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Abstract. We derive a classical integral representation for the partition function, Z β ,
of a quantum spin system. With it we can obtain upper and lower bounds to the quantum
free energy (or ground state energy) in terms of two classical free energies (or ground state
energies). These bounds permit us to prove that when the spin angular momentum J-^-oo
(but after the thermodynamic limit) the quantum free energy (or ground state energy) is
equal to the classical value. In normal cases, our inequality is Z c ( J ) ^ Z β ( J ) ^ Z c ( J +1).

I. Introduction

It is generally believed in statistical mechanics that if one takes a
quantum spin system of N spins, each having angular momentum
J, normalizes the spin operators by dividing by J, and takes the limit
J-^oo, then one obtains the corresponding classical spin system wherein
the spin variables are replaced by classical vectors and the trace is
replaced by an integration over the unit sphere. Indeed, Millard and
Leff [1] have shown this to be true for the Heisenberg model when N
is held fixed. Their proof is quite complicated and it is therefore not
surprising that this goal was not achieved before 1971. Despite that suc-
cess, however, the problem is not finished. One wants to show that one
can interchange the limit N^oo with the limit J-»oo, i.e. is the classical
system obtained if we first let N->oo and then let J-»oo? In the Millard-
Leff proof the control over the JV dependence of the error is not good
enough to achieve this desideratum.

A more useful result, and one which would include the above, would
be to obtain, for each J, upper and lower bounds to the quantum free
energy in terms of the free energies of two classical systems such that
those two bounds have a common classical limit as J-»oo. In this paper
we do just that, and the result is surprisingly simple: In most cases of
interest (including the Heisenberg model), the classical upper bound is
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obtained by replacing the quantum spin by (J + l) times the classical
unit vector, while the lower bound is obtained by using J instead of
(J-f 1). Symbolically,

ZC{J) ^ ZQ{J) S ZC(J + 1). (1.1)

In other cases the result is a little more complicated to state, but it
is of the same nature. With an upper and lower bound in hand, it is then
possible to derive rigorous bounds on expectation values, as we shall
describe in Sections V and VI.

The main tool in our derivation will be what has been termed by
Arrechi et al. [2] the Bloch coherent state representation. These states
and some of their properties were obtained earlier [3,4], but the most
complete account is in Ref. [2]. Our lower bound is obtained by a
variational calculation, while the upper bound is obtained from a
representation of the quantum partition function that bears some
similarity to the Wiener (or path) integral. Apart from its use in deriving
the upper bound, the representation may be of theoretical value in
proving other properties of quantum spin systems. In particular, it
provides a sensible definition of the quantum partition function for all
complex J, not just when J is half an integer, and one may discuss the
existence or non-existence of a phase transition as a function of the
continuous parameter J.

In a forthcoming paper [7] it will be shown how to apply the methods
and bounds developed herein (using not only the Bloch states but the
Glauber coherent photon states as well) to certain models of the inter-
action of atoms with a quantized radiation field, for example the Dicke
Maser model.

II. Bloch Coherent States

In this section we recapitulate results derived in Refs. [2] and [3].
We consider a single quantum spin of fixed total angular-momentum
and shall denote by S = (Sx, Sy, Sz) the usual angular momentum opera-
tors:

[S x, Sy] = ίS z, and cyclically, S± = Sx ± iSy. (2.1)

We denote by J the total angular momentum, i.e.

S2 = Sx

2 + Sy

2 + SZ

2 = J(J + 1). (2.2)

The Hubert space on which these operators act has dimension 2 J + 1,
i.e. i t i s € 2 J + 1.
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On the classical side, we denote by £f the unit sphere in three
dimensions:

<f = {(x, y, z)\x2 + y2 + z2 = 1} , (2.3)

and by L2 (£/*) the space of square integrable functions on 6^ with the
usual measure

Ω = {θ,φ), O^θ^π, 0 ^ φ < 2π , (2.4)

dΩ = sinθdθdφ, (2.5)

z = cosθ. (2.6)

(Note: In Ref. [2], but not Ref. [3] the "south pole", instead of the
customary "north pole" corresponds to 0 = 0. Hence our formulas will
differ from Ref. [2] by the replacement θ-^π — θ).

