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Abstract. Guided by a diagonalized form of the classical field-energy we construct
a time-dependent canonical pair of Schrodinger fields Φt(x) and Πt{x) which diagonalizes
the field-Hamiltonian Ht. These Schrodinger fields in general belong to inequivalent
representations of the canonical commutation relations for different ί's.

The Heisenberg field is constructed by solving the Heisenberg equation of motion
and its time-evolution turns out to be governed by a unitary operator, i.e. the Heisenberg
fields at different times are unitarily equivalent.

Scattering theory (including eventual incoming and/or outgoing bound-states) is
finally constructed.

I. Introduction

We shall in this paper develop a Hamiltonian formulation of
relativistic quantum theory for charged spinless bosons in a local external
vector potential Aμ(x, t). The formulation will be free from divergences.

External field problems in relativistic quantum theory has been
studied frequently in the past and one naturally asks oneself if anything
new can be added. In order to get a motivation for this work, let's briefly
summarize what previously has been achieved.

Time-independent External Vector Potential: The solution of the
external field problem in the time-independent case was essentially given
by Heisenberg and Pauli [1] in their classical paper on quantum field
theory. They proposed that one should quantize a classical field by
expanding it in terms of the stationary solutions (eigenfunctions) and
quantizing the normal coordinates (generalized Fourier-components).
They actually only considered the Dirac case (spin 1/2), but the Klein-
Gordon case (spin 0) can be treated in complete analogy, see Schnyder
and Weinberg [2].

The Hilbert-space Jf, on which the fields are realized, is the Fock-
space associated with the stationary modes, and the field-Hamiltonian H
and the charge-operator Q define diagonal self-adjoint operators in Jf
(when properly normal ordered) provided Λμ(x) is sufficiently regular.
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The Dirac case was considered in great detail by Moses [3] who
attempted to implement the dynamics in the "free" Hilbert-space Jf0.
This, however, was not possible when a magnetic field was present.

Bongaarts [4] made a rigorous derivation of Moses's results and
developed scattering theory along the same lines as Lehmann, Symanzik,
and Zimmermann [5] (although the language is somewhat different).

From this it is tempting to draw the following conclusion: A fully
consistent field theory in the external field case is only obtained when
the quantum field is realized on the Hilbert-space 2tf where the full
field-Hamiltonian H and the charge-operator Q take diagonal forms
(provided Aμ(x) is sufficiently regular).

Time-dependent External Vector Potential: The time-dependent case
is much more subtle than the time-independent case and the first success-
ful treatment was given by Feynmann [6] with the so called space-time
(or propagator) approach. This approach is based on an integrated
version of the classical field-equation and allows any amplitude involving
spin 0 or 1/2 particles (and anti-particles) in an external vector potential,
to be calculated to any order in the external field. The theory contains
a divergence, the so called vacuum fluctuation, which however only give
rise to an infinite phase-factor in any amplitude when all orders are
taken into account.

A weak point in Feynmann's approach is that the proper statistics
has to be introduced by hand. This difficulty, however, was solved by
Dyson [7] by showing how to derive Feynmann's results from a per-
turbative formulation of quantum-field theory (including the vacuum-
fluctuation infinity).

Salam and Matthews [8] discussed exact solutions by studying a
singular integral equation for the one-particle scattering amplitude (or
pair production amplitude) which can be derived from the perturbation-
expansion.

Schwinger [9] formulated the problem in terms of Green's functions
and obtained the same results as Feynmann.

All these approaches have to our opinion the following drawback:
The time-evolution of an initial state (as a vector in a Hilbert-space)
cannot, as in non-relativistic quantum-mechanics, be considered
unambiguously.

A covariant Hilbert-space formulation of the interaction of an
electron-positron field (smeared over space-time) with an external vector
potential (rapidly decreasing in space-time) has been given by Capri [10].
This theory, however, is manifestly a scattering theory in which the
detailed dynamics (the time-evolution) cannot be considered. The
interacting field has no physical interpretation, only the asymptotic fields
can be interpreted. It is furthermore not clear how to generalize this
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approach to the case when Aμ(x, t) is not rapidly decreasing for t —> ± oo
(i.e. when one has possibilities for incoming and outgoing bound-states).

An attempt to study the time-evolution of a spinless charged field
(smeared over space) interacting with an external vector potential was
made by Schroer, Seiler and Swieca [11], when the field was realized
on the incoming Hilbert-space. The result was negative, i.e. the field could
not be realized in the interaction region when a magnetic field is present
(this is consistent with Moses's observation [3] in the spin 1/2 case).

This result has lead Ekstein [12] to draw the following conclusion:
'The physical interpretation of the intermediate or actual field is obscure.
The concept of particles at finite times is not consistent with relativity and
quantum theory."

