)8^α}. (5)
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Let j/α* be the dual of j/α as a Banach space, but equipped with the
weak*-topology σ(Xf,j/α). By construction, jtf is equipped with the
finest topology under which the fβΛ are continuous [14]. Define the
transpose of these maps by

(6)

It is a known theorem [15] that the dual of j/, ««/*, equipped with its
weak*-topology σ(ja/*, j/), is the projective limit of the [Xf, σ(Xf, jtfj]
with respect to the mappings fjfΛ. But the projective limit topology
is the coarsest topology under which the fβa are continuous [16]. As
the /0*α are the desired local projections on the states considered as a
subset of the weak duals ja/α* — and consequently equipping the ®(^/a)
with the (Xf)-relative topology — they are relatively weak*-continuous.

As the C* -tensor product operation is sufficiently algebraically
continuous so as to allow an inductive limit algebra (2.19) for the system
Σ, these considerations apply to 21.

The point of this lemma is to ensure that the restricted states f*(ψβ)
do not give rise to any unexpected continuity pathologies.

Note that although ψβ will be seen to be locally normal, the fact
that the 2I(α) are not FK*-algebras prevents us from proving that the
ψ(

β

} are such that the corresponding representations π(

β

} are normal
representations on all of J^. That is, we have no analogue of Lemma 3.1
ofRef.[17].

The state ψβ is well-behaved, as seen from the following lemma.

Lemma 3.2. ψβ is translationally invariant and has the finite mean
density property (locally normal).

Proof. Let c):R3-»2[L2(R3)] be the unitary translation group, and
2<5:R3-+4[L2(R3)] be defined by 2δa = δa@δa. Then

(8)

[Vw, υ e 2^(R3)] proves the translation invariance.
The generators of the Weyl operators, the fields, are related by, in an

obvious notation,

(9a)

n(u®υ) = /! ® Iφ2(u) + π2(vj] [M, υ e 2^(α)] . (9b)
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By using the 2 x 2-matrix J = (2)~ 1/2 I . , we can transform from the

fields to the anihilation and creation operators, e.g.

<••-••<•»•
This leads to the following expressions

N(u®Q) = N1(u)®I2, [w, t> e 20r(α)] (11 a)

N(OΘt?)=/ι®N2(t?) (lib)

for the number operators, and thence to

JV(α) = N1(α)®J2+/1®Λ/2(α) (He)
on g (α).

From this it follows that

V>,(# (α)) ̂  0iυ(

or in terms of densities,

Corollary 3.3 (Lanford and Robinson) [18]. (i) ψ~β extends con-
tinuously to a CCR representation from 40r(R3) to B(J^); (ii) if

Γ:4^(R3)-»4^(R3) (14)

is a bounded automorphism of 4Lj(R3), then it induces an automorphism
of np(W)" defined by

. Π (15)

For φ(βj)(j =1,2) a similar result is valid.

§ 4. Model Dynamics

Let us establish some notation. The one-particle kinetic energy
operator, denoted by K, may be defined by the bilinear form [19]

ft:L2(R3)xL2(R3HC,

Λ, (l),
2m

where /~ is the Fourier image of fe L2(R3). The domain of 51 is

α)}. (2)
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One also writes
Λ(f,g) = (f,κ0) (3)

We shall define Hamiltonians associated with the local regions.
Then we write

κ\γ

for K restricted to y e I; in particular we write

κn = κ\ξn. (4)

If αeB(L2(y)) is a y-localized one-particle operator, then the corre-
sponding Fock space operator is constructed by means of the Fock-Cook
biquantization operator [20]

which we formally extend to the closed densely-defined operators on
L2(y) such as κ\y. We also write ωί and ω2 for the biquantization on
Si and 3 2

Let Ό be a potential operator on L2(R3) with kernel F(x); we shall
ordinarily have V of compact support, bounded and reasonably smooth.

In heuristic terms we shall be interested in local Hamiltonians of the
form

H(γ) = ω1 (K 1 7) ® I2 + 1^ ® co2(κ \ γ)
(6)

The aj9 aj are the annihilation and creation operators following from
the fields as in Eq.(3.10).

Equation (6) is not the axiomatic way that we shall define the model
dynamics [see Eq. (18) below]. It does convey the essential idea behind
the axiomatic definition, however. In fact, (6) points the way towards
the diagonalization procedure. For H(y) is quadratic; one suspects,
therefore, that completing the square will diagonalize it. Of course
one must be careful about the kernels [e.g. (K + Ό) \ y] used to complete
the square.

If one formally follows this idea through, one is led to those fields
which generate Qa and Qb defined in Eq. (2.11). In terms of these a and b
fields, H(y) is equal to Ha(y) + Hb(γ\ where each term is quadratic and
depends upon a and b alone, respectively.