With I J> e C 2 J + 1 being a normalized "spin up" state, SZ\J} = J | J > ,
one defines the Bloch state \Ω> e C 2 J + 1 by

£0) eιφS_} \J)

( 2 J )

where |Λί> is the normalized state

such that
SZ|M> = M | M > . (2.9)

It is clear from (2.7) that the set of states |ί2> are complete in (C27 + 1.
Their overlap is given by

(2 10)
- {cos^θ cos^^ + e

i{φ~φΊ sin^θ sin^θ'}2-7

so that if we think of K3(Ω\ Ω) as the kernel of a linear transformation
on l}{Sf) it is selfadjoint and compact. In fact, it is positive semidefinite.
We also have

\Kj(Ω\Ω)\2 = looser \ (2.11)
where

cos Θ = cos θ cos θ' -f sin θ sin θ' cos (φ — φ') (2.12)
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is the cosine of the angle between Ω and Ωr. In particular |Ω> is nor-
malized since KS(Ω, Ω) = l.

Now let Ji2J+ι be the set of linear transformations on (C2J + 1 (i.e.
operators on the spin space) and, for a given Gel} [Sf\ define AG e Jί2J+ί

by

ΛG = ^ ± - - f dΩ G(Ω) |Ω> <Ω|. (2.13)

/Note: frfΩ always means \ dΩ\. Since the Hubert space is finite di-

mensional there is no problem in giving a meaning to (2.13). It is a
remarkable fact that every operator in Jί2J + 1 can be written in the form
(2.13). In particular,

^ 4 ± ^ Ω i (2 l4)

Thus, to every operator A e Jί2J + 1 there correspond two functions:

(Ω\A\Ω}, (2.15)

and the G(Ω) of (2.13). The former is, of course, unique, but the latter
is not. However, it is always possible to choose G{Ω) to be infinitely
differentiable. In Table 1 we list some function pairs for operators of
common interest and useful formulas for calculation are given in
Appendix A.

Table 1. Expectation values, y(Ω), and operator kernels, G(Ω), [cf. (2.13), (2.15)] for various
operators commonly appearing in quantum spin Hamiltonians

Operator

S,
Sx

sy
sz

2

sx

2

sy

2

0(Ω),(2.15)

J cosθ
J sinθ cosφ
J ύnθ sinφ
J{J -\) (cos tf)2 + J/2
J (J -{) (sinθ cos φ)2 + J/2
J(J -\) (sinθ cosφ)2 + J/2

G(Ω),(2.13)

(J + l)cosθ
( J + 1) sinθ cosφ
(J + 1) sinθ sinφ
(J + 1) (J + 3/2) (cosθ)2 - i ( J + 1)
{J + 1) (J + 3/2) (sinθ cosφ)2 - \(J + 1)
(J + 1) (J + 3/2) (sinθ cosφ)2 - %(J + 1)

We need three final remarks. The first is that if we consider
\Ω}(Ω'\eJί2J+i then

Ω'| = ̂ ( Ω ' , Ω ) (2.16)
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(where Tr means Trace) as may be seen from (2.7). Hence, from (2.13)

Tr AG = ̂ ± L J dΩ G(Ω). (2.17)

The second is that

2J + 1

4π
" dΩ Kj(Ω\ Ω) Kj(Ω, Ω") = Kj(Ω\ Ω"), (2.18)

as may be seen from (2.14). Thus, K3 reproduces itself under convolution.
The third remark is that for any AeJί13Λ~γ we can use (2.14) to

obtain

It A = 2J

Λ

+1 f dΩ Tr |Ω> <Ω| A
4π

\dΩ t <M|Ω><Ω|X|M> (2.19)
4 π ' M=-J

2J

4π

III. Lower Bound to the Quantum Partition Function

We consider a systpm of N quantum spins and shall label the ope-
rators and the angular momenta (which need not all be the same) by a
superscript i, i = l,...,N. The Hamiltonian, H, can be completely
general but, in any event, it can always be written as a polynomial in
the 3N spin operators. The partition function is