Recently Labonte and Capri [13] made an important observation
in the spin 1/2 case. They noticed that the field-Hamiltonian can be
diagonalized by introducing a time-dependent set of auxiliary fields which
are solutions to a time-dependent set of stationary problems. They
however argued that the auxiliary fields can be realized on the incoming
Hilbert-space, which unfortunately turns out to be false in the general
case (i.e. the incoming field and the auxiliary fields do in general belong
to inequivalent representations of the canonical commutation relations).

We shall choose an approach to the general time-dependent case
which is influenced by our conclusion in the summary of the time-
independent problem.

Guided by a diagonalized form of the classical field-energy we
construct a time-dependent canonical pair of Schrodinger fields Φt(x)
and Πt(x) which diagonalizes the field-Hamiltonian Ht. These Schro-
dinger fields do in general belong to inequivalent representations of the
canonical commutation relations for different ί's.

The Heisenberg field is constructed by solving the Heisenberg
equation of motion and its time-evaluation turns out to be governed
by a unitary operator i.e. the Heisenberg fields at different times are
unitarily equivalent.

Time-evolution of states is then defined and the whole setup of
quantum theory is constructed.

II. The Classical Problem

Before we can attack the quantized problem we shall need a detailed
analysis of the Klein-Gordon (K-G) equation, when considered as a
classical field-equation

μ μ u(x,ή = 0, (0.1)

where the external vector-potential AJx, t) is coupled minimally.



298 L.-E. Lundberg:

The classical field-energy of a solution to (0.1) is given by

βA{μ, dtu) = J dx[\{V - iA)u\2 + (m2 - A2) \u\2 + |δ, w|2] < (0-2)

and is independent of t when Aμ is.
It is essential for the consistency of our approach that Aμ is restricted

such that 1

ε<?0(w, υ) S <$A(U> V) ^ cS0{u, v), (0.3)

holds uniformly in t for all u,vs C0(R3) (infinitely differentiable functions
of compact support) and where ε > 0 and c ^ 1 are independant of ί, M
and i; but may depend on ^ μ .

From any solution u of (0.1) we can construct a conserved current 7̂
given by

j μ = — i{dμu)* u + iu* dμu — 2Aμu*u, (0.4)

i.e. dμjμ = 0 and the charge Q defined by

Q=ίdxj0, (0.5)

is independent of t.

IIA. Spectral and Scattering Theory in the Stationary Case

We shall in this section state the main results in [14], which were
obtained in the case when Aμ = δμ0A0, but can easily be generalized to
the present case (see Appendix A).

Equation (0.1) can in the stationary be written

(1.1)

where Ψ = I „ and

\idtu)

° * 1 LA = {-iV-Af-Al + m2. (1.2)

fλ ίgλ , ,
and g = \ )e ^ = CQ(R3)XCQ(R3) and put

fil \a2/

±(m2-A$)f?gί+f}g2], (1.3)

1 This condition also prevents the so called Klein-Paradox to occur.



Charged Spinless Particles 299

The positivity of the classical field-energy (0.2) allows us to construct
a Hubert space J?g by completeing Q) in the norm ||/IU = l/(/,/)^ and
with (1.3) as scalar product. It follows from (0.3) that fflg is given by

where J fp stands for the Sobolev space containing those functions for
which the function and all derivatives up to (including) p-th order are
square-integrable.

Provided the initial-value problem given by (1.1) is well posed, it
follows that the time-evolution operator U(t)(Ψ(ή=U{t) Ψ{0)) defines
a unitary one-parameter group in jfg (follows from conservation of
energy).

We shall from now on assume that the conditions on Aμ given in
Appendix A are fulfilled.

The operator B defines a self-adjoint operator on D(B) = Jf2 x Jti?1

with the following spectrum

σe(B) = σa C(B) — ( —oo, — m)u[m, oo),

where e(a.c.) stands for essential (absolutely continuous).
The differential Eq. (1.1) can now be integrated

OO

Ψ(t) = e-iBtΨ(O)= f e~iλtdE(λ)Ψ(O), (1.4)
- oc

oo

where we have employed the spectral representation for B,B= j λ dE(?,)
— 00

and we have assumed that Ψ(0) e D(B).
Let us for future purposes define the following projection operators

The spectral family E(λ) can be expressed in terms of eigenfunctions
Φn(m) and Φ±(-,k) of B with eigenvalues ω^ ξO, n = l , ...jji1 and
±ωk= ± \/k2 -f m2 respectively. These eigenfunctions are normalized
as follows