For mathematical simplicity it is easier to start with the a and b
mode description, and to show that H(y) follows. In this manner one
may even generalize H(γ) slightly, at no extra effort.
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Clearly the evolution in terms of a and b is separately quasifree, since
Ha(γ),Hb(y) are quadratic. We start, therefore, by introducing one-
particle evolutions for Qa and Qb.

For p = a,b, let μ£ί}: R-»B(L2(£n)) be strongly continuous unitary
groups such that

; (7)

The generator of μ£° is written α^n). By 2μ£° we mean μ^Θμ^ as usual.
We use μ£° to define an automorphism group of 9I(Π) as follows :

τ ( Λ ):R->Aut[2l ( π )],

- δ«C2μr (ί) (i« + itO] Qbl
2An}(t) (iιι - it;)]

or converting back :
Definition 4.1. Let

τ(Λ):R-*Aut[Sl(II)]
be defined by

τ(n)(t)\ W(u@υ)-+W{[2μ(?(t) u + 2μ(-}(ί) v] + [V-}(0 " + VΐHO ϋ]} , (9)

where 2μ(

±

n) - μln) ± μj,"} V M, i; e 2^r(ί „) . D
Let us demonstrate that τ(n) is related to H(γ) of Eq. (6). This demon-

stration is entirely heuristic although there is no reason to suspect
the result. We are content with 4.1 above as the definition of the local time
translations.

If we write

then taking (gi = l9g2 = 0) we can isolate the kinetic energy part of the
evolution; and (g1 =0,g2= 1) isolates the interaction part.

Then for (g\ = ^,g2

 = 0)> M+} i§ tne kinetic energy evolution operator
exp(ϊίκ;w); and (9) reduces to

Jn>(f,gi = l'9g2 = 0)W(u®v)

= W[2μ(?(t)u®2μW(t)v].

This automorphism group is generated by

ωι(fcw)(8) /2 + /i ®ω2(κn) , (12)

the kinetic energy part of H(γ) [Eq. (6)].
In order to complete the demonstration, we must be able to recognize

the action of the interaction part of H(γ). Using the formal multiple
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commutator expansion of Magnus, the exponential of the H(y) inter-
action leads to the evolution, e.g. :

Φι(f)®l2^Φιt™s(t»}n®l2+Iι®Φ2ί$™(t»)n (13)

for V t e R, V / e @>r(y). And for example, if we set g1 = 0, g2 = 1 and v = 0,
u = /00 in (9), we find that

(14)

The relation between (13) and (14) is obvious. This ends our examina-
tion of the relation between our axiomatic definition of time translations
for this model (Definition 4.1) and the heuristic Hamiltonian H(y)

Our next task is the consideration of the limit n->oo for the time
translations (9). To do this requires knowledge of the behaviour of the
μ(p] in the limit. Using the ideal Bose gas as an example, and considering
α£° of (10) in this light, we shall demand that μ£° satisfy the following
conditions [4, 5, 21].

Definition 4 2. There exists a strongly continuous unitary group
μp:R-*R(L2(R3)) (p = a,b) satisfying

(15)
and defined by

s - L2(R3) lim μM(t) f = μp(t] f (16)

for every /eLo(R3), elements of L2(R3) of compact support. We shall
denominate the generators of μp(t) as ap(p = a,b)\ by Stone's theorem,

D (17)

The limit π->oo for Eq. (9) is, in view of (15) and (16), identical to the
similar problem for the ideal Bose gas. The solution is [4, 5, 21]

s-%(R3)limτ(n)(t)W(u®v)
(18)

with

Equation (18) gives the dynamical solution for our model; it is to be
interpreted as in Corollary 3.3, in view of our choice of initial state.
Namely, as an automorphism group of 7^(21)".

Whereas μa and μb are unitary groups, μ+ are not. In the (a,b) - mode
description, the evolution is unitarily implemented on J^. As it is the
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(1,2) - mode description which is of primary interest, let us define the
family of automorphisms (not unitarily implemented!):

Definition 4. 3. Let
Γ,:R->Aut[π,(Sl)''] (19)

be defined by

s-^jim πβ[τ(n)(t) W(u®v)]

= Tβ(t) πβ[_W(u®v}] [u, VE 2^r(R3)]

= 41){»Γ1[
2μ+(ί)« + 2μ-(ί)t?]} (20)

The last expression in (20) is in terms of W± and W2, and follows from
substituting Eq. (2.10b) in Eq. (18).