ZQ = aNΎτexp(-βH), (3.1)
where

•aN= fliU' + ί)-ι. (3.2)
i = l

[The normalization factor % is inessential; it is chosen to agree with the
classical partition function when β = 0~\. The Hubert space is

jfΛΓ = (χ) .# ' i = ( g ) C 2 J ί + 1 . (3.3)
i = 1 > = 1

We denote by |ΩN> the complete, normalized set of states on J>ί?N defined

by
N

s
ί = l

*) = (g) |Q'> , (3.4)
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by £fN the Cartesian product of N copies of the unit sphere, and by dΩN

the product measure (2.4), (2.5) and (2.6) on £fN. Using (2.19),

ZQ = (4πΓN ί dΩN (ΩN\ e~βH\ΩN) . (3.5)

By the Peierls-Bogoliubov inequality, (ψ\ ex \ψ} ^ exp<φ| X \ψ} for
any normalized ψeJήfN and X selfadjoint. Thus,

ZQ ^ (4πΓN J dΩN Qxp{-β(ΩN\H\ΩN)}. (3.6)

Suppose, at first, that the polynomial, H, is linear in the operators
Sι of each spin. That is we allow multiple site interactions of arbitrary
complexity such as Sx

{ S}

2 S}

3 S2

4, but do not allow monomials such as
(S^)2 or Sx

ιSy

ι. In this case, which we shall refer to as the normal case,
we see from (2.15) and Table 1 that the right side of (3.6) is precisely the
classical partition function in which each 5 ι is replaced by Jι times a
vector in 9. I.e.

S'-> /( s in^ cosφ\ sinθ* siiκpf, cosθ1). (3.7)

Thus, in the normal case,

Z Q ^ Z C ( J 1

? . . . , J N ) ? (3.8)

where Z c means the classical partition function (with the normalization

In more complicated cases, (3.7) is not correct and S^1, for example,
has to be replaced by J 1 cosθ1 if it appears linearly in H, {S/)2 has to be
replaced by [J 1 cosθ 1] 2 + J 1 (sinθι)2/2 and so forth (see Table 1). How-
ever, to leading order in J\ (3.7) is correct.

We note in passing that it is not necessary to use the Peierls-Bogoliu-
bov inequality for all operators appearing in H. Thus, suppose the whole
Hubert space is Jff = Jf (x) j^N where Jf is the Hubert space of some
additional degrees of freedom (which may or may not themselves be
spins) and H is selfadjoint on Jf'. Then (by a generalized Peierls-
Bogoliubov inequality)

ZQ = (XxTv^.Tr^Qxpi — βH)

^Tr^rN $dΩNexp{-β(ΩN\H\ΩN)} ( 3 ' 9 )

where (ΩN\ H\ΩN) is a partial expectation value and defines a self-
adjoint operator on Jf. We shall give an example of (3.9) in Appendix B.
It is clear that if j f is itself a spin space, then (3.9) gives a better bound
than (3.6) applied to the full space W.
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IV. Upper Bound to the Quantum Partition Function

Returning to the definitions (3.1) and (3.3) we note that

ZQ= limZ(w), (4.1)
n->oo

where
Z(n) = oίNΎr(ί - βn"ιH)n. (4.2)

Now, let H be represented by some G(ΩN) as in (2.13), whence 1 — βn'1 H
is represented by

1 . (4.3)

Using (2.10), (2.13) and (2.16), we can represent Zn as an nN fold integral:

Z(n) = α N j dΩN

ι • • • j dΩN" f\ Fn(ΩN

j) L3(ΩN{ ΩN

j+ι) (4.4)
J = I

with n + 1 = 1 in the last factor, and where

Lj(ΩN', ΩN) = (4π)-*α N " ' f] KJt{Ω'\ Ω!). (4.5)
i = ί

Thus
LJ(ΩiV,ΩiV) = ( 4 π Γ ^ ] V - 1 . (4.6)

j dΩN Lj(ΩN\ ΩN) Lj{ΩN9 ΩN") = Lj(ΩN\ ΩN"). (4.7)