{ΦΪ,Φ*)t = δHm, (Φ±{-Λ),Φ±(;k)), = δ(k-k'), (1.6)

and have the following explicit form

? ί I ΦHχ,k) = J ^ 1 (1.7)
ω - u- (x)J \±ωku~(x k)j
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where u^(x) and u±(x, k) are solutions of the stationary form of (0.1)

and ck is given by ck = ——
v y^n) ' ]/2ωk)

( - ω2 + 2ω Ao + LA) u{x) = 0, (1.8)

with ω = ω^ and ω = ± ωfc respectively, i.e. u* (x) are square integrable
solutions and w±(x, fc) are solutions of the following integrated version
of (1.8)

I e±i\k\\x~y\

u±(x, k) — eιkx — f dy— •— V±(y, k) u±(y, k), (1.9)
4π |x — y\

where

Let us furthermore define the following wςFourier-transforms" of

The spectral projection E(λ) (associated with B) can be represented as
follows (/, g e &)

(g9E(λ)f)£= J dkg-*(k)f-{k)
-ωk<λ

X g+~*f:- (-m<λ<m) (1.10)

9?*L±+ ί dkg + *(k)f+(k)
0>k<λ (λ>m)

which exhibits the completeness of Φ*( ) and Φ ± ( , fc).
In the quantized theory we shall need the following sesquilinear form

ί-2Aof?g1)9 (1.11)

a n d f o r f u t u r e c o n v e n i e n c e w e i n t r o d u c e f = i_f \ r ) w h i c h m e a n s

\ J 2 ~ A o J
that (1.11) can be written

where 2 stands for L2(R3).
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It follows from (1.11) that B1 is bounded in #P8. This means that
we can complete 2tfs in the norm || ||7 defined by

and get a Hilbert-space Jf^D #?g. We notice that (f,g)Q is bounded for
all f,gej#Ί and that (Ψ, Ψ)Q = Q with Q given by (0.5).

Let Bo, jfgo, ,WlQ, PQ1 and Fξ denoteB, J ^ , JT / ? P.1 a n d F 1 respectively
when Aμ — 0.

One can prove (under our conditions on Aμ) that the wave-operators
W± = W±(B,B0) defined by

W+ =s-\imeiBte'ίBot, (1.14)
ί~>±OO

both exist and map P^ J ^ o isometrically onto P^ J ^ . They furthermore
intertwine Bo and BC=-(PC

+ +PC~)B, i.e.

^ ± 5 0 C 5 c H / ± . (1.15)

The following representation of W+ holds

P c

± ^ _ ^ F ± * F 0

± , W+f = {W_f*)*, (1.16)

(here * stands both for adjoint and complex conjugate) and the scattering
operator S is defined by

S=W*W_P£ + W*W+PQ =S+ +S~ , (1.17)

and is easily seen to be unitary in JtSo and commutes with Bo. This
implies that S also defines a unitary operator in JfIo.

By inserting (1.16) into (1.17) we get the ordinary stationary definition
of the S-matrix (see [14]).

II.2. Solution of the Initial-value Problem in the Time-dependent Case

The K-G equation (0.1) can in the general case be written

idtΨ = BtΨ, (2.1)

with Ψ = ( " I and
\idtu)

(2.2)
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Let us define

Ό 1
(2.3)

and denote by jfSt the Hilbert-space (of the kind discussed in the previous
section) where Bt is self-adjoint. It follows from (0.3) that Jf#t and #egv

are equivalent as Banach-spaces i.e. any vector in M)

8t also belongs to fflgt,
for all t and ί'.

We shall assume that Aμ fulfills the conditions given in Appendix A
uniformly in t and furthermore is such that Vtt> defined by

Bt = Bt. + Vtt.9 (2.4)

is bounded in JfIt. This implies that we have the following representation
for the time-evolution operator U(t, tf) associated with Eq. (2.1)

(2.5)

(where T stands for time-ordering) with

Vtt. =e

iBt'(t-t')yttie~iBt'(t-t') ^ p.6)

The time-evolution operator U(t, t') is not in general unitary in any
Hilbert-space but have instead the following property

{U(t9f)f9U(t9f)g)Qt = {f9g)Qt,9 (2.7)

which we shall call charge-isometry, i.e. it leaves the charge Q invariant
(( , ) Q t is given by (1.11) with B = Bt).

11.3. Diagonal Representation of the Field-energy

The field-energy (0.2) has the same form in the time-dependent case
as in the stationary case i.e.