§ 5. Consequences

Let (Γβfλ) be the family of Bose-Einstein operators on L2(R3) associated
with the Gibbs state for the ideal Bose gas: (β, μ) e R + x R _ with inverse
temperature β, and chemical potential μ. Each Γβ>μ defines a bilinear
form (see Eqs. (4.1-4.3 for example) on L2(R3) through the expression

( f , Γ β > μ g ) = fΠk)0~(-k)S(/?,μ,;k)dk, (1)
R3

the kernel for Γ β t f l is the Bose-Einstein distribution

x (2)
l-exp

with A proportional to the mean superfluid density ρ — ρc [4, 5].
If w^^ 01^2,^ = ^1 Θ v2 e

2Lo(R3), we shall abbreviate

= (ui9 ΓvJ + (u2, Γv2) , (3)

omitting the j8,μ indices when no confusion is likely to result. In the
same spirit we shall write

<M,t;> = (M1,t;1) + (M2,t;2), (4)

which is relevant to the Fock state component of the Gibbs state. The
Gibbs states for the algebras <ίίί and 212

 are given by

Ψjl/)[Wj(«)] = exp{-i<«,tι> -i<w,2Γw>} (7=1,2), (5)
so that

. (6)
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Hereafter, we shall write <u, w> = [U]Q and <M, 2Γu) = {U}Q. Substituting
Eq. (4.20) in this gives:

+(t)vγo (7)

for the principle equation of the model. In the full generality of (7),
the quasiparticle transfer is not particularly emphasized. It is, however, if
we specialize to v = 0, say. If in addition we specialize to u e 2^(α),
α e I, we shall be able to consider the full time evolution of the state ψβ

at time ί, restricted to α e l and to the algebra <Hί. This partial state
will be denoted σ^ί α)^ and is a state on
Then a simple computation gives :

(8)

Let us note here that the generalized master equation of Ref. [17] is
an equation for the first (strong-) time derivative of a partial state
analogue to σ^t oήyfβ. There is the difference that the "-system of
Ref. [17] is finite and no additional projection to a finite subvolume is

necessary there.
That (8) is associated with an interchange between the two species of

Bosons is seen by viewing (8) in conjunction with the expression

(9)

It is worth noting that the time dependence in Eqs. (7)-(9) is not
spurious; it does not generally cancel out. One may in fact choose the
potential so that the spectra of K ± υ is of the form

X-V

( * Energy spectra

0

Fig. 1
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That is, there is a discrete spectrum outside the essential spectrum in
both cases. The discrete spectra must have proper values below zero.
These values need not be the same in both cases. We have not investigated
the conditions on u for the negative part of the discrete spectra to be
finite or even consist of one proper value, if that is possible. For it is
sufficient for our purposes that such proper values exist. A one-dimen-
sional potential showing such behaviour is an easy example to construct;
viz. a well-barrier:

I y ( x )

-d

Fig. 2

If I [/! I = 1/2, c = α, and d = b in this example, the discrete spectra of K ± Ό
are found to be identical, and both are found just as for one finite square
well.

In cases such as Figure 1 illustrates, a general observable can exhibit
harmonic response. By this we mean that resonances corresponding to the
discrete spectra below zero can be extracted from the noisy response
by a spectral analyzer. This implies that a system described by our model
may be triggered externally — by a transducer? — to show resonance.
Herein lies a possible connection to the Josephson effect in superfluids [1]
which is currently thought not to have been observed: the effect described
in Reference [1] is now thought to be an experimental error, but the
effect described is still expected to occur [22]!

In this regard we point out that these time dependent effects are
persistent rather than damped.

§ 6. Further Remarks

a) One could alter the geometry of this model formally so as to
initially confine the two species 1 and 2 to contiguous half-spaces. The
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details are similar to this model. The only essential computational
change is that the ascending cover replacing IL is as follows:

Fig. 3

In terms of polar coordinates, one such dilatation has [r, Θ ' ] e ξ 1

correspond to the point [nLr, gnff] e ξ("L\ where

π

~2φ
+ 1-

π

~2φ

The major difficulty with such a model lies in the interpretation of
time translation formulae; space translational in variance is clearly
broken, and it is not clear what to make of Ό. The formal calculations
are identical, in any event.

b) A comparison of this model with the abstract model of Ref. [17]
shows a great similarity. One suspects that if the local algebras of a
model were type I W* -algebras, with both components, 1 and 2 giving
rise to Type I funnels:

(6.1)

(6.2)

then the composite system

«$/= lim [s/[n)®^r

is also a Type I funnel. This is obviously so, when (x) is a FF*-tensor
product.

Moreover, the two crucial lemmata, 2.3 and 3.1 of [17], concerning
the uniform convergence of states of Σ defined by states of Σl and Σ2

which are themselves uniform limits of states; and the natural behaviour
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of local normality and normal representation under such PF*-tensor
products, both still hold. It follows that the principle result of [17], the
generalized master equation for sufficiently good interaction between
Σ1 and Σ2 may still be valid for two Type I funnels.

c) The proof of Proposition 3.1 seems to point out that the duality
between inductive and projective limit topologies is an important
technical point when considering composite systems in thermal contact.
It might possibly prove useful in considering the behaviour of subsystems
of homogeneous systems, which are not usual thought of as composite.
A model along these lines has been discussed by Emch and Radin [24].
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