Equations (4.1) and (4.4) are our desired integral representation
for ZQ. To use them to obtain a bound, we think of Fn as a multiplication
operator and of Lj as the kernel of a compact, selfadjoint operator on
L2(^v). If B(ΩN\ ΩN) is such a kernel, then

TrJ5 = J dΩNB(ΩN, ΩN) (4.8)

is the trace on L2 (<$fN). Thus,

Z(n) = α i V Tr(F l l L J r . (4.9)

In general, if m = 2\ j = 0,1, 2, 3,...,

\Ίr(ΛB)2m\ S Tv{Λ2 B2)m S Tr A2mB2m , (4.10)

whenever A and B are selfadjoint. This follows from the Schwarz ine-
quality (see Ref. [5] for details). Hence, if we take a sequence n = 2\
j = 1, 2,... in (4.2) and use (4.7) n times and (4.6), we obtain, in the limit
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ft—>00,

Z Q g (4π)"N j dΩN exp[-/?G(^)] . (4.11)

(4.11) is our desired classical upper bound. It is just like (3.6). In
the normal case we see from Table 1 that Sι is replaced by (J1 + 1) times a
classical unit vector. In other cases, G(ΩN) is a bit more complicated,
but the same remarks as in Section III apply. Thus, in the normal case

ZC(J\ ..., J") g Z Q ^ Zc(Jι + 1,..., JN + 1). (4.12)

This inequality says that as J increases the quantum and classical free
energies form two decreasing, interlacing sequences.

As in Section III, if W = Jf7® ^ an inequality similar to (4.11) can
be shown to hold, i.e.

Z ^ T r ^ ( 4 π Γ N μ ί 2 N e x p [ - ^ ( . , ί 2 i V ) ] , (4.13)

where H(,ΩN) is a selfadjoint operator on Jf obtained by replacing
each monomial in the spin operators in H by the appropriate G(ΩN)
function found in Table 1. We shall illustrate (4.13) in Appendix B.
If Jf is a spin space then (4.13) gives a better bound than (4.11) applied
to the full 3/e*.

V. Bounds on Expectation Values and the Ground State Energy

The expectation value of a quantum operator (observable), A, is

Q exp(-j8Jf)/Trexp(-j8iJ). (5.1)

We can always assume A is selfadjoint (otherwise consider A + A^ and
iA — iA\ in which case the Peierls-Bogoliubov inequality reads, for
λ real,

ΛO4>β^/(λ)-/(0), (5.2)

where
1 (5.3)

is a free energy. Hence, with λ > 0,

- /(-λ)]/λ £ <A)V £ UW - /(0)]/A . (5.4)

The upper and lower bounds to f{λ) derived in the preceding two sections
can be used to advantage in (5.4). In particular, we use (5.4) in the next
section to derive J -• oo limits of quantum expectation values.
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If we take the limit β—>oo in (3.1) we obtain bounds on the quantum
ground state energy:

EC_SEQSEC

+, (5.5)

where Ec is the classical ground state energy (i.e. the minimum of the
classical Hamiltonian over SfN) and the + (resp. —) refers to the sub-
stitution of the appropriate G(ΩN) (resp. g(ΩN)) functions from Table 1.
In the normal case

EC(J\ ..., JN) ^ EQ ^ EC{J1 + 1,..., JN + 1). (5.6)

As ground state expectation values obey an inequality similar to (5.2),
with / replaced by £, a bound similar to (5.4) holds for E. This is merely
the variational principle.

The upper bound in (5.6) is easy to obtain directly by a variational
calculation, but the lower bound is not. It is not easy to find a direct
proof of it in a system consisting of three spins antiferromagnetically
coupled to each other.

VI. The Thermodynamic Limit

A. The Free Energy

We shall, for simplicity, consider only the normal case here. The
general case can be handled in a similar manner.