(3.1)

and takes diagonal form if Ψ(t) is expanded in terms of eigenfunctions of Bt

\n±(t)

δA = Σ Σ * £ * *M + ί dk ^ *W ̂  (fc) ' ( 1 2 )
± L« = i

with

Ψun = (^n, Ψ{t%t9 Ψ* (k) = (Φ± (., fc), Ψ(t%t . (3.3)
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III. The Quantized Problem

A Hamiltonian formulation will in this section be employed in order
to construct a quantum-field theory associated with the classical field-
equation (0.1).

The diagonalized classical field-energy (Π.3.2) will be the starting
point for the whole construction.

IILί. Construction of the Quantum-field, the Current,
the Charge-operator and the Number-operator

in the Diagonal Hamiltonian Schrδdinger Picture (D.H.S.P.)

The diagonal representation (II.3.2) of the classical field-energy can
be written

" ± ( ί ) 1 dk 1

Σ ^Γ^\ω» I *»**(*) *»*(')+ ί-r—ω^^/c, ήaHKtt (1.1)

where

flί (ί) = |/2 Ψtn = ]β (Φtn, Ψ('< Ok > (ί 2)

The time-dependence of a*(t) and a±(k,t) is in the stationary case
given by a phase-factor e~iω^% and e^iωkt respectively i.e. St is time-
independent ({cun}nt{i are the eigenvalues of Bt).

Let us now by an ordinary Fock-Cook construction introduce a
Hilbert-space Ĵ J on which the following creation and annihilation-
"operators" are defined (for a proper definition see below)

[απ

±(ί),α;*(ί)] = 2|ωΛ

± |δn m, [_a±{Kt\a±*{k\t)] = 2ωkδ{k-k/), (1.3)

with all other commutators vanishing and furthermore having the
property that there exists a vacuum state | 0 X E JfJ, i.e.

απ

±(ί)|0>f = α±(fc)|0>t = 0. (1.4)

Let us for fe 2tflt define af(f) by

n±{t) 1 dk

« = 1 Δ\ωn I Z C 0/c

which is easily seen to define a closed operator in J^J. The proper operator
form of (1.3) and (1.4) then becomes

[>r (/), tff igf] = (/, ^ r 0)/t, ^r (/) |0>f = 0, (1.6)
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with all other commutators vanishing (P^ are projection-operators
associated with Bt [see (II.1.5)]).

The structure of the Hilbert-space Jft = Jf is the following

^ = ^ o θ Σ Σ ® ( ^ 7 c ® ^ ) , (1-7)
± n = l

where J^o is spanned by the vacuum state |0>r and Jfnfc by symmetric
functions (defined on R3n) with the scalar product given by

and J^j^ is spanned by symmetric ^±(ί) dimensional tensors of rank n
with the scalar product

n±(t)

Σ -j—''-'j — f*i...an9aι...Λn' (1-9)
λ ί α i , . . . , α n ^^Λxi ^ ^

The classical field-energy (1.1) is easily seen to define a non-negative
diagonal self-adjoint operator Ht in 3ft, when the functions a*(t) and
a±(k,t) are replaced with the corresponding Fock-operators (denoted
with the same symbols)

n±{t)

Σ-
1 , +, , . .4 . , , r dk

(1.10)

where iV^ (ί) = α± (ί)* α* (ί) and N 1 (fe, ί) = α ± (fc, ί)* ̂  (k9 ή.
It is essential that the creation operator α* is placed to the left of the

annihilation-operator a upon quantization (this is usually called normal
ordering).

The Hamiltonian Ht has 0 as a non-degenerate eigenvalue with the
vacuum-state |0>t as eigenvector.

The time-dependence of the α(ί)'s in the classical case is upon quantiza-
tion absorbed into the Hilbert-space 3tft and we shall therefore call άf (/)
operators in the diagonal field-Hamiltonian Schrδdinger picture (D.H.S.P.).

Guided by the relation (1.2) between the classical field ^(x, ί) and the
/ Φ(x, t) \

a(tYs we will now define the quantum-field Ψ(x, t) = I ' I in the
\idtΦ(x,t)

D.H.S.P. by

where we have used (II. 1.12).
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The commutation relations (1.6) gives

[ψt(f\ ψt(gn=ίψt(h ψt(S)*i ( 1 1 2 )

= (/, Q)Qt = (f> Q)σ ,

and [ ^ ( Λ Ψt(g)]=0. Thus the commutator [?,(/), Ψt(gf] is inde-
pendent of t. This could suggest that Ψt{f) and ¥V(/) are unitarily
equivalent, which however turns out to be false in the general case,
i.e. Ψt(f) and Ψt>(f) do in general belong to ίnequivalent representations
of the commutation relations.

The commutation relations (1.12) can be put into a more familiar form

lΦt(x), Φt(y)] = lΠt(x), J7t(y)] = 0, ( 1 Λ 3 )

where Φt(x) = Φ(x, t) and Πt(x) denotes the field canonically conjugate to
Φt(x\ i.e.

Πt{x) = arΦ*(x, ί) - iA0{x, t) Φ*(x, ί). (1.14)

Let us close this section by defining the current, the charge operator
and the number operator in the D.H.S.P.

The classical current (II.0.4) does upon quantization define a sesqui-
linear form (which means that matrix-elements of the current has proper
meaning) which is densely defined provided the current is normal
ordered

jo{x)t=:(-iΠt(x)Φt(x) + iΦt{x)Πt(x)):

jt{x) = :(-i(VΦt(x)) Φt(x) + iΦt(x) VΦt(x)):,

where the dots : : stands for normal ordering.
The charge (II.0.5) in the classical theory does upon quantization

in the D.H.S.P. take the following form

lMί)

and the number-operator is finally defined by

H (U7)
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III.2. Construction of the Quantum-field
in the Diagonal Field-Hamiltonian Heisenberg Picture (DΉ.H.P.)

and Existence of the Time-evolution Operator

We shall in this section construct the Heisenberg field Ψ(f9 ί, ί0) as a
solution of the Heisenberg equation of motion

i^Ψ{f,Uto) = [Ψ{f,Uto\Ht-\ (2.1)

with the initial condition Ψ(f, tθ910) = Ψt0(f) and fulfilling the following
equal-time commutation relations

lΨ(f, U tΌ), Ψ{g, t, ί0)*] = (/, g)QtQ, lΨ(f, t, t0), Ψ{g, t, ί0)] = 0. (2.2)

The occurrence of Ht in (2.1) forces us to realize Ψ(f,t,t0) on jj?t

and the canonical structure (2.2) suggests that Ψ(f, t, t0) contains Φt

and Πt linearily.

The total derivative —- is assumed not to act on Φt and Πt.

The solution of (2.1) and (2.2) is given by

Ψ(f,t,to)=Ψt{U(t,to)f), (2.3)

where U(t, t0) is a solution of

idtU{t,to)=-BtΌ(t,to), U(to,to)=l, (2.4)

with Bt given by

t = {-iV-A)2-A2

0-idtA0 + m2. (2.5)

One can easily verify that U(t, t0) is charge-isometric.
The proof of (2.3) is obtained by inserting it into (2.1) and using (1.11),

i.e. (2.1) holds provided

i—U{t,to)f=-BtU{t,to)f.

This equation can be written

and thus coincides with (2.4). The charge-isometry of U(t, ί0) and (1.12)
proves (2.2).
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The Heisenberg fields Ψ(f, ί, ί0) are unitarily equivalent for different
t (t0 fixed) i.e. there exists a unitary operator %(t, t0) from Jft0 onto Jtt

such that

Ψ{f, t, t0) = nu t0) Ψ(f, t0910) Φ(t, ί 0 Γ ' • ( 2 6 )

Due to the fact that ^(ί , ί0) leaves the commutation relations (2.2)
invariant, it follows that it is sufficient for the unitary of %(t, t0) that
there exists a vector |0> ί ί o in J>ft with the property

Ψ(fo\ u to) |0> ί ί o = Ψ(fo, U t0)* |0> ί ί o = 0, (2.7)

i.e. |0> ί ί o = %(U t0) |0> ίo (/o* = P± / and fe tfIt).

Equations (2.7), (2.3), (1.11) and (1.5) gives

(a + (g) + a-((Kgr)*)\0}tto = 0, (2.8)

with
K = ( l - K 1 ) " 1 ^ 2 , (2-9)

where _ _ _ _

provided U JΊf^ is dense in Jfj^. A necessary and sufficient condition for

(2.8) is that K is Hilbert-Schmidt in J*f/t with a norm less than one, i.e.

where ^ λf < oo, 0 < /̂  < 1 and ί / ^ } ^ i is an orthonormal set in Jtfjf.
i = l

The representation (2.11) of X then allows an explicit construction of

|0> ί ί o i.e.

|0>, to = c Π e - λ " +'" - |()>(, (2.12)

with

c2= Π(l-λf), at=aHfh. (2.13)

We have thus reduced the problem of unitarity of %(t, t0) to the

following properties of U = [7(ί, ί0) and X = X(ί, ί0);

i) L 7 ^ o is dense in ^ ,
°

iii) K is Hilbert-Schmidt in jfIt.

These properties are verified, under our conditions on the external
potential Aμ, in Appendix B.
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111.3. Definition of Physical States and Their Time-evolution
in the D.H.S.P.