Let HN be a Hamiltonian (polynomial) of N spins in which each
spin has angular momentum one. Replace each spin operator Sι by
(J)~1Sι and let Sι now have angular momentum J. We shall denote
this symbolically by H$(J) and the partition function, (3.1), by Z$(J).
[It would equally be possible to allow different J values for different
spins, but that is a needless complication. Also, the factor J " 1 is not
crucial. One could as well use J~ 1 / 2 (J -f l)~1 / 2] Denoting the free energy
per spin by fN (J) = — (N β)'1 In ZN(J\ the theorem to be proved is that

lim l im/β(J) = / c = lim/ N

c , (6.1)
/-•oo N->oo N-+CO

where f£ is the free energy per spin of the classical partition function
in which each S1 is replaced by a classical unit vector. It is assumed
that HN is known to have a thermodynamic limit for the free energy per
spin. We also want to prove an analogous formula for the ground state
energy per spin. Our bounds are

fi*f${J)*ti{δj), (6.2)



336 E. H. Lieb:

where the right side is the classical free energy per spin in which each
vector is multiplied by δj = (J -f J )/J.

If we think of δj as a variable, (3, then Hfi(δ), the classical Hamiltonian
as a function of (3, is continuous in δ. Moreover, N~1H^(δ) is equi-
continuous in JV, i.e. given any ε > 0 it is possible to find a >' > 0 such that
HΛΓ1 [H£(<5 + x) - H£(<5)] II ^ ε for |x| < y, independent of ΛΓ, where || ||
means the uniform on ίfΉ. Hence, the limit function

/C(«5)Ξ ϊimtfiδ) (6.3)
iV~+oo

is continuous in δ. This, together with (6.2), proves (6.1).
The same equicontinuity holds for the classical ground state energy.

Thus, the analogue of (6.1) is also true for the ground state energy per
spin :

lim lim N"1 E%(J) = lim EC

N . (6.4)
J->oo iV-+oo JV-*oo

B. Expectation Values

We consider expectation values of intensive observables N~ιAN.
For example, AN might be the Hamiltonian itself, in which case <( JV~~1 ^4^)

JV

is the energy per spin. Alternatively, AN could be £ Sι

z so that < N - 1 ΛN}
i = l

is the magnetization per spin. As before, we replace each Sι by (/Γ 1

times a quantum spin of angular momentum J, both in the Hamiltonian
and in AN. Then, using inequality (5.4) and the bounds (6.2) we have,
for each positive A, fixed N and fixed J,

where f£(λ; δ) is the classical free energy per spin when the Hamiltonian
is Hfi + λ Ax and where each classical spin unit vector in Hfi and A%
is multiplied by δ. We are interested in δ3 = (J + l)/J.

Now take the limit JV-*oc and then the limit J-»co in (6.5). By the
same equicontinuity remark as in Section VIA, for each λ > 0,

lim sup lim sup N'\AN}Q^ λ'1 [/c(0) - fc{-λ)~\ ,

lim inf lim inf N~ \AN}a ^ λ"' [fc(λ) - / c (0)] . (6.6)
J-

In (6.5), fc(λ) is the limiting classical free energy per spin for the Hamil-
tonian Hfi + λA% (with δ = 1). It is easy to see that /c(/l) is concave in λ
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and hence lim A"' [/C(A)-/C(O)] - G+ and l i m r ι [ / C (O)-/ C (-A)]

= G~ exist everywhere. If G+ = G~ (i.e. the right derivative equals the
left derivative) then by a theorem of Griffiths (6)

! i m ~τv IN W =-rvfC (λ). (6.7)

This is the case in which the classical expectation value N x (ANyc

has a well defined limit. Call it α. Then

lim lim N~ι(AΉ}Q^a, (6.8)
J->αj iV->oo '

as one sees by taking the limit λ-*0 in (6.6). In other words, we have
proved that for intensive obserυables, as defined above, the quantum
expectation value equals the classical expectation value after first taking
the thermodynamic limit and then taking the classical limit J ->oo. If one
takes the limits in the opposite order the theorem is trivially true and
uninteresting. Note that we have not proved that the quantum thermo-
dynamic limit, lim N"1 (AN}Q exists. It may not.