The definition of physical particle states at t = t0 is straight-forward
due to the fact that the Hilbert-space J"fί0 is buildt up by a Fock-Cook
construction. The structure of the Hilbert-space is given in (1.7) and the
only novel part, compared with the free case, is that we might have
bound states.

Let us assume that the system is in a state \ξ(t0)} e 34?t0 at ί = ί0.
We shall define the corresponding time-evolved state \ζ(φejft in the
D.H.S.P. by

\ξ(φ = V(t,to)\ξ(to)>. (3-1)

Note that we have chosen the inverse of the usual time-evolution
operator in the Schrδdinger picture, as our time-evolution operator for
a state-vector in the D.H.S.P. The reason for this choice is that %(t, ί0)
maps jfί0 onto JfJ and we naturally want the initial state to be defined
in jffo.

In Section ΠI.l we defined the operators Ht, Qt and Nt in the D.H.S.P.
as certain self-adjoint operators on Jft. Let us consider the expectation-
values of these operators in time-evolving states of the type (3.1). For
simplicity we consider the state |0> ί ί o obtained when \ξ(t0)} in (3.1) is
chosen equal to |0> fo.

The expectation value of the Hamiltonian Ht in this state

<Hί> = ; ί o <0|H r | 0> t ( o , (3.2)

can be estimated by using the representation (2.11) for |0) ί ί o and the
estimate for the kernel of K(t, t0) given in Appendix B. It is in general
not finite in the interaction-region, i.e. the local external vector potential
Aμ(x, ή might pump in infinite amount of energy into a physical system.

The expectation value of the number-operator

<Nt> = f t o<0|iV f|0> t t o, (3.3)

however is always finite, i.e. even when an infinite amount of energy is
pumped into the system, it is a finite average number of particles that get
that infinite average energy2.

The expectation-value of the charge is always constant i.e.

o o ) > (3-4)

(for the proof of these statements see below).

2 This is directly related to the divergences in the case of interacting fields.
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In the case when Λμ(x, t) is time-dependent, it is convenient to expand
the Schrδdinger-fields in the orthonormal set {/*}?= x associated with
K(t, ί0) (see (2.11)), i.e. α* (/) given by (1.5) has the following representation

i = l

where α t

± ( / ) 1 = 0 if {/*}?=! happens to be complete in P* 3ί?It.
The charge-operator Qt and the number-operator Nt can similarly

be written

00 00

ft = Σ ± Σ 4*4 + ft\ Nt = Σ Σ 4*4 + Nt

λ. (3.6)
± i = l ± i = l

Equations (2.11) and (3.6) give

ft|0>((o = fto|0>ίo = 0, (3.7)

which proves that (3.4) holds on |0> ίo. The general proof of (3.4) is
then obvious.

Equations (3.6) and (2.11) allow us to evaluate the average number of
particles in the time-evolved vacuum, given by (3.3)

which proves that the average number of particles is finite.
The average charge in |0> t ί o is zero but the average charge-density

is not. The expectation-value of the current (this has a well-defined
meaning because the current is defined as a sesquilinear form, see (1.15))
is given by

(io<0|J(«(x)|0>rro=£ Σ-JL-jffrt), (3.9)
± ί=l i~Ai

where jf * (x, t) is the classical current given by

fu^ + iut*dμuf -2Aμ\uf\2 , (3.10)

with fi

± = ,
\ιdtuf

Ill.4. Scattering Theory and Bound-State Problems

In this section we shall consider vector-potentials Aμ(x, t) such that

Aμ(x,ή = AΪ(x) for ί J J + , ί _ g θ ^ ί + . (4.1)



310 L.-E. Lundberg:

Let us for ί ~ + introduce the following definitions

H±=Ht, Jf±=tf?

t, B±=Bt9 W± = W±(B±9B0)

Ψ± (/) = Ψtifh ΨΛ±(f) =Ψ±(W±f), (4.2)

where W±(B, Bo) is defined by (II. 1.14).

We shall call Ψa±(f) an asymptotic Schrodinger field, i.e.

ΨΛ£(f, t) = eiHίt Ψai(f)e~ίH±ι

is a free field which is asymptotic in the following sense

eiH*tΨ±(f)e-iH*t->Ψ%{f,t), ί-^±oo? (4.3)

strongly on any finite particle scattering subspace of Jf±.
The S-operator is defined by

ιF + ( S / ) - y ? ι F _ ( / ) ^ " 1 , (4.4)
where _

S = έ r i * + t + £ / ( r + , r _ ) έ ? i l > - ί - , (4.5)
i.e.

y = e-
iH + t>W(t + ,t_)eiH-t- , (4.6)

and is a unitary and charge-isometric operator from JfL to Jf+.
Equation (4.4) can be written

f-)y~ί, (4-7)

/ί)^-1, (4.8)

where fi = W_ f, fί = {E±(m) - E±(-m))f = P{ f(B± = j λ dE±(λj) and

Sdd = PiSPt< Scd=W*SPί
(4.9)

Sdc = P*+SW_9 SCC = W*SW^ .

The asymptotic initial (final) scattering states are defined by acting
with monomials of ΨΛl(f) {Ψ*ϊ(f)) and ψa_s(/)* (^a

+

s(/)*) on the vacuum
|0>_(|0>+). The particle interpretation is obvious because ^a

±

s(/) is a
free Schrodinger field.

One can easily obtain ^ | 0 > _ (usually called the out-vacuum) by
letting

U(t,to)-+e-iB+'< Wt^tje"1-'-

_ - c f ] e~iλιa* *aΓ*\0} + , (4.10)
i= 1
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where af can be expressed as follows

4 ^a^(Wf(B + ,B0)fi

±) + a±(Pίfi

±),

B B ) / )

Any scattering amplitude (also involving eventual bound-states in
the initial and/or final state) can be calculated by using Eqs. (4.7), (4.8),
(4.10), and (4.11).

III.5. Some Remarks on the D.HΉ.P. and the DΉ.S.P.

We shall in this section give the connection between the diagonal
Hamiltonian Heisenberg (Schrodinger) picture and the ordinary Heisen-
berg (Schrodinger) picture in a theory where both exists (they don't in
our case).

Let Hs(t) be a Hamiltonian (in the Schrodinger picture) defined in
a Hubert space jf. The time-evolution operator L/(ί, t0) in the Schrodinger
picture (S.P.) is a solution of

i-^U(t9t0) = Hs(t)U(t9t0)9 (5.1)

with the initial condition U{t0, to)=l.
Let As be a time-independent operator in the S.P. and define

AH(t)=U(t9tΌyίAsU(t,t0)9 (5.2)

to be the operator in the Heisenberg picture (H.P.) corresponding to As

in the S.P.
One can easily verify that AH(t) fulfills

i-^AH(t) = lAH{t)9HH(t)]9 (5.3)

where

HH(ί)=t/(ί,ί o)" 1H s(ί)t7(ί,ίo)- (5-4)

Let V(t) be the unitary operator that diagonalizes HH(t\ i.e. V~1HH V
is diagonal and put

'AMViή. (5.5)

We then get in analogy with (6.3)

^ ^ ^ ] ^ ^ (56)1 "77 ^DH ~ L^DH? ^ D H ] + ^ ~n7
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where

HDH = V^HHV, JLABB=;{^V-^AHV+V-1AH^-V. (5.7)

We then put

and (6.6) can thus be written

i~ADH = lADH,HDH-]. (5.8)

Let us furthermore write

ADH(t) = Φ(t, t0) ADS(t0) Φ(t, t 0 ) , (5.9)
where

Φ(ί, ί0) = V{t)-ι U(t, toy
ι V(t0), ADS{t0) = V(t0)'' As V(t0). (5.10)

Equation (5.8) is the analog of (III.2.1) and (5.9) is the analog of
(IΠ.2.6).

Equation (5.10) gives the connection between the time-evolution-
operator (and an observable) in the D.H.S.P. and the S.P.

Conclusions

We have constructed a Hamiltonian formulation of relativistic
quantum field theory for a charged spinless boson-field in interaction
with a local external vector potential.

Guided by a diagonalized form of the classical field-energy we con-
structed a time-dependent canonical pair of Schrodinger fields Φt(x)
and Πt(x) which diagonalized the field-Hamiltonian Ht.

These Schrodinger fields do in general belong to inequivalent
representations of the canonical commutation relations for different f s.

The Heisenberg field was constructed by solving the Heisenberg
equation of motion and its time-evolution turned out to be governed by
a unitary operator i.e. the Heisenberg fields at different times are unitarily
equivalent.

The time-evolution of an initial state was considered in a Schrodinger
representation and quantum theory was developed to the same level
of logical consistency as is possible in the corresponding non-relativistic
problem.

The Dirac case (spin 1/2) can be treated in complete analogy (see
Appendix C).
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Appendix A: Assumptions on the Local External Vector-potential Aμ (JC, t)

We shall give sufficient conditions on Λμ(x) such that an analysis
like in [14] can be carried through (in [14] only the case Aμ(x) = δμ0 Λ0(x)
was considered). The following will be assumed

i) Aμ(x) and V A(x) are real-valued and locally Holder-continuous
except at a finite number of singularities,

ii) AQ(X) is square integrable and A(x) is bounded,
iii) Aμ{x) and V A(x) behave as Θ{\x\~3~% ε > 0 , |x|->oo,

iv) ldx(A2\f\2 + A(i{Vf)*f-f*iVf))

All parts of [14] goes straight through in this more general case
except Remark 4.3 where some work has to be done. More precisely
in the analysis of the Lippmann-Schwinger equation (II. 1.9) one has to
use a Banach-space B whose norm contains the gradient operator, i.e.