N-+O0

The same proof obviously goes through for ground state expectation
values, as in Section VIA, because the ground state energy is also concave
in λ.
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Appendix A: Some Useful Formulas

The algebra Jί1J + ι has S+, S_ and Sz as generators. Hence, the
following generating function permits, by differentiation, easy calculation
of g(Ω) in (2.15) or Table 1 for any operator. It is to be found, with ap-
propriate modifications, in Ref. [2].

<Ω| exp(y S+) exp(/?SJ exp(αS_) |Ω> (A.I)

Turning to (2.13), we calculate AG for a sufficiently large class of
functions G(Ω). Let

G(Ω) = eimφ(cos%θ)p(sm%θ)q (A.2)
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where m is an integer and p and q are complex numbers. Defining
A(m, p, q) = AG, the matrix elements of this operator can be calculated
using (2.7) to be

A(m, p, q\ M, M') = <5(M - M' - m) Γ(J + α + 1 + p/2) Γ(J - α + 1 + q/2)

• [(J + α + m/2)! (J + α - m/2)! (J - α - m/2)! (J - α + m/2)!]" 1 / 2 (A.3)

where δ is the Kroenecker delta function, Γ is the gamma function and
α = (M + M')/2. This formula has been used to calculate Table 1.

Appendix B: Application to the One Dimensional Heisenberg Chain

To illustrate the methods of this paper, we derive bounds for the
free energy of a Heisenberg chain whose Hamiltonian is

H = - *Σ Sl-Si + i . (B.I)

Each spin is assumed to have angular momentum J. We have chosen the
isotropic case for simplicity, but one could equally well handle the
anisotropic Hamiltonian with a magnetic field. Note that β > 0 is the
ferromagnetic case while β < 0 is the antiferromagnetic case.

The classical partition function is

f j X (B.2)

with free energy per spin

fc(β,x) = - lim (AW)-1 In Z£(/!,*). (B.3)
iV->oo

Our bounds are that

/ c ( / U ) ^ / Q ( / U ) ^ / c 0 3 , J + l ) . (B.4)

It is easy to evaluate (B.2) by the transfer matrix method. The
normalized eigenfunction (of Ω) giving the largest eigenvalue is obviously
the constant function (4π)~1/2. Thus,

(B.5)
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where
A(β, x) = (AπΓ1 ί dΩ exp{/5x2 Ω Ω}

= (βx2)~1smh{βx2),

and A(β, x) is independent of Ω' as it should be. In this approximation,
(B.4), one cannot distinguish between the ferro- and antiferromagnetic
cases as far as the free energy is concerned.

To illustrate the idea mentioned at the ends of Sections III and IV,
we suppose that the chain has 2N + 1 spins and we let JfN (resp. Jf)
be the Hubert space for the odd (resp. even) numbered spins.
Jίf' = Jf ® JΊ?N is the whole space. Our bounds are

)^g(β<J + l ) , (B.7)

where

g(β,x) = - lim (IN^Γ1 ln{(2J + l)~NZN(β,x)}, (B.8)
JV-+00

{ZN(β9x) = {4π)-N f dONTrexp{i8x Σ S2i-(Ω21-1+ Ω2i + ί)\ (B.9)
I i = l J

and where dΩN = dΩι dΩ3 ...dΩ2N + ί and the trace is over the Hubert
space of S 2,S 4, . . . , S 2 *

Since the remaining spin operators no longer interact, it is easy to
calculate the trace. For a single spin:

T r e x p O S - t ] - £ exp[&Λfϋ] (B.10)
M=-J

where b is a constant and v is a vector of length v. Now we can do the
integration over ίfN by the transfer matrix method (with the same
eigenvector (4π)~1/2) and obtain

g(β,x) = -±\βΓι\n\_A(β,x)/(2J + l)-], (B.ll)

where

'dΩ y
(B.12)

sinh[(2J + 1) βxy]/sinh[βxy] .
o

Again, no distinction between the ferro- and antiferromagnetic cases
appears.
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