Once this Banach-space is employed the analysis becomes completely
analogous to the case 4 = 0 .

The time-dependent potential Aμ(x, t) is assumed to fulfill the con-
ditions above uniformly in t and furthermore we assume that Aμ(x, t)
is continuous in t uniformly in x and that dtAμ(x, t) is integrable over R3

and locally integrable over R1.

Appendix B. Unitary of L/(ί, ί0)

In the end of Section III.3 we argued that it was sufficient for the
unitarity of <W(t, t0) to hold that

i) Ό^o is dense in JV +,

iii) K is Hilbert-Schmidt in 2/eu.

Proof of i). Let's assume the contrary, i.e. there exists a g+ e J^ t

+

such that (we put It = / and It0 = /0)

to + ^ / o + ) / = 0, for all fo

+e^+

o

and thus (V1 g + , / 0

+ ) / o = 0 due to the charge-isometry of U. This
means that

ho=U-1g+ejfrI-
and thus _ __

( l / - 1 ί + , l / - 1 » + ) Q o = - | | Λ 0 Ί l f 0 = | | ί

+ | | 7

2 ,

which proves that g+ = 0. Q.E.D.
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Proof of ii). We have

Ufo

+=g++Kg\ (B.I)

with g+ =P+ U fj and thus the following identity holds

and therefore

i.e. | | £ | | J < 1 due to i).

Proof of in). We shall prove the Hilbert-Schmidt property of K
given by

K = {l-K1y
1K2

(B.2)
u-1p+

by establishing the Hilbert-Schmidt property of K = P~ UPQ as an
operator from J^IQ to J ^ in perturbation theory ((1 — K^"1 is bounded
because Kί is negative and U~1 P+ is also obviously bounded).

In analogy with (II.2.25) we have the following representation for
Ό(t, t0)

iidtVtt0

et° , (B.3)

with _
Vtt0 -

where Vtt0 = Bt — Bt0 (for Bt see (IΠ.2.5)) is bounded in jfIt (follows from
the assumptions on Aβ given in II.2).

The Hilbert-Schmidt (H.S.) property of K will be proved by making
a perturbation expansion of (B.3)

U(t, tΌ) = ^ o ί ' - ' o ) U + i\dt VttQ + . . . ) . (B.5)
V to /

By using the explicit representation (1.1.10) of the spectral projections
one can verify that it is necessary and sufficient for K(t, t0) to be a H.S.
operator from jfΣ to Jfh that

F(k9k') = (ΦΓ{.,k), U(t,to)Φ+(.,k%t9 (B.6)

fulfills

^ ' ) \ 2 < o o . (B.7)
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By inserting (B.5) into (B.6) we get to lowest order in Vtto

F(k, fc') = (ΦΓ( , k), Φt{;k%te
ιωkΛt~t0)

+ i(φ-(; k), j dt VttaΦ+(; k')) e-'«*('-'o) (B.8)

The following equation holds when interpreted properly

Φ+( , k) = Φt

+( , k) + R,(ωk + iO) V;t0Φ;0(; k), (B.9)
where

V; B B R() (B10)

The first term in (B.8) can now be rewritten by using (B.9)

Λ K ) ^

The second term in (B.8) can be written as follows

plus terms of higher order in V.
We now use the fact that Φ* (x, k) has the form (II. 1.7) where u* (x, k)

has the property

u+(x,k)->eikx when fe->oo, (B.I 3)

for our choice of potentials.
It is now straight forward to verify that F = Fί+ F2 fulfills (B.7)

to first order in VttQ by employing partial integration in (B.12) and using
the continuity of Vtto as a function of t. The verification of (B.7) in higher
orders is straight-forward and the perturbation expansion is known to be
convergent which finally proves the Hilbert-Schmidt property of

Appendix C. The Dirac Case

The Dirac case is actually simpler than the Klein-Gordon case once
the classical problem is solved (spectral and scattering theory).

The reason for this is that the Dirac equation can be written

i<3,ψ = H c,ψ, (C.I)
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where
HGl= -ix-D + A0 + βm, D = V + iA,

and is self-adjoint on J^cl = L2®L2@L2@L2, i.e. the classical Hilbert-
space is time-independent and the time-evolution operator is unitary
in JTC 1.

The quantization can then be carried through in complete analogy
with the K-G case.
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